用户名: 密码: 验证码:
OCDMA系统中光正交码的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光码分多址(Optical Code Division Multiplex Access,OCDMA),是将无线CDMA技术与光纤通信技术相结合的一种新技术,结合了两种通信方式的特点,具有很强的技术优势和广阔的应用前景,成为未来高速全光通信网络的备选方案之一,是目前光通信研究领域的热点。与其他的复用方式相比,OCDMA目前还处于相对不成熟的阶段。
     OCDMA系统中的关键技术之一就是光地址码的设计。在OCDMA系统中,每一个用户预先被分配一个特定的地址码,即一个字长的0/1序列。在发送端特定的光编码器产生某一特定的地址码,将数据信息与此地址码调制在光载波之上发送出去,不同用户的数据都在光纤媒质中传输,接收端用特定的光解码器解出属于自己的信息,而携带其他用户信息的光信号,就像噪声一样被过滤掉。目前光地址码中研究得比较多的是光正交码,因此本文主要研究光正交码的构造。
     论文首先对OCDMA的基本原理、光正交码的基本理论以及关键技术进行介绍,对光码分多址技术发展历史、研究现状以及发展趋势进行总结,指出同其它复用方式相结合的混合全光网络和采用光纤光栅编解码器是光码分复用技术最有希望的发展方向。
     第二章对光正交码的构造进行了研究。对光正交码的构造方法进行了概述,研究了利用差分矩阵构造光正交码的算法和利用邻加方法构造光正交码的算法,针对这些算法存在的问题进行了修正。给出了仿真结果和分析,比较了两者在时间收敛性方面的性能,并指出了这两种算法的优缺点。
     第三章对基于有限域的光正交码构造的改进算法进行了研究。介绍了区组设计的基本理论和循环差集的基本概念,研究了有限域的基本理论和光正交码与循环差集族之间的关系。对基于有限域的光正交码构造的原算法进行了描述,在此基础上,提出了一种改进的算法。通过选取不同的本原根,可以同时获得多组最佳光正交码。给出了仿真结果和分析,验证了该改进算法的可行性与准确性,指出了该改进算法的优缺点,并与第二章中的算法进行了比较。
     第四章研究了不完全优化光正交码的构造算法。首先对不完全优化光正交码这一新概念进行了说明,接着介绍了复合长度光正交码的基本概念和区组设计理
Optical code division multiplex access (OCDMA) is a novel kind of technologies which combines with the features of wireless CDMA and optical fiber communications and has strongly technical advantages and widely applied perspectives. It is one of the possible resolutions for future all optical communication network, which is a hot topic in optical communication research. Compared with other multiplex technologies, it is still at the state of infancy.
     The design of optical address code is one of key technologies in OCDMA system. One special address codeword which is a“0/1”sequence of certain code-length is assigned to each user in advance. A special address codeword produced by optical encoder at the side of transmission and data information are modulated on optical carrier and transferred. The data from different users are transmitted through optical fiber. The information belonging to local user is demodulated by the special optical decoder while optical signals carrying other users’information are filtered as noise. Optical orthogonal code (OOC) among optical address code is mostly investigated, so the main research of this paper is focused on the construction of OOC.
     Firstly, the basic principle of OCDMA, the basic theory of OOC and the key technologies of OCDMA are introduced. The development, research status and trends of OCDMA technologies are also summarized. Combining with other multiplexing technologies and using fiber gratings as the encoder/decoder are the trends of OCDMA system.
     The construction of OOC is investigated in the second section. The construction methods of OOC are summarized. Furthermore, the algorithm based on difference matrix together with the algorithm based on extended set are investigated, then, these are corrected as for existing problem. Finally, the properties of time convergence about these algorithms are compared by simulation, then, the advantages and disadvantages are pointed out.
     The improved algorithm of construction of OOC based on finite field is
引文
1. Svetislav V. Maric, Oscar Moreno. Multimedia transmission in Fiber-Optic LAN’s using optical CDMA. J. Lightwave Technol., 1996, 14(10): 2149-2153
    2. Jawad A. Salehi. Emerging optical code-division multiple access communications systems. IEEE Network, 1989, 3: 31-39
    3. 顾婉仪. 全光通信网. 北京:北京邮电大学出版社,1999
    4. F.Chung. Optical Orthogonal Codes: Desigh, Analysis and Applications. IEEE Trans.,1989, 35(6):595-604
    5. L.Tancevski. Wavelength hopping/time spreading code division multiple access systems. Electron Lett, 1994, 18(8): 1388-1390
    6. A.S.Holmes, R.R. Syms. All-optical cdma using quasi-prime codes. IEEE Journal of Lightwave Technology, 1992., 10(2): 279-286
    7. Jian-Guo Zhang, Wing C.Kwong, A.B.Sharma. 2n modified prime codes for use in fibre optic CDMA networks. Electronics Letters, 1997, 33(22): 1840-1841
    8. S.V.Maric. New family of algebraically designed optical orthogonal codes for use in CDMA fibre-optic networks. Electronics Letters, 1993, 29(6):538-539
    9. L.Bin. One-conincidence sequence with specified distance between adjacent symbols of frequency-hopping multiple access. J.Lightwave Tech., 1999, 17(4):570-578
    10. Zaccarin, M.Kavehrad. New architecture for incoherent optical CDMA to achieve bipolar capacity. Electronics Letters, 1994, 30(3):258-259
    11. Tasshi Dennis, James F.Young. Optical implementation of bipolar codes. IEEE Journal of Quantum Electronics, 1999, 35(3):287-291
