用户名: 密码: 验证码:
一种DBR型铒镱共掺光纤激光器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在波分复用(WDM)光纤通信技术中,为了提高码率和充分利
    用 1.55μm 波段的带宽,研究波长精确、性能优良的激光源一直是人
    们密切关注的课题。光纤光栅激光器的工作波长能通过光纤光栅精确
    确定,如 DBR 型 Er3+/Yb3+共掺光纤激光器,近年来在国外得到迅猛
    的发展,但目前国内对 Er3+/Yb3+共掺光纤激光器的有关报道很少,研
    究尚处于起步阶段。
     随着未来全光纤通信器件不断向小型化,集成化发展,要求所用
    光纤激光源越短越好。同掺铒光纤激光器相比,Er3+/Yb3+共掺光纤激
    光器不但简化了光纤光源的结构,有效缩小了光源的结构尺寸,而且
    器件紧凑、小巧灵活,提高了其稳定性和实用性。该光纤激光器以其
    自身具有的诸多优势成为全光通信系统中一个研究热点,是适用于大
    容量全光纤通信系统的一种很有竞争实力、非常有前途的新型光源或
    信息源。
     论文提出的 Er3+/Yb3+共掺光纤激光器以 1064nm Nd:YAG 激光器
    作为泵浦源,在国内属首次报道,填补了国内空白。设计中运用了原
    理设计与分析,装置建立和实验测量相结合的研究方法,以下是本文
    在该光纤激光器上完成的研究内容:
     1. 在分析比对多种现在流行的方案的基础上,提出自己切实可
     行的 DBR 型 Er3+/Yb3+共掺光纤激光器设计方案;
     2. 通过大量检索,广泛收集资料及精心的原理设计,并计算输
     出激光的各技术参数;
     3. 在光纤光栅激光器原理设计的基础上,积极筹备建立实验装
     置所需的设备,仪器和各种元器件并搭建实验装置;
     4. 对所用 Er3+/Yb3+共掺光纤的长度进行了优化,找到了该种掺
     杂光纤的最佳长度;
     5. 对其进行调试并利用仪器设备对主要技术指标进行测定,然
     83
    
    
    后验证其是否达到原理设计要求并进行综合评价。
     本文介绍的 Er3+/Yb3+共掺光纤激光器采用长春新产业光电技术
    有限公司生产的 MIL-Ⅱ型号的 1064nmNd:YAG 激光器作为泵浦源。
    其(F-P)谐振腔由一对 Bragg 波长相同的光纤光栅 1 和 2 熔接在一段
    4.42m 长用以提供光增益的 Er3+/ Yb3+共掺光纤两端构成。与单纯掺铒 DBR
    型光纤激光器相比,所用增益介质长度大大缩短。采用宽带高反射光纤光
    栅 1 和用于耦合输出的窄带光纤光栅反射器 2 作为腔镜,其间接入
    长度为 4.42m 的 Er3+/Yb3+共掺光纤以提供光增益。1064 nm 泵浦光由
    1064nm 泵浦耦合尾纤导出,经一个 1064/1550 nm WDM、一个(1×2,
    99/1) 1064/1550nm 光纤耦合器的 1、2 端口和光纤光栅 1 耦合进入
    谐振腔,在 Er3+ /Yb3+共掺中形成粒子数反转产生受激发射光,经过
    窄带光纤光栅 2 和双光隔离器(Dual-ISO)得到所需波长的激光输出
    形成 DBR 型 Er3+/Yb3+共掺光纤激光器。
     该光纤激光器的开发研制由吉林省科技发展计划项目——“基于
    光纤 Bragg 光栅的 Er3+/Yb3+共掺杂光纤激光器” 资助,其项目完成
    目标和主要研究、开发内容如下:
     1. 完成基于光纤 Bragg 光栅的 Er3+/Yb3+共掺杂光纤激光器的原
     理结构设计,由特定长度和掺杂浓度的 Er3+/Yb3+共掺杂光
     纤、光纤光栅及功放等组成;
     2. 开展特定反射率及带宽的光纤 Bragg 光栅制作及掺杂光纤的
     研究;
     3. 结合主振荡器和功率放大一体化技术,完成光纤激光器原理
     实验及调试;
     4. 测定光纤激光器输出特性参数并对其随泵源功率、驱动电流
     等参量的变化规律展开研究;
     5. 完成 Er3+/Yb3+共掺杂光纤激光器实验装置的研制。
     84
    
