用户名: 密码: 验证码:
数字全息三维立体显示关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真实地再现三维(3D)物场是成像技术的重要发展趋势,而全息显示的特点正是能够在空间再现具有真实立体感的3D影像。近年来,基于空间光调制器的数字全息3D立体显示技术的研究逐渐受到重视。本文在对该技术目前的研究现状和存在的问题进行分析的基础上,开展了相关的研究工作,主要内容涵盖计算全息理论与算法研究、真彩色3D物体的全息计算方法、器件的特性分析、系统构建及实验研究。
     在对典型的编码方式的再现效果进行综合分析的基础上,突出了相息图编码方式因其具有高衍射效率且再现时无共轭像的特点,而在数字全息显示中的重要地位。将“混合遗传-模拟退火”算法(GA-SA)的思想引入到位相全息图的优化设计中,并对典型的全息图优化算法(包括GA-SA算法)的优缺点进行了分析和归纳。对优化算法的进一步研究具有指导意义。
     为了获得良好的3D再现效果,本研究在对典型的3D物体全息图计算方法的原理和和特点进行分析的基础上,提出了一种新的3D物体全息图计算方法——“动态随机位相层析法”。利用该方法计算3D物体的相息图,能够有效地抑制3D再现像的噪声,且具有衍射效率高、无零级斑和共轭像的特点。并采用峰值信噪比(PSNR)和互相关系数(CC)对算法的噪声抑制效果进行评价,验证了该方法的有效性。为了实现真彩色3D物体的全息显示,本研究提出了两种计算RGB真彩色相息图的方案——“等距方案”和“等像素总量方案”。在此基础上,结合动态随机位相层析法,实现了真彩色3D物体多视角相息图的计算和数值再现,并对两种计算方案的各自特点进行了对比分析。
     在利用空间光调制器(SLM)对位相型全息图进行再现时,为了使位相型全息图获得良好的再现效果,要求SLM具备纯位相(或接近纯位相)的调制能力。本研究对数字微反射器件(DMD)以及LC-R2500 (LCoS-SLM)的振幅和位相调制特性进行了测试和比较分析,表明LCoS-SLM在适当的器件配置和参数设置时能够实现纯位相调制,有利于位相型全息图的正确再现。在此基础上,分析了RGB各分量的调制特性曲线对多阶位相型傅立叶变换相息图再现效果的影响,并提出了“灰度映射法”对位相型全息图进行矫正,以改善相息图的再现效果,并通过数值再现验证了该方法的有效性,为进一步改善相息图光电再现效果提供了新思路。从理论上分析了LCoS-SLM的像素开口率和像素间距对衍射场分布的影响,并探讨了改善再现像强度的均匀性、增大再现像的尺度以及提高光能利用效率的途径。
     针对利用LCoS-SLM对位相型全息图进行光电再现时,栅格效应导致单一再现像的能量利用效率较低的问题,本研究提出了在位相型全息图中加载特定周期和特定槽向的“数字闪耀光栅”的方法,提高了再现像的强度和光能利用效率。从理论上分析了光电再现时,实际再现距离和再现像的尺寸与全息图记录(或计算)时的真实值存在偏差的影响因素,为数字全息光电再现系统的设计提供了理论依据。对采用本研究提出的动态随机位相法计算的相息图进行光电再现,结果表明:该方法能够对光电再现像的噪声进行有效地抑制。分析了在对RGB真彩色3D物体进行全息光电再现时,各分量相息图再现像存在空间位置偏差(即色差)的影响因素,提出了在相息图中加载特定周期和槽向的数字闪耀光栅以及特定焦距的数字菲涅耳透镜的方法,对RGB各分量再现像的空间位置偏差进行矫正,并进行了实验验证。
The important trend of display technologies is to display real-existing three-dimensional (3D) images. More and more attentions are now paid on 3D electro-holographic display (3D-EHD) because of its capability of reconstructing real-existing 3D images. Some researching works associated with 3D-EHD are described in this paper, including theories and methods of computer holography, algorithms for calculating computer-generated hologram (CGH) of true-color 3D object, characteristics analysis of the spatial light modulator (SLM), establishment of 3D-EHD system and experiment for displaying true-color 3D images. They are described in detail as follows:
     Basic theories and typical methods of computer holography are described, and comprehensive analysis is carried out for some typical coding methods in computer holography. Analytical result shows that, kinoform is an important coding method in electro-holographic display for its advantages such as high diffraction efficiency, without twin image in image-plane. Genetic simulated annealing algorithm (GA-SA) is introduced to CGH calculation. Typical optimization algorithms for CGH calculation are compared by considering convergence, efficiency and adaptability.
