用户名: 密码: 验证码:
硒化镉(CdSe)半导体纳米晶制备方法评述
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体纳米晶(又称为量子点)由于具有独特的量子尺寸限域、量子遂穿、库仑阻塞等物理效应,因而在光电仪器,例如激光、发光二级管、非线性光学材料以及生物荧光标记等方面具有广阔的应用前景,半导体纳米材料/器件是目前业界研发的热点之一。CdSe是II-VI族半导体中研究最多的材料之一,由于其发射波长随纳米晶的尺寸而改变,其发射波长可以覆盖从绿到红的很大光谱范围,因此CdSe纳米晶可以应用在生物标记和荧光显示等领域。CdSe纳米晶的制备方法有很多,但如何利用一种比较简单的方法制备粒径不同的纳米晶,使其具有不同的发射波长一直是化学工作者努力的方向。据报道,美国贝尔实验室已经通过控制CdSe纳米晶的尺寸,得到可在红、绿、蓝光之间变化的可调协发光二极管,实现了量子效应原理性器件的初步研制。随着研究的不断深入,CdSe纳米晶制备方法不断完善,可以很好地控制纳米晶的粒径,粒径的分布以及形状,除了最初的纳米颗粒外,还出现了纳米线、纳米棒、纳米带、纳米锯、纳米管、纳米核壳型双壳层体及各种形状的纳米晶,并以此为基本单元在一维、二维和三维空间组装成具有一定结构的纳米体系。
     本论文首先简述纳米材料的现状和应用前景以及纳米材料的表征,然后重点介绍近年来CdSe纳米晶制备技术,其中包括:金属有机前驱法、水相合成法、水热、溶剂热技术以及核壳半导体纳米粒子技术,并分析这些技术各自的优缺点,为CdSe的进一步研究提供理论基础。
Semiconductor nanocrystals (quantum dots) are currently an active subject of research in nanoscience and nanotechnology, not only because of their novel nanoscal properties such as quantum size confinement, quantum tunneling, and coulomb blockade, but also because of their technological applications in electronic and photonic devices(lasing, light-emitting diodes, and nonlinear optics), as well as biological labels and tagging agents. Particularly, CdSe has often been investigated among the II-VI semiconductor nanocrystals due to its unique size-dependent fluorescence tunable across the visible spectrum, it is possible to synthesize differently sized CdSe nanocrystals that emit from blue to red with very pure color. CdSe semiconductor nanocrystals exhibit great potential as a new type of labeling material for biological research, as well as the most promising semiconductor nanocrystals used in biological labeling. Lots of methods of synthesizing it have been developed, but how to synthesize differently sized CdSe nanocrystals that emit from blue to red with very pure color is pulling off. It is reported that according to the principle of quantum effect, tunable light-emitting dioides have been made by American Bell Laboratory, changing amomg blue, green and red through tuning the particle size of CdSe semiconductor nanocrystals. With intensive investigations, a series of synthetic modifications have been introduced in order to have better control of size , size distribution and shape( i.e nanowires, nanodots, nanorods, nanobelts , nanosaws, nanotubes, teardrops, core-shell etc)that greatly expanded the architectural flexibility of CdSe NCs. Using it as a basic unit, assemble nanomaterial with special structure in one-dimension, two-dimensions, or three-dimensions.
     In this thesis we report on progresses of nanoscience and nanotechnology, as well as character of nanomaterials briefly. Mainly introduce the synthesis methods of the CdSe nanocrystals such as the organometallic precursor route, aqueous route, hydrothermal route, solvothermal route etc. Meanwhile analyse the merits and demerits of these methods, provide theoretical foundation for researching on CdSe semiconductor nanocrystals further.
引文
[1] 林映霞,曹立新.纳米发光材料的发展及研究综述[J].山东化工,2004,33.
    [2] Wang Y, Herron N. Nanometer-Sized Semiconductor Clusters Materials Synthesis, Quantum Size Effects, and Photophysical Properties [J]. J Phys Chem, 1991, 95:525.
    [3] Alivisatos, A P Semiconductor Clusters, Nanocrystals, and Quantum Dots [J]. Science, 1996, 271:933.
    [4] Brus, Louis Electronic Wave Functions in Semiconductor Clusters Experiment and Theory [J]. J Phys Chem, 1986, 90:2555.
