用户名: 密码: 验证码:
光纤陀螺性能改善技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陀螺仪作为惯性制导、导航以及姿态控制的核心器件已经发展了三代。第一代机电式陀螺由于其性价比和寿命等方面上的缺陷,正逐渐被以光学Sagnac效应为基础的光学陀螺所取代。第二代环形激光陀螺在精度和可靠性方面取得了巨大的进步,使得其在惯性导航系统中得到了广泛的应用,然而为解决“闭锁”问题而加入的机械抖动装置使得其系统变得非常复杂,由此产生了第三代陀螺技术——光纤陀螺。光纤陀螺以其小体积、高性价比、精度适用范围广、无运动部件等优点,目前在中低精度的陀螺应用领域中得到了广泛地使用。
     干涉式光纤陀螺作为光纤陀螺技术的一种,其基础理论和技术虽已成熟,然而我国光纤陀螺技术的发展水平和精度等级与国外发达国家相比仍有巨大的差距;同时由于受到国内陀螺光学器件生产工艺和技术水平的限制,目前改善陀螺性能、提高陀螺的精度等级主要依靠电子学和信号处理的技术手段,因此研究如何在现有的技术条件下改善光纤陀螺性能指标的相关技术,对于光纤陀螺的技术发展和工程实践具有重要的理论意义和经济价值。本研究课题以干涉式数字闭环光纤陀螺作为研究的对象,对改善陀螺性能的
     相关技术开展研究工作。重点研究了评价陀螺性能的零偏稳定性、角随机游走系数以及标度因数三个关键技术指标的影响因素,以及改善这三个指标的技术措施。总结本课题论文的工作内容和创新成果可以概括如下:
     (1)根据干涉式光纤陀螺的工作原理以及输出信号的特性,建立了数字式闭环光纤陀螺的动态模型和随机模型;采用数字信号仿真的方法对光纤陀螺存在的五种主要噪声类型进行仿真实验,通过Allan方差分析对比真实的陀螺输出数据,验证了模型和随机噪声仿真的有效性;
     (2)研究了造成闭环光纤陀螺标度因数误差的主要因素,以及标度因数误差补偿的技术方案,并通过模型仿真的方法验证了基于四态方波调制增益误差补偿方案的有效性;
     (3)研究了影响光纤陀螺角随机游走系数以及信噪比的主要因素;针对陀螺光源相对强度噪声限制信噪比提高的问题,研究了目前广泛采用三种抑制相对强度噪声的技术方案以及缺陷,并提出了一种基于RLS自适应噪声对消技术。仿真结果表明该技术对噪声传输延迟和幅值变化具有很强地适应能力,对陀螺的零偏稳定性和角随机游走系数指标有较大改善;
     (4)根据光纤陀螺非线性、非平稳性的信号特点,研究对比了LMS自适应滤波算法在不同调整步长和滤波器阶数下的滤波效果,从对比的实验结果中得出了针对光纤陀螺信号特点的LMS滤波器参数的确定原则;针对LMS自适应滤波算法的缺陷,提出了基于非参数、可变步长的归一化LMS(NVSS-NLMS)滤波算法的技术方案,实验结果表明该技术方案相比基于LMS算法的技术方案具有更好的滤波效果;
     (5)针对自适应滤波算法需要确定适合的参考信号问题,研究了基于信号本身蕴含的、反映不同时间尺度下信号局部特征的经验模分解(EMD)滤波技术,并针对陀螺动态信号EMD分解后如何重建信号的问题,提出了基于序列均方误差检测的EMD滤波方法,该方法为信号重建提供了客观的判断标准。通过对陀螺信号的滤波处理,陀螺的零偏稳定性和角随机游走系数指标得到了显著改善。
A gyroscope as the core components of the inertial guidance, navigation andattitude has been developed three generations. The first generation of electromechanicalgyro due to it’s these disadvantages of performance to cost ratio, life-time and so on, isgradually being replaced by the optical gyros based on optical Sagnac effect. Thesecond generation of ring laser gyro (RLG) has made great process in the aspect ofprecision and reliability, which makes it to be widely used in the inertial navigationsystem. However, to solve “locking” phenomenon and added the mechanical jitterdevice in RLG, it makes RLG system to become very complex. This results in the thirdgeneration of gyro technology-Fiber Optic Gyroscope (FOG). FOG has theseadvantages of small size, low cost, wide range of precision, no moving part and so forth,which is widely used in the low and middle precision gyro applications currently.