     Typical algorithms for calculating the CGH of 3D object are introduced. A novel algorithm is proposed and named as dynamic-pseudorandom-phase tomographic computer holography (DPP-TCH), in order to reduce speckle noise, improve diffraction efficiency and eliminate twin image. The qualities of digital reconstructed images are evaluated with peak signal-noise ratio (PSNR) and correlation coefficient (CC). Two strategies, named as“Equidistant Strategy”and“Pixel Number Equalized Strategy”, are proposed for calculating CGHs of true-color object, and their characteristics are also analyzed. Multi-angle kinoforms of the true-color 3D objects are calculated and digital reconstructed RGB true-color 3D images are obtained by use of DPP-TCH and the calculation strategies.
     Phase-only or approximately phase-only modulation is needed to realize correct reconstruction of phase hologram. The amplitude and phase modulation properties of digital micro-mirror device (DMD) and LC-R2500 (LCoS-SLM) are measured. Analytical results show that, LC-R2500 can realize phase-only modulation under special system configurations and settings, and it can be used for phase hologram reconstruction. The modulation curves of LCoS-SLM are measured under different situations, such as different wavelengths used for RGB true-color holographic display, different incident angles and polarizing angles of laser beams. Phase-only modulation (POM) mode is then realized in order to meet the requirement of phase hologram reconstruction. The effects of phase modulation curves on the reconstructed images are also analyzed under POM mode. Gray level mapping (GLP) is proposed to adjust the gray level of each pixel in phase holograms, and the factors influencing the error between theoretical calculation and experiment result are analyzed, which can guide further optimization of optoelectronic reconstruction for phase holograms. The effects of aperture ratio and pixel pitch on the diffraction pattern are analyzed theoretically, and approaches are discussed for improving the intensity uniformity of image, enlarging the size of image and improving the utilization ratio of light power.
     A novel method is proposed to improve the intensity of reconstructed image by superposing digital blazed grating (DBG) with phase hologram in optoelectronic reconstruction system based on LCoS-SLM. The effects of superposing DBG with different grating periods and orientations on the position and intensity of reconstructed image are also analyzed. Experimental results also verify that, by the proposed method, the intensity of reconstructed image is increased and the utilization efficiency of light power is improved. Theoretical analysis is carried out for the differences of position and size between optoelectronic reconstruction and digital reconstruction, which can guide the design of optoelectronic display system. Experiments are carried out for true-color 3D holographic display with the system and kinoforms calculated by DPP-TCH. The results also show that the speckle noise of reconstructed images can be reduced significantly by use of DPP-TCH. Factors influencing the position deviations of the reconstructed RGB section images are analyzed. A novel method is proposed to correct the deviations by superposing DBG with proper grating period and orientation, and digital Fresnel lens (DFL) with proper focal length in the kinoforms. Theoretical calculation method is described, and experimental results verify that the proposed method is feasible.
引文
[1] D. Gabor. A new microscopic principle[J]. Nature, 1948, 161: 777-778.
    [2] H. J. Caulfield.光全息手册[M].北京:科学出版社, 1988.
    [3]于美文.光学全息及信息处理[M].北京:国防工业出版社, 1984.
    [4] E. N. Leith, J. Upatnieks. Wavefront reconstruction with continous-tone objects[J]. J. Opt. Soc. Am., 1963, 53(12): 1377-1381.
    [5] S. A. Benton. Hologram reconstructions with extended incoherent sources[J]. J. Opt. Soc. Am. A, 1969, 59(10): 1545-1546.
    [6] H. Chen, F. T. S. Yu. One-step rainbow hologram[J]. Opt. Lett., 1978, 2(4): 85-87.
    [7]罗振坤,许澍翔,谢忠明,等.光导热塑全息记录技术的研究[J].应用激光, 1995, 15(4): 163-166.
    [8]黄明举.新型绿光敏感光致聚合物高密度全息存储特性[J].物理学报, 2002, 51(11): 2536-2540.