    [5] Henglein, A. Electronics of colloidal nanometer particles[J]. Ber.Bunsenges Phys Chem, 1995, 99:903.
    [6] Halperin W P. Quantum size effects in metal particle[J]. Rev Mod Phys ,1986,58:532-539.
    [7] Ball P, Garwin L Science at the atomic scale[J]. Nature, 1992(355):761-766.
    [8] 苏品书. 超微粒子材料技术[M] 复汉出版社, 1989,8-9.
    [9]刘吉平,廖莉玲.无机纳米材料, 科学出版社[M].2003,22-32.
    [10] 王广厚, 韩民.纳米微晶材料的结构和性质[J]. 物理学进展,1990, 10:248.
    [11]加藤昭夫, 森满由纪子[J].日化,1984, 23:800.
    [12] Vollater, D. Aerosol Methods and Advanced Techniques for Nanoparticle Science and Nanopowder Technology[M].Duisburg, Germany,1993,15-20.
    [13] Xia Y, Yang P D, Sun Y G et al One-Dimensional Nanostructures: Synthesis, Characterization, and Applications[J].Adv Mater, 2003, 15:353-389.
    [14](a) Qian Y T, Su Yi, Xie Yi Hydrothermal Preparation & Characterization of Nanocrystalline powder of Sphalerite[J].Mater Res Bull,1995, 30:601-605. (b) Yu S H, Shu L, Qian Y T, et al. Hydrothermal preparation and characterization of nanocrystalline b -indium sulfide[J].Mater Res Bull,1998,33(5):717.
    [15] Wenzhong W,Geng Y,Yitai QA[J]. J Am Chem Soc,1999,121(16):4062.
    [16] Matteazzi P, Le Caer G, Mater.Sci.Eng. A,1992, 156:229.
    [17] Mendelson M I. Average grain size in polycrystalline ceramics[J]. J Am Ceram Soc, 1969, 52:443.
    [18] 牟季美, 张立德, 赵铁男等.纳米 Al2O3 块状材料在可见光范围的荧光现象[J]. 物理学报,1994, 43:1000.
    [19]. Allen, T. Particle Size Measurement[M]. 3rd Edition, Chapman and Hall, London .
    [20] 张立德, 牟季美. 纳米材料和纳米结构. 科学出版社, 2001,4-6.
    [21] 何宇亮, 刘湘娜, 王志超. 纳米硅薄膜的研制[J].中国科学 A 1992, 9:995.
    [22] Veith M, Mathur S, Kareiva A, et al. Low temperature synthesis of nanocrystalline YAG and Ce-doped YAG via different sol-gel methods[J].J Mater Chem,1999,9:3069-3079.
    [23] Kohls M, Schmidt T, Katschorek H, et al A Simple Colloidal Route to Planar Micropatterned Er@ZnOAmplifiers[J].Adv Mater,1999,11(4):288-292.
    [24]Ihara M, Igarashi T, Kusunoki T, et al. Preparation and Characterization of Rare Earth Activators Doped Nanocrystal Phosphors [C].SID’99 symposium,1999,49:3.
    [25]Kang Y C, Park S B, Lenggoro I W, et al. Preparation of non-aggregated Y2O3 : Eu phosphor particles by a spray pyrolysis method[J]. J Mater Res,1999,14(6):2611.
    [26] Bhargava R N, Gallagher, Quantum Efficiency and Time Resolved Spectra of Nanometer-size[J]. Phys Re lett,1994,72: 416.
    [27] Rrus L E, Quantum crystallites and nonlinear optics [J]. Appl Ph A,1999,53:465.
    [28] Hines M A, Guyot-Sionnest P Synthesis and charaterization of strongly luminescing ZnS capped CdSe nanocrystals[J]. J Phys Chem. B, 1996, 100: 468.
    [29]Spanhel L, Haase M, Weller H, et al. Photochemistry of Colloidal Semiconductors 20. Surface Modification and Stability of Strongly Luminescing CdS Particles[J]. J Am Chem Soc, 1987, 109:5649.
    [30] Kortan A R, Hull R, Opila R L, et al. Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media[J]. J Am Chem Soc, 1990, 112:1327.
    [31] Murray C B, Norris D J, Bawendi M G. Synthesis and Characterization of Nearly Monodisperse CdE(E = S, Se, Te) Semiconductor Nanocrystallites[J]. J Am Chem Soc, 1999, 115:8706-8715.