    
    项目验收主要技术指标如下:
    1. 波长信道:1550nm;
    2. 光栅峰值反射率~60%;
    3. 边模抑制比>50dB;
    4. 输出光功率:5mW;
    5. 掺杂光纤转换效率:20%;
    6. 3dB 线宽<0.1nm。
    实验测得所研制光纤激光器的各项指标如下:
    7. 激光中心波长:1552.08nm;
    8. 光纤光栅 1 的峰值反射率为 99%,光纤光栅 2 的峰值反射
     率为 60%;
    9. 边模抑制比:60dB;
    10. 输出光功率:80mW;
    11. 掺杂光纤转换效率:25.2%;
    12. 3dB 线宽:0.072nm,25dB 线宽:0.192nm。
    可见,本文提出的光纤激光器的各项指标均已达到或超过项目验
    收的要求。目前,该项成果已通过吉林省科技厅鉴定。
In order to enhance the bit rate and well use the bandwidth of 1.55μm
    wave band in WDM fiber-optic communications technology, the study on
    lasers of accurate wavelength and excellent performance has always
    been the hot concern of people. The operation wavelength of fiber laser
    can be determined by Fiber Bragg Gratings (FBG) precisely. For instance,
    DBR single frequency Er3+ doped especially Er3+/Yb3+ codoped fiber
    lasers have been rapidly developed. Yet, till now, there have been few
    domestic reports on Er3+/Yb3+ codoped fiber lasers. The research work is
    still at the start.
     With the continuous miniaturization and integration of future full
    fiber-optic component developments, the shorter is the better for the
    laser source. In contrast with Er3+-doped fiber lasers, Er3+/Yb3+ codoped
    fiber lasers can not only simplify the lasers’ structure while shortening
    their size, but can increase the stability and practicability for their
    compactness and flexibility. The lasers, with their various advantages,
    have become one hotspot in full fiber-optic communications system.
    Therefore, the lasers, as a new laser or information source, have their
    sharp competitiveness and promising future.
     The Er3+/Yb3+ codoped fiber laser put forward in the thesis, with its
    pump being 1064nm Nd:YAG is the first one ever reported and filled the
    domestic blank. The paper integrated the theoretical design and analysis
    into the configuration setup and experiment measurement research
    method. The research contents accomplished can be described as
    follows,
     86
    
    
    1. Put forward the practical design of the DBR Er3+/Yb3+ codoped
     fiber laser on the basis of analyzing and contrasting various
     current popular
     schemes;
     2. The technological parameters of the output laser were
     calculated after large scales of searches, extensive collection of
     data, prudent theoretical design and the optimization;
     3. On the basis of theoretical design, the apparatus and
     components for the experiment were actively prepared and set
     up;
     4. Optimized the length of the Er3+/Yb3+ codoped fiber and found
     the fit size of such type of Er3+/Yb3+ codoped fiber;
     5. Debugged the experiment and measured the main technological
     indexes, then verified whether the fiber laser could meet the
     theoretical requirements. Meanwhile, gave comprehensive
     appraisal.
     The 1064nm pump whose model was MIL- Ⅱ was made by
    Changchun New Industries Optoelectronics Tech. Co., Ltd. The
    resonant-cavity was constructed by splicing the FBG1 and FBG2
    (sharing the same Bragg wavelength, 1551.84nm Rpeak FBG1: 99%,
    1552.08nm Rpeak FBG2: 60%), to each side of the gain medium — a
    4.42-meter-long Er3+/Yb3+ codoped fiber. In contrast with the Er3+ only
    DBR fiber laser, the length of the gain medium was significantly
    shortened. The broad bandwidth FBG1 and narrow bandwidth FBG2 for
    the output were the cavity mirrors. The 1064nm light induced from the
    1064nm pump’s tail fiber was launched into the resonant-cavity via a
    1064/1550nm WDM, the port1 and port2 of a (1×2, 99/1) 1064/1550nm
    coupler and FBG1. And then, a population inversion was formed in the
     87
    