     The interferometric FOG is a kind of FOG technology, and its fundamental theoryand technology have fully matured. But there is a huge gap compared the domestictechnology with developed countries in the developing level and precision of FOG. Dueto limitations of the production technologic level of the optical devices, the presenttechnologic measures rely mainly on the electronics and signal processing techniquesfor improving performance and enhancing the precision of FOG. So with the actualtechnical conditions the research of the relative technology about how to improve theperformance of FOG, has important theoretical significance and economic value for thetechnical development of FOG and engineering practice.
     In this dissertation the interferometric digital closed-loop FOG is as the object ofresearch. The research work about the improved performance-related technology ofFOG is to be carried out. The effecting factors and the improved performancetechnology of the three key indexes, Bias Stability, Angle Random Walk Coefficient andScale Factor, are researched mainly, which is employed to evaluate the performance ofFOG. In this article the main content and innovations can be summarized as follows:
     (1) According to the operation principle and the output signal characteristics of FOG, thedigital closed-loop fiber optic gyro’s dynamic model and random model areestablished. The main five types of random noise in FOG are simulated with themethod of digital signal simulation. The random model and the simulation methodof noise are verified by Allan variance analysis and comparison of the real gyro’soutput data.
     (2) To study the main factors which causes Scale Factor error and the compensationtechnologies of Scale Factor error are introduced. The effectiveness of the gain errorcompensation technology based on the four-state square-wave modulation is provedwith simulation of the model.
     (3) To study the main factors of impacting Angle Random Walk Coefficient and SNR ofFOG. To solve the problem of the source Relative Intensity Noise (RIN) limiting toenhance SNR of FOG, the three suppression RIN technologies and their drawbacksare studied and a kind of the adaptive noise cancellation technology based on RLSalgorithm is proposed in this paper. The simulation shows that this technology has astrong ability to meet the change of the transfer delay and amplitude of RIN and theFOG’s Bias Stability and Angle Random Walk Coefficient have been improved in acertain extent after using this technology.
     (4) According to the FOG’s signal characteristics of nonlinearity and nonstationarity, tostudy and compare the LMS adaptive filter algorithm at different step size and theorders of filter. The principle to determining the LMS filter’s parameters result fromthe experimental results. To avoid the drawbacks of LMS filter algorithm, thefiltering technology based on Non-parametric, Variable Step Size Normalized LMS(NVSS-NLMS) algorithm is proposed. The experiment shows that this technologycompared to LMS algorithm has a better filtering effect.
     (5) To avoid how to choice the appropriate reference signal for the adaptive filteringalgorithm, the Empirical mode decomposition (EMD) filtering technology isresearched, which based on different time scale of the local characteristics in signalitself inclusively. To solve how to reconstructed signal for EMD, a method based onsequence Mean Square Error (MSE) detection is proposed, which provides anobjective criterion for signal reconstruction of EMD filtering method. By filteringthe signal of FOG, the index of Bias Stability and Angle Random Walk Coefficientare enhanced in a great extent.
引文
[1]秦永元等.卡尔曼滤波与组合导航原理.西北工业大学出版社,西安:2007.
    [2] David M. Shupe.“Fiber resonator gyroscope: sensitivity and thermalnonreciprocity”, Applied Optics,1981Vol.20(2): pp.286-289.
    [3] K. Iwatsuki, K. Hotate, M. Higashiguchi."Eigenstate of polarization in a fiber ringresonator and its effect in an optical passive ring-resonator gyro", Appl. Opt.,1986,vol.25(15): pp.2606-2612.
    [4] G.A. Sanders, N. Demma, G.F. Rouse, P.B.Smith."Evaluation of polarizationmaintaining fiber resonator for rotation sensing applications", Intern. Conf. onOptical Fiber Sensors,(New1988, FBB7: pp.409-412.
    [5] G.A. Sanders, R.B. Smith and G.F. Rouse."Novel polarization-rotating fiberresonator for rotation sensing applications", Fiber Optic and Laser Sensor VII:SPIE1169,1989, Vol.1169(74): pp.373-381.