    [32] Qu L H , Peng X G. Control of Photoluminescence Properties of CdSe Nanocrystals in Growth[J]. J Am Chem Soc, 2002, 124:2049.
    [33] Peng Z A, Peng X G. Nearly Monodisperse and Shape-Controlled CdSe Nanocrystals via Alternative Routes: Nucleation and Growth[J]. J Am Chem Soc, 2002, 124:3343.
    [34] Peng Z A, Peng X G. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor[J]. J Am Chem Soc, 2001, 123:183.
    [35] Peng Z A , Peng X G Mechanisms of the Shape Evolution of CdSe Nanocrystals[J]. J Am Chem Soc, 2001 , 123:1389.
    [36] Liberato Manna, Erik C Scher, A Paul Alivisatos Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals[J].J Am Chem Soc, 2000,122: 12700-12706.
    [37] Reiss Peter, Bleuse Jo?l, Pron Adam,Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion[J]. Nano Lett 2002, 2(7): 781-784.
    [38] Deng Z T, Cao L, Tang F Q et al,A New Route to Zinc-Blende CdSe Nanocrystals: Mechanism and Synthesis[J]. J Phys Chem B, 2005,109: 16671-16675.
    [39] Kim S, Bawendi M G, Oligomeric Ligands for Luminescent and Stable Nanocrystal Quantum Dots [J]. J Am. Che Soc, 2003,125(48):14652-14653.
    [40] 孙宝全,徐咏蓝,衣光舜等.半导纳米晶体的光致发光特性及在生物材料荧光标记中的应用[J].分析化学,2002, 30(91): 1130-1136.
    [41].Mitchell G P, Mirkin C A, Letsinger R L. Programmed Assembly of DNA Functionalized Quantum Dots [J]. J Am Chem Soc, 1999,121(35): 8122-8123.
    [42]VossmeyerT, Katsikas L, Giersig M, et al. CdS Nanoclusters: Synthesis, Characterization, SizeDependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy, and Reversible Absorbance Shift [J].J phys Chem, 1994, 98:7665.
    [43] Rogach A L, Katsikas L,Kornowski A, et al. Synthesis and Characterization of Thiol-Stabilized CdTe Nanocrystals J Phys Chem, 1996,100: 1772–1778
    [44] Rogach A L, Kornowski A, Gao M Y,et al. Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals[J]. J Phys Chem B, 1999, 103: 3065-3069
    [45]Gaponik N , Talap in D V , Rogach A L , et al. Thiol-Capping of CdTe Nanocrystals: An Alternative to Organometallic Synthetic Routes[J]. J Phys Chem. B, 2002, 106: 7177.
    [46]Zhang H, Zhou Z, Yang B. The Influence of Carboxyl Groups on the Photoluminescence of Mercaptocarboxylic Acid-Stabilized CdTe Nanoparticles[J]. J Phys Chem B, 2003, 107,8.
    [47] Sondi I, Siiman O, Matijevic E Synthesis of CdSe Nanoparticles in the Presence of Aminodextran as Stabilizing and Capping Agent[J]. Journal of Colloid and Interface Science, 2004, 275:503-507.
    [48] Gao X H, Cui Y Y, Levenson R M, et al In vivo cancer targeting and imaging with semiconductor quantum dots [J]. Nature Biotechnology, 2004, 22: 969.
    [49] Zhang H, Wang L P, Xiong H M, et al. Hydrothermal Synthesis for High-Quality CdTe Nanocrystals[J]. Adv Mater,2003,15:1712-1715.
    [50] 苏宜,谢毅,陈乾旺.纳米 ZnS、CdS 水热合成及其表征[J].应用化学,1996,13(5):56-57.
    [51] 苏宜,钱逸泰,谢毅.反应前驱物对制备硫化镉纳米粉的影响[J].安徽建筑工业学院学报,(自然科学版)1997,5(1):36-38.
    [52] Peng Q, Dong Y J, Deng Z X, et al. Low-Temperature Elemental-Direct-Reaction Route to II-VI Semiconductor Nanocrystalline ZnSe and CdSe[J]. Inorg Chem,. 2001, 40:3840-3841.
    [53] Yang J, Zeng J H, Yu S H, et al Formation Process of CdS Nanorods via Solvothermal Route[J]. Chem Mater 2000, 12: 3259-3263.
