用户名: 密码: 验证码:
自然图像的颜色恒常性计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颜色作为计算机视觉一个重要且有效的特征,已经被应用到计算机视觉的许多领域中。但是颜色特征很不鲁棒,容易受到场景光照的影响。颜色恒常性计算的目的就是要消除场景中光照的影响,得到物体表面真正的颜色特性,从而为计算机视觉系统提供一种对光照鲁棒的颜色特征。论文研究了单光照条件下和多光照条件下的颜色恒常性计算,主要开展了以下四个方面的工作:
     在由底层特征驱动的单光照估计研究方向上,由于目前的颜色恒常性算法大都利用图像的全部像素信息进行光照估计,然而实际上并不是所有的像素都包含有助于光照估计的信息。为此,论文提出了一种基于图像有效区域的颜色恒常性算法。该算法基于自然图像统计特征的相似性为图像选择一个适合的颜色恒常性算法及该算法对应的有效区域,进而在该区域上估计场景光照。实验结果表明该算法可以提高自然图像光照估计的准确度。
     在由底层特征驱动的单光照条件下候选颜色恒常性算法的融合或选择上,论文基于岭回归分别从光照估计结果的融合及最优算法的选择两个不同的角度开展研究,提出了两个基于岭回归的颜色恒常性算法。一个是基于岭回归获得各个候选颜色恒常性算法估计光照值和真实光照值之间的映射关系;另外一个是基于岭回归寻找自然图像的统计特征和其适合的颜色恒常性算法之间的映射关系。
     在高层视觉信息指导的单光照颜色恒常性计算的研究上,目前该方向上的研究还很少并且仅限于利用户外——室内场景类信息。为了克服这种场景分类的局限性,论文提出利用一个更为泛化的场景分类方法以提高光照估计的准确性。具体地说,论文提出了一种基于场景的三维几何结构的颜色恒常性算法。利用图像的空间布局信息指导颜色恒常性计算,而非简单的利用场景的二维平面信息。此外,该算法借助于场景的三维几何结构可以识别出近处光照和远处光照,从而为遥感图像的颜色恒常性计算研究提供了一个新的研究思路。
     在多光照颜色恒常性计算的研究上,采集了三个不同的数据集,即超光谱、实验室设置及自然场景下拍摄的多光照数据集。在此基础上提出了一个多光照条件下光照估计的计算框架。与现有的多光照颜色恒常性算法相比,该算法具有简单易行、不需要人工干涉、对成像设备无要求等优点。为了客观地评价算法的性能,提出了一个多光照条件下颜色恒常性计算性能评价标准。图45幅,表14个,参考文献121篇。
Color is an important and effective feature, which has been widely used in computer vision. However, it is not quite robust and easily influenced by the color of the light source. Computational color constancy is to remove the effect of the color of the light source, get the original objects'color under canonical light source, in order to make the color feature much more robust to the color of the light sources. This dissertation focuses on computational color constancy for natural images under one or multiple illuminations. Our work is carried out from the following four aspects.
     For color constancy under uniform illumination, which driven by low-level image information, as not all pixels are helpful to illuminant estimation, a color constancy algorithm using effective regions is proposed. This algorithm makes use of natural image statistics to select the proper color constancy algorithm from the committee algorithms and corresponding effective regions for unseen images. Then estimate the color of the light source on the effective regions using the selected color constancy algorithm. This algorithm is proved to be able to improve accuracy of illuminant estimation.
     For the fusion or selection of color constancy algorithms under uniform illumination, which is driven by low-level image information, a simple but effective machine learning approach ridge regression is used in two ways:one is to get the contribution of color constancy algorithms'estimations to the final illuminant estimation; the other one is to get the relationship between color constancy algorithm selection and natural image statistics.
     For color constancy under uniform illumination, which is supervised by high-level visual information, there is little work on this direction. Now only indoor-outdoor information is made use of. To overcome such shortcoming, a much more generalized scene classification method is introduced. Specifically, a novel color constancy algorithm using 3D scene geometry is proposed. In this algorithm,3D scene geometry is used to determine which color constancy method to use for the different geometrical regions found in images. Our algorithm opens the possibility to estimate the remote scene illumination color, by distinguishing nearby light source from distant illuminations.
     For color constancy under multiple illuminations, first we collect three different datasets, i.e. hyper-spectral dataset, dataset under laboratory setting and real-world dataset; after that a novel color constancy algorithm framework for multiple light sources. Compared with the algorithms available, this algorithm is easy to carry out, not specific for any imaging devices and no human intervention needed. In order to evaluate the performances of algorithms, a new measurement is proposed.