    [6] P. Mouroulis:"Polarization fading effects in polarization-presering fiber ringresonators," Fiber Optic and Laser SensorVII: SPIE1169,1989, Vol.1169(46):pp.400-412.
    [7] L.K. Standjord and G.A. Sanders."Effects of imperfect serrodyne phasemodulation in resonator fiber optic gyroscope", Fiber Optic and Laser Sensor XII:SPIE,1994. Vol.2292: pp.272-282.
    [8]张旭琳,马慧莲,何时进.“谐振式光纤陀螺的研究进展”,光通信研究.2003,Vol.116(2): pp.58-62.
    [9] K. Hotate and Y. Tanaka."Analysis on state of polarization of stimulated Brillouinscattering in an optical fiber ringresonator", Lightwave Technol.,1995,vol.13(3):pp.384-390.
    [10] K. Hotate and Y. Tanaka."Fiber Burillouin laser gyro composed ofsingle-polarization single-mode fiber", Fiber Optic and Laser Sensor XI: SPIE,1993, Vol.2070:pp.206-215.
    [11] Hotate K, et al.“Grasp of the Behavior of Lock-in Phenomenon and a Manner toOvercome it in Brillouin Fiber Optic Gyro”, SPIE,1998, Vol.3541: pp.57-65.
    [12] Zarinetchi F, et al.“Stimulated Brillouin Fiber Optic Gyro”, Opt.Lett.1991, Vol.16(4): pp.229-231.
    [13] P.A. Nicati, K. Toyama, H.J. Shaw,"Frequency stability of a Brillouin fiber ringlaser", Lightwave Technol.,1995,Vol.13(7): pp.1445-1451.
    [14]董永康,吕志伟,吕月兰等.“布里渊光纤环形激光器及其应用”,激光技术,2004,Vol.28(5): pp.498-502
    [15]光纤陀螺仪测试方法.国军标GJB2426A-2004.
    [16] To see that, www.honeywell.com.
    [17] To see that, www.northropgrumman.com.
    [18] To see that, www. litton.com
    [19] To see that, www.litef.com
    [20] To see that, www.kvh.com
    [21] To see that, www.ixsea.com
    [22] To see that, www. optolink.com
    [23] To see that, www. fizoptika.com
    [24]陈世同.“高精度光纤陀螺建模及信号处理技术研究”,哈尔滨工程大学,博士论文,2009.
    [25]王立辉.“消偏型光纤陀螺仪关键技术研究”,哈尔滨工程大学,博士论文,2009.
    [26]朱蕊平,刘玉昕,陈娅冰等.“干涉型光纤陀螺仪的关键技术”,现代防御技术,2004,Vol.32(1): pp.43-48.
    [27]周泓.“光纤陀螺的应用与发展”,国防技术基础,2010,Vol.3:pp.41-42.
    [1] Hervé C. Lefèvre.“The Fiber-Optic Gyroscope”, Artech House:1993.
    [2] Arditty H.J. and Lefèvre H.C.,"Sagnac effect infiber gyroscopes", Optics Letters,1981,Vol.6: pp.401-403.
    [3]. Hervé C. Lefèvre.“Fundamentals of the Interferometric Fiber-Optic Gyroscope”,Optical Review,1997, Vol.4(1A): pp.20-27.
    [4]张兴周.“Sagnac效应光纤陀螺”,传感器技术,1998,Vol.17(1): pp.59-62
    [5]廖延彪.光纤光学.清华大学出版社,北京:2007.
    [6]张桂才.“光纤陀螺原理与技术”,国防工业出版社,北京:2008.
    [7] Lefever,H.C., S.Vatoux, M. Papunch, et al.“Integrated Optics: A Practical Solutionfor the Fiber-optic Gyroscope”. SPIE Processing,1986, Vol.719:pp.101-112.
    [8] Lefever,H.C., Ph. Graindorge, etc al.“Double Closed-Loop Hybrid Fiber GyroscopeUsing Digital Phase Ramp”. SPIE MS8,1985: pp.444-447.
    [9] Elberg, A., G.Schinffner.“Closed-Loop Fiber-Optic Gyroscope With a SawtoothPhase-Modulated Feedback”. Optics Letters,1985, Vol.10: pp.300-302.
    [10] Kurokawa, A., Kajiwara, etc al.“Evaluation of a Sawtooth Generator in aClosed-Loop Fiber-Optic Gyroscope”. Springer Proceedings in Physics,1989,Vol.44: pp.107-114.
