用户名: 密码: 验证码:
柔性衬底WO_3-MoO_3电致变色薄膜溶胶—凝胶制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电致变色材料在军事伪装及太阳能利用等领域具有广阔应用前景。目前人们对以平板玻璃为基板的电致变色器件研究逐步成熟,部分产品已推向市场。但其耐冲击性差、极易破碎,很难应用于具有复杂表面的武器装备。开展柔性电致变色器件的研究,对扩大电致变色材料在军事等领域的应用,具有重要意义。本文对柔性电致变色器件相关材料的制备技术进行了研究,初步组装了以PET为衬底,以ITO薄膜为透明电极,以WO_3-MoO_3薄膜为电致变色层,以TiO_2薄膜为离子储存层,以PMMA-PC-LiClO_4为电解质,结构为PET/ITO/WO_3-MoO_3/PMMA-PC-LiClO_4/TiO_2/ITO/PET的柔性全固态电致变色器件,并对WO_3-MoO_3混合氧化物薄膜的电致变色机理和动力学过程进行了分析和探讨。
     以金属W粉、Mo粉以及H_2O_2等为原料,合成了水相WO_3、MoO_3和WO_3-MoO_3溶胶,采用正交试验对WO_3溶胶的稳定性和在PET/ITO衬底上的成膜性进行了研究。结果表明,制备同时具有长期稳定性和良好成膜性WO_3溶胶的最佳配比为:W(g):H_2O_2(mL):C_2H_5OH(mL):HAc(mL)=1:5.5:5:1.3。WO_3-MoO_3混合溶胶具有比单一溶胶更好的稳定性和成膜性,最佳配比为WO_3:MoO_3=9:1(摩尔比)。制备后的溶胶宜贮存在较低温度下,而镀膜则应在干燥的环境、温度适中的条件下进行。MoO_3溶胶加入WO_3溶胶后,增大了溶胶体系的斥力位能,同时减小了引力位能,致使溶胶体系的势垒升高,从而提高了其稳定性。
     采用FT-IR、TG-DTA、XRD及SEM等多种手段对WO_3-MoO_3薄膜的成分和结构进行了表征。结果发现,WO_3-MoO_3干凝胶结合水的脱离温度及双氧键的裂解温度与MoO_3干凝胶大致相当,而晶化温度与WO_3干凝胶的晶化温度基本相同;WO_3-MoO_3薄膜250℃以下热处理时呈非晶态,350℃热处理后,混合薄膜析出面心立方结构的WO_3·0.5H_2O晶体,当温度升高到450℃,薄膜中除了含有WO_3·0.5H_2O外,还析出W_(0.53)Mo_(0.47)O_3,H_(0.56)Mo_(0.25)W_(0.75)O_3和Mo_9O_(26)等多种晶体。
     采用可见光分光光度计、电化学工作站等研究了热处理温度、薄膜厚度、原子配比及衬底材料对WO_3-MoO_3薄膜电致变色性能的影响,结合XPS等对其电致变色机理以及着/退色动力学过程进行了分析和探讨。结果表明,衬底材料对WO_3-MoO_3薄膜光学调制性能的影响不大,但塑料基薄膜的着色阈值电位略高于玻璃基薄膜;随WO_3-MoO_3/ITO/PET薄膜厚度的增加,制备态时的透过率略有减小,着色阈值电位降低,可见光调制幅度和储存电荷的能力增大;随着Mo含量的增加,WO_3-MoO_3/ITO/PET薄膜对可见光的调制幅度先增加后减小,在30atm%时达到最大值。
     制备态的纯WO_3和MoO_3薄膜中仅含有六价金属离子;WO_3-MoO_3混合薄膜中氧空位增加,除含有六价离子外,还存在W~(5+)和Mo~(5+)。当Li~+和e~-注入WO_3-MoO_3薄膜后,注入的e~-占据空的W_(5d)、W_(6s)、Mo_(4d)和Mo_(5s)轨道,并在费米能级附近富集,将部分W~(6+)还原成W~(5+)和W~(4+),同时将部分Mo~(6+)和部分Mo~(5+)还原成Mo~(4+)。注入的e~-在WO_3-MoO_3薄膜中相邻价态的相邻离子间跃迁,产生不同的能量吸收,从而使其呈现出灰色变色特征。电场反向,Li~+和e~-从WO_3-MoO_3薄膜中抽取,W~(4+)和Mo~(4+)又被氧化成高价态,薄膜退色。
     当着色电位低于阈值电位时,主要是电化学控制过程;当着色电位高于阈值电位时,Li~+在膜内的扩散为控制步骤。在±1.5V的阶跃电位下,WO_3-MoO_3/ITO/PET薄膜150s后达到饱和致色,经75s后达到完全退色。WO_3-MoO_3薄膜具有较好的开路记忆能力,但在空气中自然退色48h后,不再具有可逆的电致变色效应。
     以钛酸四丁酯、乙醇、冰醋酸和蒸馏水等为原料,合成了稳定期在2个月以上,在PET/ITO和Glass/ITO衬底上成膜性能良好的TiO_2溶胶。随热处理温度的升高,Li~+在TiO_2薄膜中的注入和抽取更为容易,薄膜所注入和抽取的电荷密度减小,循环可逆性增强,对可见光的调制能力降低,着色/退色时间先降低后升高,350℃时达到最小值;塑料基TiO_2薄膜与相同条件下制备的玻璃基薄膜电色性能相似,都具有较弱的阴极电致变色效应和较强的Li~+储存能力,但循环可逆性较低;随厚度的增加,TiO_2薄膜离子贮存能力增大,循环可逆性减小,光学调制幅度增大,电化学响应时间缩短。塑料基TiO_2薄膜的电化学响应时间、离子储存能力与WO_3-MoO_3薄膜相匹配,且变色前后透过率都较高,可用作对电极。
     采用原位聚合法合成了PMMA-PC-LiClO_4凝胶电解质,研究了LiClO_4/PC浓度和MMA单体含量对凝胶电解质室温电导率的影响。结果表明:凝胶室温离子电导率随LiClO_4/PC浓度的增加先增加后减小,浓度为1mol/L时达到最大值;随MMA单体加入量的增加,凝胶电解质膜的离子电导率减小,机械强度升高。MMA单体的加入量为50%,LiClO_4/PC浓度为1mol/L时,凝胶电解质的室温电导率为1.43×10~(-3)S/cm。PMMA-PC-LiClO_4凝胶电解质在可见光范围内的透过率大于85%,电化学稳定窗口为4.5V,满足电致变色器件在光学和电化学等方面的要求。
     组装了结构为PET/ITO/WO_3-MoO_3/PMMA-PC-LiClO_4/TiO_2/ITO/PET的柔性全固态电致变色小型器件,样品面积为5×2.5cm~2,厚度为0.4mm;器件在波长600nm处,着色和退色时的透过率分别为25%和56%,K值为0.58,饱和着色时间约为180s,完全退色时间约为120s;在全可见光波段,△T_(vis)为28%;循环寿命约为600次。