引文
[1]M. Livingstone. Art, illumsion and the visual system. Science America.1988,258(1): 78-85.
    [2]C. L. Zhang, M. V. Srinivasan. Global Perception in Small Brains. Topological Pattern Recognition in Honey Bees. Proceedings of the American National Academy of Sciences. 2003,100(11):6884-6889.
    [3]G. Wyszecki, W. S. Stiles. Color Science:Concepts and Methods, Quantitative Data and Formulae. New York:Wiley Series in Pure and Applied Optics,1982.
    [4]R.W.G Hunt. The Reproduction of Colour,6th ed. Chichester UK:Wiley-IS&T Series in Imaging Science and Technology.2004:11-12
    [5]I. Rock Perception. Scientific American Books.1983.
    [6]I. Newton. Opticks. w.Innys, London.1704.
    [7]李兵.颜色恒常性计算研究.北京交通大学,博士论文.2009.
    [8]K. Barnard, V. Cardei, B. V. Funt. A comparison of computational color constancy algorithms-part I:Methodology and experiments with synthesized data. IEEE trans. on Image Processing.2002,11(9):972-983.
    [9]K. Barnard, L. Martin, A. Coath, B. V. Funt. A comparison of computational color constancy algorithms-part II:Experiments with Image Data. IEEE Transactions on Image Processing.2002,11(9):985-996.
    [10]http://www.science.uva.nl/research/isla/
    [11]http://www.cs.sfu.ca/%7Ecolour/
    [12]http://www.cat.uab.cat/
    [13]http://www.eecs.harvard.edu/-zickler/index.html
    [14]http://color.psych.upenn.edu/brainard/index.html
    [15]http://luthuli.cs.uiuc.edu/-daf/
    [16]http://www.cs.cmu.edu/-chuck/pubpg/index.html
    [17]http://www2.cmp.uea.ac.uk/Research/compvis/colour.htm
    [18]http://www.kyb.mpg.de/publication.html?publ=5098
    [19]http://www.ra.cs.uni-tuebingen.de/mitarb/ebner/welcome_e.html
    [20]http://www.cvl.iis.u-tokyo.ac.jp/index.html
    [21]陶霖密.计算机视觉系统的二步法颜色恒常性.清华大学学报.2000,40(7):101-104.
    [22]陶霖密,徐光祐.机器视觉中的颜色问题及应用.科学通报.2001,46(3):178-190.
    [23]陶霖密.机器颜色视觉及人类肤色特征.清华大学.博士论文.2001.
    [24]蔡珣,孟祥旭,向辉.光照色调颜色恒常性算法研究.中国图像图形学报(A).2004,9(8):922-926.
    [25]蔡珣.视频监控中的背景颜色恒常性算法研究.山东大学.博士论文.2007.
    [26]X. Yuan, S. Li, R. He. Color constancy via convex kernel optimization. Proc. Of Asian Conference on Computer Vision (ACCV).2007:728-737.
    [27]B. Li, D. Xu, et al. Color Constancy based on Image Similarity. IEICE Transactions On Information and Systems.2008,91(2):375-378.
    [28]B. Li, D. Xu, J. Wang. Color Constancy Based on Image Similarity. IEICE Transactions on Information and Systems.2008, E91-D(2):375-378.
    [29]M. Ebner. Color constancy. Wiley-IS&T Series in Imaging Science and Technology. John Wiley & Sons.2007.
    [30]J. van de Weijer, C. Schmid, and J.J. Verbeek. Using high-level visual information for color constancy. IEEE International Conference on Computer Vision.2007:1-8.
    [31]E. Land. The retinex theory of color version. Scientifie Ameriean.1977,237(6):108-128.
    [32]J. Kraft and D. Brainard. Mechanisms of color constancy under nearly natural viewing. Proceeding of Natural Acadamy of Science.1999,96:307-312.
    [33]W. Xiong. Separating Illumination from Reflectance in Color Imagery. Simon Fraser University. PhD dissertation.2007.
    [34]A. Gijsenij, T. Gevers. Color constancy using natural image statistics and scene semantics. IEEE Transactions on Pattern Analysis and Machine Intelligence.2010. (in press)
    [35]S. Hordley. Scene illuminant estimation:past, present, and future. Color Research and Application.2006,31(4):303-314.