    [54] Yang Q, Tang K B, Wang C R, et al.PVA-Assisted Synthesis and Characterization of CdSe and CdTe Nanowires[J]. J Phys Chem. B, 2002, 106:9227-9230.
    [55] Li Y D, Liao H W, Ding Y, et al Solvothermal Elemental Direct Reaction to CdE (E ) S, Se, Te) Semiconductor Nanorod[J]. Inorg. Chem, 1999, 38:1382-1387.
    [56] Li Y D, Ding Y, Qian Y T et al, A solvothermal elemental reaction to produce nanocrystalline ZnSe, Inorg Chem 1998, 37:2844-2845.
    [57] Yu S H, Qian Y T, Shu L, et al Solvent thermal synthesis and characterization of ultrafine powders of bismuth sulfide[J]. Mater Lett 1998,35:116.
    [58] Wang C,Zhang X M,Qian X F, Wang W Z, Xie Y,Qian Y T, Ultrafine powder of silver sulfide semiconductor prepared in alcohol solution[J]. Mater Res Bull 1998,33,12.
    [59] Li Y D, Ding Y, Liao H W Room-temperature conversion route to nanocystalline mercury chalcogenides HgE(E=S,Se,Te)[J]. J Phys Chem Solids,1999,60(7):965~968.
    [60]Norris D J, Sacra A, Murray C B, et al Measurement of the size dependent hole spectrum in CdSe quantum dots [J].Phys Rev Lett, 1997,72:2612.
    [61]Bawendi M G, Wilson W L, Rothberg L et al Eletroni structure and photoexcited-carrier dynamics in nanometer-size CdSe cluster [J].Phys Rev lett,1990,65:1623.
    [62] Dabbousi B O,Rodriguez-Viejo J,Mikulec F V, et al. (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites [J].J Phys Chem B, 1997, 101, 9463.
    [63] Peng X G, Schlamp M C, Kadavanich A V, et al. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility[J]. J Am Chem Soc, 1997, 119: 7019.
    [64] Miguel A, Correa-Duarte,Michael Giersig, et al Stabilization of CdS semiconductor nanoparticles against photodegradation by a silica coating procedure[J].Chem Phys Lett, 1998, 286: 497-501.
    [65]王斌,高飞,何斌等. CdS/TiO2 复合纳米粒子的光学性质 .物理化学学报,2003,19(1):21-24.
    [66] Kamalov V F, Little R, Logunov S L, et al. Picosecond Electronic Relaxation in CdS/HgS/CdS Quantum Dot Quantum Well Semiconductor Nanoparticles[J]. J Phys Chem.,1996, 100: 6381-6384.
    [67] Manna L,Scher E C,Li L S, et al. Epitaxial Growth and Photochemical Annealing of Graded CdS/ZnS Shells on Colloidal CdSe Nanorods[J]. J Am Chem Soc, 2002,124:7136-7145.
    [68] Peter Reiss, Sophie Carayon, Joei Bleuse Large fluorescence quantum yield and low size dispersion from CdSe/ZnSe core/shell nanocrystals[J]. Physica E, 2003,17:95-96.
    [69] Norio Murase Single-particle spectroscopy of doped nanocrystals at room temperature Te :CdSe[J].Chemical Physics Letters, 2003,368:76-81.
    [70] Liu S H, Qian X F, Yuan J Y, et al.Synthesis of monodispersed CdSe nanocrystals in poly(styrene-alt-maleic anhydride) at room temperature[J]. Materials Research Bulletin,2003, 38: 1359-1366.
    [71] Warren C W Chan, Shuming Nie Quantum dots bioconjugates for ultrasensitive nonisotopic detection[J] science,1998,281:2016-2018.
    [72]Michal Danek,Klavs F.Jensen,Chris B.Murray. Synthesis of luminescent. thin-film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an. overlayer of ZnSe[J]. Chem Mater, 1996,8:173-180.
    [73] Baban Cristian, Rusu G I On the structural and optical characteristics of CdSe thin films[J] Applied Surface Science, 2003, 211:6-12.
    [74]J R Heine,J.Rodriguez-viejo,M.G.Bawendi Synthesis of CdSe quantum dot ZnS matrix thin films via electrospray organometallic chemical vapor deposition[J]. Journal of Crystal Growth 1998,195:564-568.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700