    [11] G.W.Erichson.“An Overview of Dynamic and Stochastic Modeling of Gyros”.Proceedings of the1993National Technical Meeting of the ION,1993:pp.339-351.
    [12] Michael S Bielas.“Stochastic and dynamic modeling of fiber gyros”. Proceedingsof SPIE (S0277-786X),1994, Vol.2292(7): pp.240-254.
    [13]韩军良等.“数字闭环光纤陀螺建模与仿真研究”.系统仿真学报C,2008,Vol.20(4):pp.833-836.
    [14]. IEEE Standard Specification Format Guide and Test Procedure for Single AxisInterfermometric Fiber Optic Gyros. IEEE Std952-1997(R2008).
    [15] MARVIN S. KESHNER,“1/f Noise”, IEEE PROCEEDINGS,1982, Vol.70(3):pp212-218.
    [16]李强,王其申.“1/f分形噪声的一种多尺度Kalman滤波方法”,量子电子学报,2007, Vol.24(1): pp.7-12.
    [17]曹坤勇,于盛,林李光.“基于正交小波变换合成拟1/f过程”.吉林大学学报(工学版),2003, Vol.33(2):pp.69-74.
    [18] Xiaohong Yan, Guizhong Liu, etc al.“Representation of1/f signal viamultiwavelet bases”. Proceedings of IEEE Asia-Pacific Conference on Circuitsand Systems.2004: pp.93-96
    [19]党淑雯,田蔚风,金志华.“基于提升小波的光纤陀螺1/fγ类型分形噪声滤除方法”,弹箭与制导学报,2008,Vol.28(6): pp.53-55.
    [20]陈婧,宋凝芳,李敏.“小波分析在光纤陀螺分形噪声模拟中的应用”.电光与控制,2010, Vol.17(5): pp.50-53.
    [21] Liu Feng,Liu Guizhong,etc al.“Wavelet-based representation for the fractalsignal”, Natural Science Progress,2001,Vol.11(6):pp.621-624.
    [22] H. Peitgen and D. Saupe, Eds.“The Science of Fractal Images”. Springer-Verlag,New York,1982.
    [23]秦永元等.卡尔曼滤波与组合导航原理.西北工业大学出版社,西安:2007.
    [24] Mohinder S. Grewal, Angus P. Andrews.“Kalman Filtering: Theory and PracticeUsing MATLAB”. John Wiley&Sons Inc, New York:2001.
    [25] Ng Lawrence C., Pines Darryll J.“Characterization of Ring Laser GyroPerformance Using the Allan Variance Method”. Journal of Guidance, Controland Dynamics,1996, Vol.20(1): pp.211-214.
    [26] M.M.Tehrani.Ring Laser Gyro Data Analysis with Cluster Sampling Technique.Proceedings of SPIE.1983, Vol.412:pp.207-220.
    [27] C. Seidel, G. F. Trommer.“Measurement of nonlinear effects in fiber-opticgyroscopes with different light sources”. Proceedings of SPIE, Second EuropeanWorkshop on Optical Fibre Sensors,2004, Vol.5502: pp.346-349.
    [28] Sidney L. A. Carrara.“Drift Caused by Phase Modulator Non-Linearities in FiberGyroscopes”. SPIE Fiber Optic Sensors IV,1990, Vol.1267: pp.187-191.
    [1]张桂才.“光纤陀螺原理与技术”,国防工业出版社,北京:2008.
    [2]陈永奇,张春熹,朱奎宝.“神经网络在光纤陀螺标度因数温补中的应用”,压电与声光,2007, Vol.29(5):pp.516-518.
    [3] Wyscocki, P. F., et al.“Characteristics of Erbium-doped Superfluorescent FiberSources for Interferometric Sensor Application”, J. lightwave Technol,1994,Vol.12:pp550-567.
    [4] Wyscocki, P. F., et al.“Wavelength Stability of a High-Output, Broadband,Er-Doped Superfluorescent Fiber Source Pump Near980nm”, Opt. Lett.,1991,Vol.16(20): pp.961-963.
    [5] Chou, H. and S. Ezekiel,“Wavelength Stabilization of Broadband Semi-ConductorLight Sources”, Optics Letters,1985, Vol.10: pp.612-614.