    [36]E. H. Landand, J.J. McCann. Lightness and retinex theory. Journal of the Optical Society of America A.1971,61:1-11
    [37]E. Land. TheRetinex. AlnerieanSeientist.1964,52(2):247-264
    [38]G. Buchsbaum. A spatial processor model for object colour perception. Journal of the Franklin Institute.1980,310(1):337-350.
    [39]G. D. Finlayson, E. Trezzi. Shades of gray and colour constancy. Proceeding of IS&T/SID 12th Color Imaging Conference (CIC).2004:37-41.
    [40]J. V. Weijer, T. Gevers, A. Gijsenij. Edge-Based Color Constancy. IEEE Trans. On Image Processing.2007,16(9):2207-2214.
    [41]D. A. Forsyth. A novel algorithm for color constancy. International Journal of Computer Vision.1990,5(1):5-36.
    [42]G. D. Finlayson, S. Hordley. Selection for Gamut Mapping Color Constancy. Proc. of British Machine Vision Conference (BMVC).1997:630-639.
    [43]G. D. Finlayson, S. D. Hordley, and P. M. Hubel. Color by correlation:a simple, unifying framework for color constancy. IEEE Transactions on Pattern Analysis and Machine Intelligence.2001,23(11):1209-1221.
    [44]A. Gijsenij, Th. Gevers, J. van de Weijer. Generalized Gamut Mapping using Image Derivative Structures for Color Constancy. International Journal of Computer Vision (In Press).
    [45]D. H. Brainard and W. T. Freeman. Bayesian color constancy. Journal of the Optical Society of America A.1997,14:1393-1411.
    [46]M. D. Zmura, G. Iverson, and B. Singer. Probabilistic color constancy. Geometric Representations of Perceptual Phenomena. Lawrence Erlbaum Associates.1995:187-202.
    [47]C. Rosenberg, T. Minka, A. Ladsariya. Bayesian Color Constancy with Non-Gaussian Models. Proc. of Neural Information Processing Systems Conference (NIPS). 2004,16:1592-1602.
    [48]P. V. Gehler, C. Rother, A. Blake, T. Sharp and T. Minka. Bayesian Color Constancy Revisited. Proceeding Of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR).2008:1-8.
    [49]W. Xiong, B. Funt. Estimating Illumination Chromaticity via Support Vector Regression. Journal of Imaging Science and Technology.2006,50(4):341-348.
    [50]B. Funt and V. C. Cardei. Bootstrapping colour constancy. Proc. of SPIE.1999, 3644:421-428.
    [51]V. Cardei, B. Funt, and K. Barnard. Estimating the Scene Illumination Chromaticity Using a Neural Network. Journal of the Optical Society of America A.2002,19(12):
    [52]W. Xiong, L. Shi, B. Funt. Illumination Estimation via Thin-Plate Spline Interpolation. Proc. Of IS&T/SID Color Imaging Conference (CIC).2007:25-29.
    [53]C. Rosenberg, M. Hebert, S. Thrun, Color constancy using KL-divergence. Proc. of IEEE International Conference on Computer Vision (ICCV).2001:239-246.
    [54]G Sapiro. Color and Illuminant Voting. IEEE Transactions on Pattern Analysis and Machine Intelligence.1999,21(11):1210-1215.
    [55]M. Ebner. Evolving color constancy. Pattern Recognition Letters,2006,27(11):1220-1229.
    [56]W. Xiong, B. Funt. Stereo Retinex. Image and Vision Computing.2009,27(1):178-188.
    [57]R. Kawakami, K. Ikeuchi, R. Tan. Consistent surface color for texturing large objects in outdoor scenes. Proc. of IEEE International Conference on Computer Vision (ICCV) 2005:1200-1207.
    [58]E. Hsu, T. Mertens, S. Paris, S.Avidan, F. Durand. Light mixture estimation for spatially varying white balance. ACM Trans. on Graphics.2008,70(27):1-70.
    [59]Marc Ebner. Color Constancy Using Local Color Shifts. Proc. Of the 8th European Conference on Computer Vision (ECCV).2004:276-287.
    [60]Marc Ebner. Combining White-Patch Retinex and the Gray World Assumption to Achieve Color Constancy for Multiple Illuminants. Proc. of DAGM Symposium.2003:60-67.
    [61]M. Ebner. Estimating the Color of the Illuminant using Anisotopic Diffusion. International Conference on Computer Analysis of Images and Patterns.2007:441-449.
    [62]D. A. Forsyth, Ponce J. Computer Vision:A modern Approach. Prentice Hall. Inc.2003.
    [63]A. Gijsenij and T. Gevers. Color constancy using image regions. IEEE Computer Society Conference on Image Processing.2007,3:501-504.