    [9]张泽.电子全息在自旋电子学及半导体多量子阱材料研究中的应用[J].电子显微学报, 2005, 24(4): 244.
    [10]刘友文,刘立人,周常河,等.光色效应双掺杂(Fe, Mn): LiNbO3的光折变全息存储[J].光学学报, 1999, 19(10): 1437-1438.
    [11] S. D. Girolamo, A. A. Kamshilin, R. V. Romashko, et al. Sensing of multimode-fiber strain by a dynamic photorefractive hologram[J]. Opt. Lett., 2007, 32(13): 1821-1823.
    [12] A. Adibi, K. Buse, D. Psaltis. Multiplexing holograms in LiNbO3: Fe: Mn crystals[J]. Opt. Lett., 1999, 24(10): 652-654.
    [13] J. Imbrock, S. Wevering, K. Buse, et al. Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses[J]. J. Opt. Soc. Am. B, 1999, 16(9): 1392-1397.
    [14] J. D. Liou, C. Lee, K. Wu. Photorefractive crystal-based holographic interferometry system for full-field wave propagation metrology[J]. Opt. Express, 2007, 15(9): 5460-5472.
    [15] C. X. Dai, L. R. Liu, D. A. Liu, et al. Refractive-index change and sensitivity improvement in holographic recording in LiNbO3: Ce: Cu crystals with green light[J]. Chin. Opt. Lett., 2005, 3(9): 507-509.
    [16] J. W. Goodman, R. W. Lwrence. Digital image formulation from electronically detected holograms[J]. Appl. Phys. Lett., 1967, 11(3): 77-79.
    [17] L. Onural, P. D. Scott. Digital decoding of in-line holograms[J]. Opt. Eng., 1987, 26(11): 1124-1132.
    [18] U. Schnars, W. Jüptner. Digital recording and numerical reconstruction of holograms[J]. Meas. Sci. Technol., 2002, 13(9): 85-101.
    [19]周文静,于瀛洁,倪萍.基于菲涅耳近似实现数字全息相位再现的误差分析及抑制[J].光学精密工程, 2008, 16(5): 899-906.
    [20]苏显渝,李继陶.信息光学[M].北京:科学出版社, 1999.
    [21] S. Satake, H. Kanamori, T. Kunugi, et al. Parallel computing of a digital hologram and particle searching for microdigital-holographic particle-tracking velocimetry[J]. Appl. Opt., 2007, 46(4): 538-543.
    [22] S. Boucherit, L. Bouamama, H. Benchickh, et al. Three-dimensional solid particle positions in a flow via multiangle off-axis digital holography[J]. Opt. Lett., 2008, 33(18): 2095-2097.
    [23] U. Schnars, W. Jüptner. Direct recording of holograms by a CCD target and numerical reconstruction[J]. Appl. Opt., 1994, 33(2): 179-181.
    [24] J. Pomarico, U. Schnars, H. J. Hartmann, et al. Digital recording and numerical reconstruction of holograms: a new method for displaying light in flight[J]. Appl. Opt., 1995, 34(35): 8095-8099.
    [25] U. Schnars, W. Jüptner. Digital recording and reconstruction of holograms in hologram interferometry and shearography[J]. Appl. Opt., 1994, 33(20): 4373-4377.
    [26] I. Yamaguchi. Phase-shifting digital holography[J]. Opt. Lett., 1997, 22(16): 1268-1270.
    [27] T. Zhang, I. Yamaduchi. Three dimensional microscopy with phase-shifting digital holography[J]. Opt. Lett., 1998, 23(15): 1221-1223.
    [28] Y. J. Yu, W. J. Zhou, Y. Orphanos, et al. Phase-shifting digital holography in image reconstruction[J]. J. Shanghai Univ., 2006, 10(1): 59-64.
    [29] P. Ferraro, L. Miccio, S. Grilli, et al. Quantitative phase microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography[J]. Opt. Express, 2007, 15(22): 14591-14600.
    [30] U. Schnars. Direct phase determination in hologram interferometry with use of digital recording holograms[J]. J. Opt. Soc. Am. A, 1994, 11(7): 2011-2015.
    [31] G. Pedrini, P. Fr?ning, H. Fessler, H. J. Tiziani. In-line digital holographic interferometry[J]. Appl. Opt., 1998, 37(26): 6262-6269.