    [6] Schuma, R. F. and K. M. Killian,“Superluminescent Diode (SLD) WavelengthControl in High-Performance Fiber-Optic Gyroscopes”, SPIE Proceeding,1986,Vol.719: pp.192-193.
    [7]何风平,李刚毅.“铌酸锂波导调制器的相位漂移机理[J]”.光电器件,2007,Vol.28(2): pp.166-171.
    [8] H.C. Lefevre, P. Martin, J. Morisse.“High dynamic range fiber gyro with all-digitalsignal processing”, Fiber Optic and Laser Sensors VIII (1990), SPIE Vol.1367:pp.72-90.
    [9] Kay,C.J.“Serrodyne Modulator in a Fiber-Optic Gyroscope”, SPIEMS8:pp.448-453.
    [10]陈世同,孙枫,李绪友.“集成光学器件相位漂移补偿方法研究”,哈尔滨工程大学学报,2008,Vol.29(1):pp.45-49.
    [11]陈世同.“高精度挂光纤陀螺建模及信号处理技术研究”,哈尔滨工程大学,博士学位论文,2009.
    [1]郝国强.“InGaAs红外探测器器件与物理研究”.博士论文,中科院上海微系统与信息技术研究所,2006.
    [2] O.K.Kim, B.V.Dutt, R.J.Mccoy,“A low dark current, Planar InGaAs PIN Photodiodewith a quaternary InGaAs cap layer”. IEEE.J.Q. Electron.,1985, Vol.21:pp138-143.
    [3] K.Ohnaka, M.Kubo, J.Shibata,“A low dark current InGaAs/InP PIN Photodiodeswith covered mesa structure”.IEEE. T. Electron. Devices.,1987, Vol.34:pp199-204.
    [4] S.R.Forrest,R.F.Leheny, R.E.Nahory,“In0.53Ga0.47As Photodiodes with darkcurrent limited by generation-recombination and tunneling”. Appl. Phys. Lett.,1980,Vol.37: pp.322-324.
    [5]郝国强,张永刚,刘天东等,“InGaAs PIN光电探测器的暗电流特性研究”,半导体光电,2004, Vol.25(5): pp.341-379.
    [6] Wanster K.H.,“Fundamental Phase Noise Limit in Optical Fibers Due toTemperature Fluctuation”, Electronics Letters,1992, Vol.28(1): pp.53-54.
    [7]张桂才.“方波调制干涉式光纤陀螺中的温度相位噪声研究”.全国第九次光纤通信暨第十届集成光学学术会议论文集,1999: pp497-498.
    [8] Pavlath G.A., et al.“Method for Reducing Random Walk in Fiber OpticGyroscopes”. United States Patent,1996, Patent Number:5530545.
    [9] P. R. Morkel,R. I. Laming, D. N.Payne.“Noise characteristics of high powerdoped-fiber superluminescent sources”. Electronics Letters,1990, Vol.26(2):pp.96-98.
    [10] A.M. Yurek, H.F. Taylor, L. Goldberg, etc al."Quantum noise in superluminescentdiodes", Quantum Electron,1986, Vol.QE-22: pp.522-527.
    [11] Blake J. etc al.“Random Noise in PM and Depolarized Fiber Gyros”. The12thInternational Conference on Optical Fiber Sensors,1997: pp.121-125.
    [12] W. K. Burns, R. P.Moeller, A. Dandridge.“Excess Noise in Fiber GyroscopeSources”. SPIE Proceedings,1990, Vol.1367:pp.87-92.
    [13]李绪友,张瑞鹏,吴磊等.“高精度光纤陀螺光源强度噪声的抑制”.中国惯性技术学报,2010, Vol.18(5): pp.600-603.
    [14]姚琼,谢元平,宋章启.“光纤陀螺光源误差及消除方法分析”.激光杂志,2005,Vol.26(5): pp.74-75.
    [15] R. C. Rabelo, R. T. carvalho, J. Blake.“SNR enhancement of intensity noise-limited FOGs”. Journal of Lightwave Technology,2000, Vol.18(12): pp.2146-2150.
    [16]张桂才.“光纤陀螺原理与技术”.国防工业出版社,北京:2008.
    [17] Lee K. Strandjord, etc al.“System for Suppression of Relative Intensity Noise in aFiber Optic Gyroscope”. United States Patent,2001, Patent Number:6,204,921B1.