Electrochromic materials could be applied widely in the field of the military camouflage and solor energy usage due to its changing of colour and heating absorbtion with the applied voltage. Presently, the study on the electrochromic devices based on plate glass is active, and some products are on sale. However, it is difficult for these devices to use in the weapons equipments with complex surfaces because of their frangibility and poor toughness. Therefore, it is an important significance of developing the plastic electrochromic divice. In this paper, the preparation technologies about the corresponding materials for the plastic electrochromic divice were devoped, and the electrochromic cell sample with the laminated structure of PET/ITO/WO_3-MoO_3/PMMA-PC-LiClO4/TiO_2/ITO/PET was fabricated. The electrochromic mechanism and dynamics of the WO_3-MoO_3 hybrid oxide films were discussed.
     Tungsten powder, molybdium powder and hydrogen peroxide were used to prepare the aquous WO_3, MoO_3 and WO_3-MoO_3 sols. The stability and film formability of the sols on the PET/ITO substrates were studied. It is shown that the optimizing ratio to prepare WO_3 sol is W(g):H_2O_2(mL):C_2H_5OH(mL):HAc(mL)= 1:5.5:5:1.3. It is better for the hybrid sol to be saved at low temperature and the film to be fabricated at a moderate temperature in a dry atmosphere. The stable time of the WO3 sols with the addition of MoO_3 sols becomes longer because the potencial wall of the hybrid sols increases with the repelling potential increasing and the suction potential decreasing.
     The compositions and structures of the WO_3-MoO_3 films were analysed by the means of FT-IR, TG-DTA, XRD, SEM et al.The results show that the deviating temperature of the bonded water and dividing temperature of the peroxide bond of the hybrid gels are equal to those of the MoO_3 gels, while their crystalized temperature is same as the WO_3 gels. The WO_3-MoO_3 films annealed under 250℃is amorphous. The bcc crystal of WO_3·0.5H_2O is formed when the heat treatment temperature is 350℃.When the heat treatment temperature increases to 450℃,several kinds of crystal separated out from the hybrid oxide films, such as WO_3·0.5H_2O,W_(0.53)Mo_(0.47)O_3,H_(0.56)Mo_(0.25)W_(0.75)O_3,Mo_9O_(26) and so on.
     Effects of the heat treatment temperature, thickness, composition and substrate materials of the hybrid oxide films on the electrochromic properties were studied by the spectrophotometer and the electrochemical workstation. The electrochromic mechanism and the dynamic process were also analysed by XPS. It is shown that the substrates have little effect on the properties of modulating the visual light, but the threshold potential of the film based on PET/ITO is higher than that of Glass/ITO slightly. With increasing of thickness of the hybrid films, both the transmittance of the prepared films and the threshold potential decrease, while the magnitude of the modulating light and the inserted charge density incease. At the same time, the changing of light transmittance between the coloured film and the bleached film increases at first, and then decreases with the increasing of the molybdenum, and gets to maximum with 30atm% Mo atoms.