    [32] M. K. Kim. Wavelength-scanning digital interference holography for optical section imaging[J]. Opt. Lett., 1999, 24(23): 1693-1695.
    [33] C. Quan, C. J. Tay, H. Chen. Temporal phase retrieval from a complex field in digital holographic interferometry[J]. Opt. Lett., 2007, 32(12): 1602-1604.
    [34] L. C. Ferri. Visualization of 3D information with digital holography using laser printers[J]. Computers & Graphic, 2001, 25(4): 309-321.
    [35] B. Nilsson, T. E. Carlsson. Direct three dimensional shape measurement by digital light-in-flight holography[J]. Appl. Opt., 1998, 37(34): 7954-7959.
    [36] O. Matoba, T. J. Naughton, Y Frauel, et al. Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram[J]. Appl. Opt., 2002, 41(29): 6187-6192.
    [37] B. Javidi, E. Tajahuerce. Three dimensional object recognition by use of digital holography[J]. Opt. Lett., 2000, 25(9): 610-612.
    [38] T. Nomura, B. Javidi. Object recognition by use of polarimetric phase-shifting digital holography[J]. Opt. Lett., 2007, 32(15): 2146-2148.
    [39] E. Tajahuerce, O. Matoba, B. Javidi. Shift invariant three dimensional object recognition by means of digital holography[J]. Appl. Opt., 2001, 40(23): 3877-3886.
    [40] T. Kreis, M. Adams, W. Jüptner. Digital in-line holography in particle measurement[C]. Proc. SPIE, 1999, 3744: 54-64.
    [41] C. B. Lefebvre, S. Co?tmellec, D. Lebrun, et al. Application of wavelet transform to hologram analysis: three dimensional location of particles[J]. Opt. Laser Eng., 2000, 33(6): 409-421.
    [42] J. Sheng, E. Malkiel, J. Katz. Digital holographic microscope for measuring three-dimensional particle distributions and motions[J]. Appl. Opt., 2006, 45(16): 3893-3901.
    [43] J. Desse, P. Picart, P. Tankam. Digital three-color holographic interferometry for flow analysis[J]. Opt. Express, 2008, 16(5): 5471-5480.
    [44] M. Y. Y. Hung, L. Lin, H. M. Shang. Simple method for direct determination of bending strains by use of digital holography[J]. Appl. Opt., 2001, 40(25): 4514-4518.
    [45] W. Chen, C. Quan, C. Jui Tay. Measurement of curvature and twist of a deformed object using digital holography[J]. Appl. Opt., 2008, 47(15): 2874-2881.
    [46] F. M. Santoyo, G. Pedirini, S. Schedin, et al. 3D displacement measurements of vibrating objects with multipulse digital holography[J]. Meas. Sci. Technol., 1999, 10(12): 1305-1308.
    [47] Y. Fu, G. Pedrini, W. Osten. Vibration measurement by temporal Fourier analyses of a digital hologram sequence[J]. Appl. Opt., 2007, 46(23): 5719-5727.
    [48] Y. Takaki, H. Kawai, H. Ohzu. Hybrid holographic microscopy free of conjugate and zero-order images[J]. Appl. Opt., 1999, 38(23): 4990-4996.
    [49] E. Cuche, P. Marquet, C. Depeursinge. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography[J]. Appl. Opt., 2000, 39(23): 4070-4075.
    [50]刘诚,李良钰,李银柱.无直透光和共轭像的数字全息[J].光学学报, 2002, 22(4): 427-431.
    [51] Y. Zhang, G. Pedrini, W. Osten, et al. Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm[J]. Opt. Express, 2003, 11(24): 3234-3241.
    [52]杨绍光,谢行恕,赵永飞,等.高通滤波法数字重现同轴全息图[J].强激光与粒子束, 1998, 10(2): 203-206.
    [53] Y. Zhang, G. Pedrini, W. Osten, et al. Reconstruction of in-line digital holograms from two intensity measurements[J]. Opt. Lett., 2004, 29(15): 1787-1789.
    [54] D. Joyeux. X-ray holographic microscopy at LURE and Institut d'Optique[C]. Proc. SPIE, 1992, 1741: 62-77.
    [55]吕且妮,葛宝臻,罗文国,等.数字全息术及其在粒子场测试中的研究进展[J].光电子·激光, 2002, 13(10): 1087-1091.