    [64]K. Barnard. Practical colour constancy. Simon Fraser University. PhD Dissertation.1999.
    [65]J. V. Weijer, T. Gevers, A. Bagdanov. Boosting color saliency in image feature detection. IEEE Transactions on Pattern Analysisi and Machine Intelligence.2006,28(1):150-156.
    [66]M. D. Fairchild. Color Appearance Models. Wiley-IS&T Series in Imaging Science and Technology. Chichester, UK:John Wiley & sons.2005.
    [67]J. A. Worthey and M. H. Brill. Heuristic analysis of von Kries color constancy. Journal of Optical Society American A.1983,3(10):1708-1712.
    [68]G. D. Finlayson, M. S. Drew, and B. V. Funt. Spectral sharpening:sensor transformations for improved color constancy. Journal of Optical Society American A.1994,11(5): 1553-1563.
    [69]G. D. Finlayson and B. V. Funt. Coefficient channels:derivation and relationship to other theoretical studies. Color Research and Application.1996,21(2):87-96.
    [70]G. D. Finlayson, S. D. Hordley. Color constancy at a pixel. Journal of Optical Society American A.2001,18(2):253-264.
    [71]A. Gijsenij and T. Gevers. Color constancy using natural image statistics. IEEE Computer Society Conference on Image Processing.2007,3:501-504.
    [72]J. Geusebroek, A. SMeulders. A six-stimulus theory for stochastic texture. International Jounal of Computer Vision.2005,62(1-2):7-16.
    [73]A. Torralba and A. Oliva. Statistics of natural image statistics. Network:computation in neural systems.2003,14(3):391-412.
    [74]A. Torralba. Contextual priming for object detection. International Journal of Computer Vision.2003,53(2):169-191.
    [75]J. van Gemert, J. Geusebroek, C. Veenman, C. Snoek, and A. Smeulders. Robust scene categorization by learning image statistics in context. CVPR Workshop on Semantic Learning Applications in Multimedia (SLAM). June 2006:105-112.
    [76]S. Bianco, G. Ciocca, C. Cusano, and R. Schettini. Improving color constancy using indoor-outdoor image classification. IEEE Transactions on Image Processing.2008,17(12): 2381-2392.
    [77]F. Ciurea and B. V. Funt. A large image database for color constancy research. IS&T/SID's Color Imaging Conference.2003:160-164.
    [78]S. D. Hordley, G. D. Finlayson. Reevaluation of Color Constancy Algorithm Performance. Journal of the Optical Society of America A.2006,23(5):1008-1020.
    [79]A. Gijsenij, T. Gevers, and M. Lucassen. A perceptual analysis of distance measures for color constancy algorithms. Journal of the Optical Society of America A.2009,26(10): 2243-2256.
    [80]D. Purves, R. G. Lotto, and S. Nundy. Why we see what we do. American Scientist.2002, 90(3):236-243.
    [81]J. Sivic and A. Zisserman. Video Google:A text retrieval approach to object matching in videos. IEEE International Conference on Computer Vision.2003:1470-1477.
    [82]T. K. Leung and J. Malik. Representing and recognizing the visual appearance of materials using three-dimensional textons. International Journal of Computer Vision.2001, 43(I):29-44.
    [83]R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale-invariant learning. IEEE Conference on Computer Vision and Pattern Recognition. 2003,2:264-271.
    [84]F. Jurie and B. Triggs. Creating efficient codebooks for visual recognition. IEEE International Conference on Computer Vision.2005:604-610.
    [85]K. van de Sande, T. Gevers, and C. Snoek. Evaluating Color Descriptors for Object and Scene Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence.2010 (in press).
    [86]B. Leibe and B. Schiele. Interleaved object categorization and segmentation. British Machine Vision Conference.2003:759-768.
    [87]D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision.2004,60:91-110.
    [88]C.-C. Chang and C. J. Lin. LIBSVM:a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    [89]V. Nedovic, A. Smeulders, A. Redert and J. M Geusebroek. Depth information by stage classification. IEEE International Conference on Computer Vision.2007:1-8
    [90]G. D. Finlayson, B. V. Funt, and K. Barnard. Color constancy under varying illumination. IEEE International Conference on Computer Vision.1995:720-725.
    [91]K. Barnard, G. Finlayson, and B. Funt. Color constancy for scenes with varying illumination. Computer Vision and Image Understanding.1997,65(2):311-321.
    [92]W. Xiong, B. Funt. Stereo Retinex. Image and Vision Computing.2009,27(1):178-188.