    [18]徐建营,王学锋,李超等.“光强外调制法抑制相对强度噪声”.中国惯性技术学报,2008, Vol.16(6):pp.740-743.
    [19] Lee K. Strandjore, Glen.A.Sanders.“Relative Intensity Noise Controller for FiberLight Sources”. United States Patent,2003, Patent Number:0,128,365A1.
    [20] R. P.Moeller,W. K. Burns.“1.06um all-fiber gyroscope with noise subtraction”.Optics Letters,1991, Vol.16(23): pp.1902-1904.
    [21] Kevin Killian, Mark Burmenko, and Walter Hollinger.“High performance fiberoptic gyroscope with noise reduction”. SPIE Fiber Optic and Laser Sensors XII,1994,Vol.2292: pp.255-263.
    [22] Robert P.Moeller, Fort Washington, et al.“Low Noise Fiber Gyroscope SystemWhich Includes Excess Noise subtraction”. United States Patent.1994, Jul.19,Patent Number:5,331,404.
    [23] James N.Blake, Glen A.Sanders, et al.“Fiber Optic Gyroscope Output NoiseReducer”.1995, Nov.21, Patent Number:5,469,257.
    [24] Sidney Xi-YI Huang, Naveen Sarma, et al.“Optical Signal Noise Reduction forFiber Optic Gyroscopes”.1999, Apr.27, Patent Number:5,898,496.
    [25] Sidney M. Bennett.“Apparatus and Method for Electronic RIN Reduction inFiber-Optic Sensors”.2002, Apr.9, Patent Number:6,370,289B1.
    [26] A. D. Kersey and T. A. Berkoff.“Passive Laser Phase Noise SuppressionTechnique for Fiber Interferometers”. SPIE Fiber Optic and Laser Sensors VIII,1990, Vol.1367: pp.310-318.
    [27]张桂才.“应用于高精度光纤陀螺的超荧光掺铒光纤光源”,红外与激光工程,2006, Vol.35(E): pp.9-16.
    [28]丁玉美等.“数字信号处理”,西安电子科技大学出版社,西安:2002.
    [29]陆光华等.“随机信号处理”,西安电子科技大学出版社,西安:2002.
    [30] Herve C. Lefevre.“The Fiber-Optic Gyroscope”, Artech House:1993.
    [1]张贤达.“现代信号处理”,清华大学出版社,北京:1994.
    [2]丁玉美等.“数字信号处理”,西安电子科技大学出版社,西安:2002.
    [3]陆光华等.“随机信号处理”,西安电子科技大学出版社,西安:2002.
    [4]王宏禹等.“非平稳随机信号分析与处理”,国防工业出版社,北京:2008.
    [5] B. Widrow and M. E. Hoff, Jr.,“Adaptive switching circuits,” IRE WESCON Conv.Rec., Pt.4,1960: pp.96–104.
    [6] J.I. Nagumo and A. Noda,“A learning method for system identification,” IEEETrans. Autom. Control,1967,Vol.12: pp.282–287.
    [7] R. W. Harris, D. M. Chabries, and F. A. Bishop,“A variable step (VS) adaptivefilter algorithm,” IEEE Trans. Acoust., Speech, Signal Process.,1986, Vol.34: pp.309–316.
    [8] R. H. Kwong and E. W. Johnston,“A variable step size LMS algorithm,” IEEETrans. Signal Process.,1992, Vol.40:pp.1633–1642.
    [9] V. J. Mathews and Z. Xie,“A stochastic gradient adaptive filter with gradientadaptive step size,” IEEE Trans. Signal Process.,1993, Vol.41,: pp.2075–2087.
    [10] J. B. Evans, P. Xue, and B. Liu,“Analysis and implementation of variable step sizeadaptive algorithms,” IEEE Trans. Signal Process.,1993, Vol.41: pp.2517–2535.
    [11] T. Aboulnasr and K. Mayyas,“A robust variable step-size LMS-type algorithm:analysis and simulations,” IEEE Trans. Signal Process.,1997,Vol.45: pp.631–639.
    [12] D. I. Pazaitis and A. G. Constantinides,“A novel kurtosis driven variable step-sizeadaptive algorithm,” IEEE Trans. Signal Process.,1999, Vol.47: pp.864–872.