    [56]钟丽云,张以谟,吕晓旭,等.数字全息中的一些基本问题分析[J].光学学报, 2004, 24(4): 465-471.
    [57]徐建程,邓燕,柴立群,等. CCD对高空间分辨率波前干涉检测的影响[J].光子学报, 2006, 35(5): 793-796.
    [58]袁操今,钟丽云,朱越,等.无透镜傅里叶变换数字全息术的特点分析和讨论[J].激光杂志, 2004, 25(5): 59-61.
    [59]范琦,赵建林,向强,等.改善数字全息显微术分辨率的几种方法[J].光电子·激光, 2005, 16(2): 226-230.
    [60]张平,王凌,冯华君,等.基于多次成像的分辨率提高算法研究[J].光子学报, 2003, 32(2): 192-194.
    [61] H. Massig. Digital off-axis holography with a synthetic-aperture[J]. Opt. Lett., 2002, 27(24): 2179-218.
    [62]钟丽云,张以谟,吕晓旭.合成孔径数字全息的分析模拟及多参考光合成孔径数字全息[J].光子学报, 2004, 33(11): 1343-1347.
    [63]卓宁,孙华燕,张海江.一种新的提高CCD成像分辨率的方法[J].光学学报, 2005, 25(6): 777-780.
    [64] L. Martínez-León, B. Javidi. Synthetic aperture single-exposure on-axis digital holography[J] Opt. Express, 2008, 16(1): 161-169.
    [65]王晓雷,王毅,翟宏琛,等.记录飞秒级超快动态过程的脉冲数字全息技术[J].物理学报, 2006, 55(9): 4613-4617.
    [66] H. Sherif, I. Naydenova, S. Martin, et al. Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing[J]. J. Opt. A: Pure Appl. Opt., 2005, 7(5): 255–260.
    [67] P. Kleinberger. Systems for three-dimensional viewing and projection: US, 6252707 [P/OL]. 2001-01-21. http://www.wipo.int/pctdb/en/wo.jsp?wo=1997026577
    [68] D. Ezra, G. J. Woodgate, B. A. Omar, et al. New autostereoscopic display system[C]. Proc. SPIE, 1995, 2409: 31-40.
    [69] S. Pastoor, J. Liu, S. Renault. An experimental multimedia system allowing 3-D visualization and eye-controlled interaction without user-worn devices[J]. IEEE Trans. on Mulitmedia, 1999, 1(1): 41-52.
    [70]李克彬,李世其. 3D立体显示技术的最新研究进展[J].计算机工程, 2003, 29(12): 3-4.
    [71] J. H. Park, S. Y. Jung, H. J. Choi, et al. Viewing-angle-enhanced integral imaging by elemental image resizing and elemental lens switching[J]. Appl. Opt., 2002, 41(32): 6875-6883.
    [72] Y. H. Kim, J. H. Park, H. J. Choi, et al. Viewing-angle-enhanced integral imaging system using a curved lens array[J]. Optics Express, 2004, 12(3): 421-429.
    [73] G. E. Favalora. Volumetric 3D displays and application infrastructure[J]. IEEE Computer, 2005, 38(8): 37-44.
    [74]邢建芳,龚华军,沈春林,等.基于数字微镜和旋转扫描技术的体三维显示器[J].光电子·激光, 2008, 19(8): 110. 1-510. 1.
    [75]谢敬辉,赵业玲,于美文.横向面积分割法及其在二维/三维模压全息图中的应用[J].光学学报, 1988, 8(5): 410-416.
    [76] T. H. Jeong, R. J. Ro, R. W. Aumiller. Return of the Leith-Upatnieks transmission hologram[C]. Proc. SPIE, 2000, 4149: 390-396.
    [77]赵达尊,张怀玉.空间光调制器[M].北京:北京理工大学出版社, 1992.
    [78] M. Lucente, P. S. Hilaire, S. A. Benton, et al. New approaches to holographic video[C]. Proc. SPIE, 1992, 1732: 377-386.
    [79] M. L. Huebschman, B. Munjuluri, H. R. Garner. Dynamic holographic 3-D image projection[J]. Opt. Express, 2003, 11(5): 437-445.
    [80] B. Munjuluri, M. L. Huebschman, H. R. Garner. Rapid hologram updates for real-time volumetric information displays[J]. Appl. Opt., 2005, 44(24): 5076-5085.