    
    Er3+/Yb3+ codoped fiber and the excited light was produced. The output
    laser with needed wavelength could be acquired via the light traveling
    through FBG2 and Dual-ISO. Thus, the DBR Er3+/Yb3+ codoped fiber
    laser was constructed.
     The development of the fiber laser was supported by the Ji Lin
    Province Technology Development Scheme — The Er3+/Yb3+ codoped
    fiber laser based on FBGs. The target, main research and development
    contents of the scheme can be described as follows,
     1. Finish the theoretical and structural design of the Er3+/Yb3+
     codoped fiber laser based on FBGs, which is made up of a
     certain length of Er3+/Yb3+ codoped fiber laser, FBGs, and
引文
[1] 张劲松, 李唐军, 赵玉成, 魏道平, 简水生, 分布反馈光纤激光器的研
     制, 光学学报, 2000, 20(11): 1477~1480.
    [2] 薛亦元, 安宏林, 傅立斌, 林祥芝, 刘弘度, 单频窄线宽分布布拉格反
     射光纤激光器研究, 光学学报, 2000, 20(9): 1251~1254.
    [3] 宁提纲, 张劲松, 裴丽, 简水生, 光纤光栅激光器, 光通信研究, 2000,
     3: 38~42.
    [4] 杨明涛, 崔国琪, 董孝义, 盛秋琴, 掺铒光纤激光器理论与实验研究,
     红外与激光技术, 1995, 24(2): 42~46.
    [5] 贾宝华, 盛秋琴, 陈凯, 韩军, 董孝义, 一种实用化的高功率低噪声波
     长连续可调光纤激光器, 中国激光, 2004, 31(2): 133~136.
    [6] 裴新, 向望华,杜荣建, 张贵忠, 马俊生, 高效率低功率抖动运转的
     Yb:Er 共掺杂光纤激光器, 光电子·激光, 2003, 14(1): 5~8.
    [7] 聂秋华, 光纤激光器和放大器技术, 电子工业出版社, 1997.
    [8] 王天枢,李军,郭玉彬等. 高信噪比可调谐环形掺铒光纤激光器的研究.
     激光杂志,2003, 24(6): 25~26.
    [9] 董孝义, 王廷尧, 新一代光纤通信系统与同步网—原理与发展, 天津
     科学技术出版社, 1994.
    [10] 郭玉彬,王天枢,李军等. 铒/镱共掺光纤的超荧光研究.半导体
     光电, 2004, 25(1): 39~42.
    [11] Z J Chen, J D Minelly, Y Gu. Compact low cost Er3+/Yb3+co-doped
     fiber amplifiers pumped by 827nm laser diode [J]. Electron Lett,
     1996, 32(19): 1812~1813.
    [12] S G Grubb, W H Humer, R S Cannon et al., +24.6dBm output power
     Er/Yb codoped optical amplifier pumped by diode-pumped Nd:YLF
     laser [J]. Electron Lett, 1992, 28(13): 1275~1276.
    [13] 郭玉彬, 可调谐环形掺铒光纤激光器的研究, 长春邮电学院学报,
     1999, 17(3): 13~17.
     78
    
    
    [14] Morkel P R , Cowle G J , Payne D N ,Travelling-wave erbium fiber
     ring laser with 60 KHz linewidth Electron Lett.1990, 26(10): 632~
     634.
    [15] Kimura Y , Suzuki K , Nakazawa M ,Laser-diode-pumped
     mirror-free Er3+-doped fiber laser.OpticsLetters,1989, 14(18): 999~
     1001.
    [16] 郭玉彬, 菊池和朗, 基于光纤 Bragg 光栅的掺铒光纤激光器, 中国激
     光, 2000, 27(7): 581~585.
    [17] HILL K O, FUJIIY, et al, Photosensitivity in optical fiber waveguides
     application to reflection filter fabrication [J]. Appl Phys Lett, 1978,
     32(10): 647~649.
    [18] 黄波, 周荫清等, 温度及应力变化对光纤光栅布拉喇波长的影响,光纤
     与光缆及其应用技术, 2001, No.3.
    [19] R J Campbell, J R Armitage, G Sherlock, et al. Wave-length stable
     uncooled fiber grating semiconductor laser for use in an all optical
     WDM access network [J]. Electron. Lett., 1996, 32:119.
    [20] M Victor, J D David, M A Robert, et al. Stable single-mode Erbium
     fiber grating laser for digital communication[J]. J. Lightwave Technol,
     1993, 11: 2021~2025.
    [21] 陈根祥, 光波技术基础[M], 北京:中国铁道出版社, 2000.
    [22] 张明德, 孙小菡, 光纤通信原理与系统(第二版), 东南大学出版社,
     2001.P.73.
    [23] Kashyap R ,Mckee P F, Armes D. UV Written reflection grating
     structures in photo-sensitive optical fibers using phase shifted
     phase masks. Electro Lett, 1994, 30(23): 1977~1978.
    [24] Martin J, Ouellette F. Novel writing technique of long and highly
     reflective in fiber gratings. Electronics Letters, 1994, 30(10): 811~
     812.
    [25] Anderson D Z, Mizrahi V, Erdogan T, et al. Production of in-fiber
     79
    