    [13] A. Mader, H. Puder, and G. U. Schmidt,“Step-size control for acoustic echocancellation filters–An overview,” Signal Process.,2000,Vol.80: pp.1697–1719.
    [14] H.C. Shin, A. H. Sayed, and W.-J. Song,“Variable step-size NLMS and affineprojection algorithms,” IEEE Signal Process. Lett.,2004, Vol.11,: pp.132–135.
    [15] Corneliu Rusu and Colin F. N. Cowan,“Novel Stochastic Gradient AdaptiveAlgorithm with Variable Length”, European Conference on Circuit Theory andDesign,2001: pp341-344.
    [16] J. Benesty, H. Rey, L. Rey Vega, and S. Tressens,“A non-parametric VSS-NLMSalgorithm,” IEEE Signal Process. Lett.,2006, Vol.13: pp.581–584,.
    [17] HUANG N E,SHEN Z,LONG S R,et al.“The empirical mode decomposition andthe Hilbert spectrum for nonlinear and nonstationary Time Series Analysis”.Proceeding of Royal Society A, London,1998, Vol.454,:pp.903-995.
    [18] RUQIANG YAN,GAO R X.“A tour of the Hilbert-Huang transform:an empiricaltool for signal analysis”. IEEE Instrumentation&Measurement Magazine,2007,10(5):pp.40-45.
    [19] Norden E. Huang, Samuel S.P. Shen.“The Hilbert-Huang transform and itsapplications”, World Scientific Publishing,Interdisciplinary mathematicalsciences;V5:2005.
    [20]陈东方,吴先良.“采用EMD方法消除瞬态散射回波中的高斯白噪声干扰”,电子学报,2004, Vol.32(3):pp.496-498.
    [21] Sonechkin, D. M., and N. M. Datsenko,: Wavelet analysis of nonstationary andchaotic time series with an application to the climate change problem. Pure Appl.Geophys.,2000, Vol157:pp.653-677
    [22] A. J. McDonald, A. J. G. Baumgaertner, et.al.“Empirical Mode Decomposition ofthe atmospheric wave field”, Ann. Geophys.,2007,Vol.25:pp.375–384.
    [23]苏文胜等,“EMD降噪和谱峭度法在滚动轴承早期故障诊断中的应用”,振动与冲击,2010,Vol.29(3): pp.18-21.
    [24] Ming-Chya Wu and Chin-Kun Hu.“Application of Empirical ModeDecomposition to Cardiorespiratory Synchronization”. Springer Science+BusinessMedia B.V. DOI10.1007/978-1-4020-9143-811,2009: pp.167-181.
    [25] Bradley Matthew Battista, Camelia Knapp, et. al.“Application of the empiricalmode decomposition and Hilbert-Huang transform to seismic reflection data”,GEOPHYSICS,2007, Vol.72(2): pp.29-37
    [26] Donghoh Kim and Hee-Seok Oh.“EMD: A Package for Empirical ModeDecomposition and Hilbert Spectrum”, The R Journal2009, Vol.1(1):pp.40-46.
    [27] Patrick Flandrin, Gabriel Rilling, et.al.“Empirical Mode Decomposition as a FilterBank”, IEEE SIGNAL PROCESSING LETTERS,2004, Vol.11(2): pp.112-114.
    [28] Wu, Z.and N. E. Huang.“A study of the characteristics of white noise using theempirical mode decomposition method”. Proc. R. SOC. London, Ser. A,460,2004:pp.1597-1611.
    [29] GAST′ON SCHLOTTHAUER, MAR′IA EUGENIA TORRES, et.al.“EMD OFGAUSSIAN WHITE NOISE: EFFECTS OF SIGNAL LENGTH AND SIFTINGNUMBER ON THE STATISTICAL PROPERTIES OF INTRINSIC MODEFUNCTIONS”. Advances in Adaptive Data Analysis,2009, Vol.1(4): pp.517–527
    [30] A. O. Boudraa, J. C. Cexus, and Z. Saidi,“EMD-based signal noise reduction,” Int.J. Signal Process.,2004, Vol.1(1):pp.33–37.
    [31] P. Flandrin, P. Goncalves, and G. Rilling,“Detrending and denoising withempirical mode decompositions,” in Proc. EUSIPCO, Vienna, Austria,2004, pp.1581–1584.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700