    [81]郭欢庆,王肇圻,王金城,等.数字合成全息系统中空间光调制器DMD的研究[J].光电子·激光, 2004, 15(1): 9-12.
    [82]王金城,郭欢庆,郎海涛,等.数字合成全息系统[J].光电子·激光, 2002, 13(7): 740-743.
    [83]曹玉茹.全息显示的计算原理、方法及系统实现[D].合肥:安徽大学博士学位论文, 2006.
    [84] M. Sutkowski, M. Kujawińska. Application of liquid crystal (LC) devices for optoelectronic reconstruction of digitally stored holograms[J]. Opt. Lasers Eng., 2000, 33(3): 191-201.
    [85] T. Ito, T. Shimobaba, H. Godo, et al. Holographic reconstruction with a 10-μm pixel-pitch reflective liquid-crystal display by use of light-emitting diode reference light[J]. Opt. Lett., 2002, 27(16): 1406-1408.
    [86] T. Shimobaba, T. Ito. A color holographic reconstruction system by time division multiplexing with reference lights of laser[J]. Opt. Review, 2003, 10(5): 339-341.
    [87] M. Stanley, M. A. G. Smith, A. P. Smith, et al. 3D electronic holography display system using a 100 Mega-pixel spatial light modulator[C]. Proc. SPIE, 2004, 5249: 297-308.
    [88] K. Sato, A. Sugita, M. Morimoto, et al. Reconstruction of color images of high quality by a holographic display[C]. Proc. SPIE, 2006, 6136: 254-262.
    [89]张晓洁.基于LCD空间光调制器全息显示的若干问题研究[D].杭州:浙江大学博士学位论文, 2007.
    [90]陈海云,王辉.用空间光调制器实现全息再现像的实时重构[J].光电工程, 2008, 35(3): 122-125.
    [91]尹霞,符秋丽,杨济民,等.基于SLM的计算全息三维显示视角扩展编码[J].光子学报, 2008, 37(6): 1144-1147.
    [92] S. H. Shin, B. Javidi. Viewing-angle enhancement of speckle-reduced volume holographic three-dimensional display by use of integral imaging[J]. Appl. Opt., 2002, 41(26): 5562-5567.
    [93] K. Choi, J. Kim, Y. Lim, et al. Full parallax viewing-angle enhanced computer generated holographic 3D display system using integral lens array[J]. Opt. Express, 2005, 13(26): 10494-10502.
    [94] K. Choi, H. Kim, B. Lee. Synthetic phase holograms for autostereoscopic image displays using a modified IFTA[J]. Opt. Express, 2004, 12(11): 2454-2462.
    [95] B. Javidi, S. H. Hong. Three-dimensional holographic image sensing and integral imaging display[J]. J. display technology, 2005, 1(2): 341-346.
    [96]虞祖良,金国藩.计算机制全息图[M].北京:清华大学出版社, 1984.
    [97] A. Kozma, D. L. Kelly. Spatial filtering for detection of signals submerged in noise[J]. Appl. Opt., 1965, 4(4): 387-392.
    [98] B. R. Brown, A. W. Lohmann. Complex spatial filtering with binary masks[J]. Appl. Opt., 1966, 5(6): 967-974.
    [99] G. Tricoles. Computer generated holograms: an historical review[J]. Appl. Opt., 1987, 26(20): 4351-4360.
    [100] J. P. Waters. Holographic image synthesis utilizing theoretical method[J]. Appl. Phys. Lett., 1966, 9(11): 405-407.
    [101] D. Leseberg, C. Frère. Computer-generated holograms of 3-D objects composed of tilted planar segments[J]. Appl. Opt., 1988, 27(14): 3020-3024.
    [102] K. Matasushima, A. Kondoh. Wave optical algorithm for creating digitally synthetic holograms of three-dimensional surface objects[C]. Proc. SPIE, 2003, 5005: 190-197.
    [103] Y. Li, D. Abookasis, J. Rosen. Computer-generated holograms of three-dimensional realistic objects recorded without wave interference[J]. Appl. Opt., 2001, 40(17): 2864-2870.
    [104] A. W. Lohmann, D. P. Paris, H. W. Werlich. A computer generated spatial filter, applied to code translation[J]. Appl. Opt., 1967, 6(6): 1139-1140.