    [93]R. Kawakami, K. Ikeuchi, R.T. Tan. Consistent surface color for texturing large objects in outdoor scenes. IEEE International Conference on Computer Vision.2005:1200-1207.
    [94]J. A. Marchant and C. M. Onyango. Shadow-invariant classification for scenes illuminated by daylight. Journal of Optics Society of America A.2000,17(11):1952-1961.
    [95]K. Mikolajczyk, C. Schmid. Scale and affine invariant interest point detectors. International Journal of Computer Vision.2004,60 (1):63-86.
    [96]P.F. Felzenszwalb, D. Huttenlocher. Efficient graph-based image segmentation. International Journal of Computer Vision.2004,59(2):167-181.
    [97]D.H. Foster, S.M.C. Nascimento, K. Amano. Information limits on neural identification of colored surfaces in natural scenes. Visual Neuroscience.2004,21:331-336.
    [98]K. Barnard, L. Martin, B. Funt, A. Coath. A data set for color research. Color Research and Application.2002,27(3):148-152.
    [99]M. Ebner. Color constancy based on local space average color. Machine Vision and Applications.2009,20(5):283-301.
    [100]V. Agarwal, A.V. Gribok, and M.A. Abidi, Machine learning approach to color constancy, Neural Networks.2007,20(5):559-563.
    [101]V. C. Cardei, B. Funt. Committee-based color constancy. Proceeding of IS & T/SID Color Imaging Conference.1999:311-313.
    [102]T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning:Data Mining, Inference and Prediction. Springer-Verlag.2001.
    [103]A. E. Hoerl, R. W. Kennard. Ridge regression:Biased estimation for nonorthogonal problems. Technometrics.1970,12(1):55-67.
    [104]A. Gijsenij and T. Gevers. Color Constancy by Local Averaging. Computational Color Imaging Workshop.2007:1-4.
    [105]E. Delage, H. Lee and A.Y. Ng. A dynamic Bayesian network model for autonomous 3d reconstruction from a single indoor image. IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2006:2418-2428.
    [106]D. Hoiem, A. A. Efros, and M. Hebert. Geometric context from a single image. IEEE International Conference on Computer Vision.2005:654-661.
    [107]E. Sudderth, A. Torralba, W. Freeman, and A. Willsky. Depth from familiar objects:A hierarchical model for 3d scenes. IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2006:2410-2417.
    [108]A. Oliva and A. Torralba. Modeling the shape of the scene:a holistic representation of the spatial envelope. International Journal of Computer Vision.2001,42(3):145-175.
    [109]G. West and M. H. Brill. Necessary and sufficient conditions for von kries chromatic adaptation to give color constancy. Journal of Mathematical Biology.1982,15(2): 249-258.
    [110]B. V. Funt and B. C. Lewis. Diagonal versus affine transformations for color correction. Journal of the Optical Society of America A.2000,17(11):2108-2112.
    [111]B. Li, D. Xu, W. Xiong, S. Feng. Illumination Independent Descriptors using Color Moment Invariants. SPIE Optical Engineering,2009,48(2).
    [112]B. Li, D. Xu, W. Xiong, S. Feng. Color Constancy Using Achromatic Surface. Color Research & Application.2010.
    [113]M. Schroder and S. Moser. Automatic color correction based on generic content-based image analysis. Proceeding of Color Imaging Conference.2001,9:41-45.
    [114]F. Gasparini and R. Schettini. Color balancing of digital photos using simple image statistics. Pattern Recognition.2004,37(6):1201-1217.
    [115]A. Gijsenij. Edge-driven Color Cosntancy. University of Amsterdam. PhD dissertation. 2010.
    [116]A. E. Hoerl, and R. W. Kennard. Ridge Regression:Applications to Nonorthogonal Problems.Technometrics.1970,12(1):69-82.
    [117]D. W. Marquardt. Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation.Technometrics.1970,12(3):591-612.
    [118]D. W. Marquardt, and R.D. Snee. Ridge Regression in Practice.The American Statistician. 1975,29(1):3-20.
    [119]T. Hansen, M. Olkkonen, S. Walter, and K. R. Gegenfurtner. Memory modulates color appearance. Nature Neuroscience.2006,9(11):1367-1368.
    [120]N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R Luo, and T. Newman. The ciecam02 color appearance model. IS&T/SID Color Imaging Conference.2002, pp.23-27.
    [121]G. D. Finlayson. Color in Perspective. IEEE Transactions on Pattern Analysis and Machine Intelligence.1996,18(10):1034-1038.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700