    12. C.Chang, H.P.Sardesai, A.M.Weiner. Code-Division Multiple-Access Encoding and Decoding of Fem to second Optical Pulses over a 2.5-km Fiber Link. IEEE Photonics Tech.Lett, 1998, 10(1):171-174
    13. Habib Fathallah. Passive optical fast frequency-hop CDMA communications system. Journal of Lightwave Technol, 1999, 17(3):397-405
    14. Naoya Wada, Ken-Ichi Kitayama. A 10Gb/s optical code divison multiplexing using 8-chip optical bipolar code and coherent detection. Journal of Lightwave Technology, 1999,17(10):1758-1766
    15. T.Ohtsuki. Performance analysis of direct-detection optical asynchronous CDMA system with double optical hard-limiters. J.Lightwave Technol., 1997, 15(3):452-457
    16. M. Hall. Combinatorial Theory. 2nd edition, New York: Wiley, 1986
    17. S. Bitan, T. Etzion. Constructions for optimal constant weight cyclically permutable codes and difference families. IEEE Trans. Inform.Theory, 1995, 41:77–87
    18. C.J.Colbourn,J.H.Dinitz,D.R.Stinson. Applications of combinatorial designs to communications, cryptography, and networking. London Math. Soc. Lecture Note Ser., 1999, 267:37-100
    19. R.Fuji-Hara, Y.Miao. Optical orthogonal codes: Their bounds and new optimal constructions. IEEE Trans. Inform.Theory, 2000, 46:2396-2406
    20. J.Yin. Some combinatorial constructions for optical orthogonal codes. Discr. Math., 1998, 185:201-219
    21. F. R. K. Chung, J. A. Salehi, V. K. We. Correction to optical orthogonal code: Design, analysis, andapplications. IEEE Trans. Inform. Theory, 1992, 38:1429
    22. F. R. K. Chung, J. A. Salehi, V. K. Wei. Optical orthogonal codes: Design, analysis, and applications. IEEE Trans. Inform. Theory, 1989, 35:595–604
    23. H.Sotobayashi, K.Kitayama. 1.24Gb/s optical code division multiplexing transmission over 40km dispersion-shifted fiber by bipolar coding using broadband incoherent light source. Electronics Letters, 1999, 35(11):911-913
    24. H.Schmuck, M.White, B.Deppisch, Th.Pfeiffer, H.Haisch. Bidirectional optical code division multiplexed field trial system for the meteor and access area. OFC’2001, Mar,2001,paperWG4-1,Anaherim,Califomnia,USA
    25. H.Ben Jaafar. 1.25Gbit/s transmission of optical FFH-OCDMA signals over 80 km with 16 users. OFC 2001,2001,2.:TuV3-1~Tuv3-3
    26. Peh Chiong The. A 16-channel OCDMA system(4OCDM× 4WDM) based on 16-chip,20 Gchip/s superstructure fibre Bragg gratings and DFB fibre laser transmitters.OFC’2002, Mar,2002,paperThEE1,Anaherim,Califomnia,USA
    27. Xu Wang, Naoya Wada,Tetsuya Miyazaki. Field trial of 3-WDM×10-OCDMA×10.71Gbps, truly-asynchronous, WDM/DPSK-OCDMA using hybrid E/D without FEC and optical threshold. OFC’2006, 2006, PDP44
    28. V.J.Hernandez, W.Cong, R.P.Scott. 320-Gb/s Capacity (32 users×10Gb/s) SPECTS OCDMA local area network testbed. OFC’2006, 2006, PDP45
    29. Y. Danziger, D. Aakedgard. High-order mode fiber: an innovative approach to chromatic dispersion management that enables optical networking in long-haul high-speed transmission system. Optical network magazine, 2002, 2(1):89-93
    30. A.R.Chraplyvy. Limitations on lightwave communications imposed by optical fiber nonlinearities. J.Lightwave Technol., 1990, 8(10):1418-1423
    31. E. Maron. Optical delay line matched filters. IEEE Trans. Circuits Syst., 1978, 25(6):360-364
    32. V.Mikhailov, P.Bayvel. Compact and fully packaged fiber grating laser based RZ pulse source for 40G bit/s OTDM transmission system. ECOC’2001,Amsterdam, Netherlands, SEP. 2001
    33. 卢金明,王文成,张永林.基于 Matlab 光正交码的构造.暨南大学学报(自然科学版),2004,25(1):57-60
    34. 李晓滨,宋建中.最佳(F, K, 1)光正交码的构造算法研究.中国激光,2003,30(5):417-420
    35. Xiaoqiang An, Kun Qiu. A New Construction for Optimal Optical Orthogonal Codes. Journal of Optical Communications, 2003, 24(1):17
    36. Jungnickel D. On difference matrices, resolvable transversal designs and generalized Hadamard Matrices. Math. Z, 1979, 167: 49-60
    37. Salehi J A. Code division multiple-access techniques in optical fiber networks—Part I: fundamental principles. IEEE Trans. Comm., 1989, 37(8): 824-833
    38. JinFan, henZhi. Combinatorial Coding Theory and Applications. Shanghai:Shanghai Technology Publishing Company,1995
    39. Underwood Dudley. Elementary Number Theory. 2nd edition, San Francisco: W. H. Freeman and Company, 1978
    40. Wing C. Kwong, Guu-Chang Yang. Design of Multilength Optical Orthogonal Codes for Optical CDMA Mutimedia Networks. IEEE Trans. Commun, 1989, 37(8)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700