    [105] Y. Ichioka, M. Izumi, T. Suzuki. Scanning halftone plotter and computer-generated continuous tone hologram[J]. Appl. Opt., 1971, 10(2): 403-411.
    [106] M. Lucente. Computational holographic bandwidth compression[J]. IBM System Journal, 1996, 35(3-4): 349-365.
    [107] H. Yoshikawa. Fast computation of Fresnel holograms employing difference[J]. Opt. Review, 2001, 8(5): 331-335.
    [108] C. Petz, M. Magnor. Fast hologram synthesis for 3D geometry models using graphics hardware[C]. Proc. SPIE, 2003, 5005: 266-275.
    [109] N. Masuda, T. Ito, T. Tanaka, et al. Computer generated holography using a graphics processing unit[J]. Opt. Express, 2006, 14(2): 603-608.
    [110] L. Ahrenberg, P. Benzie, M. Magnor, et al. Computer generated holography using parallel commodity graphics hardware[J]. Opt. Express, 2006, 14(17): 7636-7641.
    [111] S. Nishi, T. Yuizono, K. Mori, et al. Fast calculation of computer-generated Fresnel hologram utilizing distributed parallel processing and array operation[C]. Proc. SPIE, 2003, 4829: 558-560.
    [112] T. Ito, N. Masuda, K. Yoshimura, et al. Special-purpose computer HORN-5 for a real-time electro-holography[J]. Opt. Express, 2005, 13(6): 1923-1932.
    [113] IO2 Technology. Next-generation floating mid-air display from IO2 Technology[R]. http: //newsroom. eworldwire.com/pdf/14477.pdf.
    [114] L. D. Paulson. Displaying data in thin air[J]. IEEE Computer, 2004, 37(3): 19.
    [115]姜太平,沈春林,谭皓.真三维立体显示技术[J].中国图象图形学报, 2003, 8A(4): 361-366.
    [116] J. Y. Son, B. Javidi, K. D. Kwack. Methods for displaying three-dimensional images[J]. Proc. IEEE, 2006, 94(3): 502-523.
    [117]丁辉,付梦印.立体显示技术最新进展[J].电视技术, 2006, 8: 36-38.
    [118] W. H. Lee, Sampled Fourier transform holograms generated by computer[J]. Appl. Opt., 1970, 9(3): 369-373.
    [119] C. B. Burckhardt. A simplification of Lee’s method of generating holograms by computer[J]. Appl. Opt., 1970, 9(8): 1949-1949.
    [120] J. J. Burch. A computer algorithm for the synthesis of spatial frequency filters[J]. Proc. IEEE, 1967, 55(4): 599-601.
    [121] T. S. Huang, B. Prasada. Considerations on the generation and processing of holograms by digital computers[J]. MIT/RLE Quat. Prog. Rep., 1966, 81: 199-205.
    [122] R. Floyd, L. Steinberg. An adaptive algorithm for spatial greyscale[J]. Proc. Soc. Inf. Display, 1976, 17(2): 75-77.
    [123] L. B. Lesem, P. M. Hirsch, J. A. Jordan. Generation of discrete point holograms[J]. J. Opt. Soc. Am., 1968, 58: 729A.
    [124] R. W. Gerchberg, W. O. Saxton. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35(2): 227-246.
    [125] M. A. Seldowitz, J. P. Allebach, D. W. Sweeney. Synthesis of digital holograms by direct binary search[J]. Appl. Opt., 1987, 26(14): 2788-2798.
    [126] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, et al. Equation of state calculations by fast computing machines[J]. J. Chem. Phys., 1953, 21(6): 1087-1092.
    [127] S. Kirkpatrick, C. D. Gellatt, M. P. Vecchi. Optimization by simulated annealing[J]. Science, 1983, 220(4598): 671-680.
    [128] N. Yoshikawa, T. Yatagai. Phase optimization of a kinoform by simulated annealing[J]. Appl. Opt., 1994, 33(5): 863-868.
    [129] F. T. Lin, C. Y. Kao, C. C. Hsu. Applying the genetic approach to simulated annealing in solving some NP-hard problems[J]. IEEE Trans. Syst., Man, Cybern., 1993, 23(6): 1752-1767.