    
    gratings using a diffractive optical element. Electro Lett, 1993,
     29(6): 566~568.
    [26] 黄章勇 光纤通信用光电子器件和组件, 北京邮电大学出版社, 2001.
    [27] 刘东峰, 陈国夫, 王贤华, 阮灵, 掺 Yb3+光纤激光器及放大器, 激光
     与红外, 1998, 29(4): 243~245.
    [28] Giles C R, Desurvire E. Modeling erbium-doped fiber amplifiers [J].
     J. Lightwave Technol.,1991, 9(2): 271~283.
    [29] Franco P, Midrio M, Tozzato A et al. Characterization and
     optimization criteria for filterless erbium-doped fiber lasers. J. Opt.
     Soc. Am. B, 1994, 11(6): 1090~1097.
    [30] Piotr Mysliski, Dung Nguyen, Jacek Chrostowski. Effects of
     Concentration on the Performance of Erbium-Doped Fiber
     Amplifiers[J]. J Lightwave Technol, 1997, 15(1): 112~120.
    [31] Sanchez F, Boudoc P Le, Stephan G. Effects of ionpairs on the
     dynamics of Erbium doped fiber lasers[J]. Physical Review A, 1993,
     48(3): 2220~2229.
    [32] 樊亚仙, 翟爱亭, 吕福云, 吕可诚, 王宏杰, 高掺铒光纤激光器输出特
     性的研究, 南开大学学报(自然科学), 2001, 34(3):32~34.
    [33] Piotr Mysliski, Dung Nguyen, Jacek Chrostowski. Effects of
     Concentration on the Performance of Erbium-Doped Fiber
     Amplifiers [J]. J Lightwave Technol, 1997, 15(1): 112~120.
    [34] 侯国付, 李乙钢, 付成鹏, 吕福云, 吕可诚, 掺稀土元素光纤超压光光
     源, 激光杂志,2002, 23(1): 17~20.
    [35] 魏莹莹, 廖常俊, 刘宁, 刘颂豪, 国产 Er3+/Yb3+双掺光纤的超荧光研
     究, 华南师范大学学报(自然科学版), 1999(4): 41~45.
    [36] 徐造业, 李承芳, 答孝义, 靳志伟, 池桂梅, 武汉大学学报(自然科学
     版),1998, 44(1): 71~73.
    [37] M Federighi, F Di Pasquale. The Effect of Pair-Induced Energy
     Transfer on the Performance of Silica Waveguide Amplifiers with
     80
    
    
    High Er3+/Yb3+ Concentration [J].IEEE Photon Technol Lett, 1995,
     7(3): 303~305.
    [38] F Di Pasquale, M Federighi. Improved Gain Characteristics in
     High-Concentration Er3+/Yb3+ Codoped Glass Waveguide
     Amplifiers [J]. IEEE J. Quantum Electron, 1994, 30(9): 2127~
     2131.
    [39] OptiAmplifier 4.0, Technical Background, Optical Fiber Amplifier and
     Laser Design Software, 2002.
    [40] Karasek, M., "Optimum Design of Er3+ - Yb3+ Codoped Fibers for
     Large-Signal High-Pump-Power Applications", J. Quant. Electron,
     1997(33), 1699~1705.
    [41] M. J. F Digonnet. Theory of superfluorescent fiberlasers. J.
     Lightwave Tecnol. 1986, LT-4(11):1631~1639.
    [42] Rudiger paschotta, Johan Nilsson, Anne C. Tropper, and David
     C. Hanna. Ytterbium-Doped Fiber Amplifiers[J]. IEEE J Quantum
     Electron, 1997, 33(7): 1049~1056.
    [43] Magne S, Druetta M, Goure J P et al..An ytterbium-doped
     monomode fiber laser:Amplified spontaneous emission, modling of
     the gain and tenability in an external cavity.j.Lumin., 1994, 60&61:
     647~650.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700