    [130] S. W. Mahfouda, D. E. Goldbergb. Parallel recombinative simulated annealing: A genetic algorithm[J]. Parallel Computing, 1995, 21(1): 1-28.
    [131]王雪梅,王义和.模拟退火算法与遗传算法的结合[J].计算机学报, 1997, 20(4): 381-384.
    [132]鲁建业,李琦,董蕴华,等.采用混合遗传-模拟退火算法对DOE的直接设计[J].光电子·激光, 2001, 12(4): 365-367.
    [133] A. W. Lohmann. Image rotation, Wigner rotation, and the fractional Fourier transform[J]. J. Opt. Soc. Am. A, 1993, 10(10): 2181-2186.
    [134] X. J. Zhang, X. Liu, X. X. Chen. Computer-generated holograms for 3D objects using the Fresnel zone plate[C]. Proc. SPIE, 2005, 5636: 109-115.
    [135] S. Trester. Computer-simulated Fresnel holography[J]. Eur. J. Phys., 2000, 21(4): 317-331.
    [136] J. W. Goodman.傅里叶光学导论(第三版)[M].北京:电子工业出版社, 2006.
    [137] K. Matsushima, H. Schimmel, F. Wyrowski. Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves[J]. J. Opt. Soc. Am. A, 2003, 20(9): 1755-1762.
    [138] D. Abookasis, J. Rosen. Computer-generated holograms of three-dimensional objects synthesized from their multiple angular viewpoints[J]. J. Opt. Soc. Am., 2003, 20(8): 1537-1545.
    [139] V. Namias. The fractional Fourier transform and its applicaton in quantum mechanics[J]. IMA J. Appl. Math., 1980, 25(3): 241-265.
    [140] A. C. McBride, F. H. Kerr. On Namias's fractional Fourier transforms[J]. IMA J. Appl. Math., 1987, 39(2): 159-175.
    [141]谢世伟,高峰,曾阳素,等.分数傅里叶变换计算全息图[J].中国激光, 2003, 30(5): 431-434.
    [142]曾阳素,张怡霄,高福华,等.用全息透镜记录多重分数傅里叶变换全息图[J].光学学报, 2002, 22(8): 947-951.
    [143] R. Br?uer, U. Wojak, F. Wyrowski, et al. Digital diffusers for optical holography[J]. Opt. Lett., 1991, 16(18): 1427-1429.
    [144] S. Nozaki, S. Doi, Z. Nakao, et al. SA-based kinoform synthesis method for 3D objects[C]. Proc. SPIE, 2001, 4296: 33-37.
    [145] E. N. Leith, J. Upatnieks. Wavefront reconstruction with diffused illumination and three-dimensional objects[J]. J. Opt. Soc. Am., 1964, 54 (11): 1295-1301.
    [146]李育林,傅晓理.空间光调制器及其应用[M].北京:国防工业出版社, 1996.
    [147]叶必卿.液晶空间光调制器特性研究及在全息测量中的应用[D].杭州:浙江大学博士学位论文, 2006.
    [148]郭欢庆,王肇圻,王金城,等.数字合成全息系统中空间光调制器DMD的研究[J].光电子·激光, 2004, 15(1): 9-12.
    [149]柴晓冬.全息成像的研究[D].合肥:安徽大学博士学位论文, 2003.
    [150]郁道银,谈恒英.工程光学(第二版)[M].北京:机械工业出版社, 2006.
    [151]田芊,廖延彪,孙利群.工程光学[M].北京:清华大学出版社, 2006.
    [152]黄子强.液晶显示原理[M].北京:国防工业出版社, 2008.
    [153] N. Konforti, E. Marom, S. T. Wu. Phase-only modulation with twisted nematic liquid crystal spatial light modulation[J]. Opt. Lett., 1988, 13(3): 251-254.
    [154] B. E. A. Saleh, K. Lu. Theory and design of the liquid crystal TV as an optical spatial phase modulator[J]. Opt. Eng., 1990, 29(3): 240-246.
    [155] V. Durán, J. Lancis, E. Tajahuerce, et al. Phase-only modulation with a twisted nematic liquid crystal display by means of equi-azimuth polarization states[J]. Opt. Express, 2006, 14(12): 5607-5616.
    [156]杨国光.近代光学测试技术[M].杭州:浙江大学出版社, 1997.
    [157]杨振寰.光学信息处理[M].天津:南开大学出版社, 1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700