     Only W~(6+) appears in the as-prepared WO_3 films made by the sol-gel method. With the addition of molybdenum, the five valences of W and Mo come forth from the as-prepared hybrid oxide film because of the increasing of oxygen cavity. At the coloured state, some W~(6+) deoxidize to W~(5+) and W~(4+),and partial Mo~(6+) and Mo~(5+) deoxidize to Mo~(4+).Different energy absorbance is caused when the inserted electrons hop between the border atoms with border valence, and as a result, the hybrid oxide films become grey. When bleaching, both W and Mo atoms revert to the as-prepared state, and the hybrid oxide film becomes transparent again. The results of the electrochromic dynamic reveal that the control step during the colouring process is the diffusing speed of the inserted lithium ions. The colouring speed is slower than the bleaching speed. The hybrid oxide film remains the colouring state for 48 hours under open circuit, but its electrochromism becomes irreversible.
     Titanium oxide sol was synthesized with Ti(OBu)_4, ethanol, acetic acid and deion water, which could remain stable for over two months. Nanotitanium oxide films were prepared on the PET/ITO and Glass/ITO substrates by the sol-gel method. The structure and electrochromic properties of the films were characterised and compared. It is shown that the titanium dioxide particles of the TiO_2/ITO/PET film are bigger than those of the TiO_2/ITO/Glass film. With the annealing temperature increasing, the K value of the TiO_2/ITO/PET film increases from 0.56 to 0.97 and the lifetime from less than 50 cycles to more than 10000 cycles, while its intercalation charge density decreases from 14.12mC/cm~2 to 6.61 mC/cm~2.Both the TiO_2/ITO/PET film and the TiO_2/ITO/Glass film reveal weak cathodic colouration and strong capability of saving lithium ions. The electrochemical response time and the saving ions capability of the TiO_2/ITO/PET film are matching to those of the WO_3-MoO_3/ITO/PET film. Furthermore, the TiO_2/ITO/PET film remains high transmittance at the state of colouring and bleaching, so it can be used as a count electrode of the electrochromic WO_3-MoO_3 film.
     The gel electrolyte of the PMMA-PC-LiClO_4 system was prepared by the in-suit polymerization method. Effects of concentration of the lithium salt and content of the MMA monomer on the room conductance of the gel electrolyte were discussed. The results reveal that the room conductance gets to maximum of 1.43×10~(-3)S/cm when the concentration of LiClO_4/PC is 1mol/L and the content of MMA is 50%.The transmittance of the gel electrolyte is over 85% and the electrochemical property remains stable under 4.5V, so it can meet the requirement of the electrochromic device.
     The all-solid flexible electrochromic cell sample with the laminated structure of PET/ITO/WO_3-MoO_3/PMMA-PC-LiClO_4/TiO_2/ITO/PET was fabricated in this paper. It is 5×2.5cm~2 in size,and 0.4mm in thickness. The electrochromic properties of the cell were tested. The transmittance variation between the coloured state and the bleached state is 31% at the wavelength of 600nm and the K value is 0.58. The colouring time and the bleaching time are about 180s and 120s, respectively.
引文
[1] N. Lebouch, S. Garreau, G. Louarn, et al.Structural study of the thermochromic transition in poly(2,5-dialkyl-p-phenyleneethynylene)s. Macromolecules, 2005, 38(23):9631-9637.
    [2] C. Li, P. Du, H. Tian, et al. Novel thermochromic copolymers with two luminescent colors. Chemistry Letters, 2003, 32(7):570-571.
    [3] I. Nakahara,A. Kikuchi, F. Iwahori, et al. Photochromism of a novel hexaarylbiimidazole derivative having azobenzenemoieties. Chemical Physics Letters, 2005, 402(l-3):107-l 10.
    [4] T. He, J. Yao. Photochromism of molybdenum oxide. Journal of Photochemistry and Photobiology C:Photochemistry Reviews, 2003, 4(2):125-143.
    [5] 陈凯,朱小蕾,姚杰,等.Difiavylene的压色性的机理.南京师大学报(自然科学版),2004,27(1):45-47.
    [6] Y. Muramatsu, T. Yamamoto, M. Hasegawa,et al. Piezochromic behaviour of regioregular poly(3-exyl-thiophene-2,5-diyl) and poly(5,8-dihexadecyloxy-anthraquinone-1,4-diyl). Polymer,2001,42:6673-6675.
    [7] J. Engelking, D. Ulbrich, H. Menzel. Piezochromic effect and orientational order in monolayers and LB multilayers of poly(p-phenylenesulfonate)-dioctadecy-dimethy Lammonium Bromide Complexes.Macromolecules, 2000, 33:9026-9033.
    [8] R. Prakash, S. Somani, Radhakrishnan. Electrochromic materials and devices: present and future,Materials Chemistry and Physics, 2002, 77:117-133.
    [9] 游效曾.分子材料.光电功能化合物.上海:上海科学技术出版社,2001.10.
    [10] S.K. Deb. A novel electrophotographic system, Applied Optics Suppl.1969,192.
    [11] E. Ozkan, S.H. Lee, C.E. Tracya,et al.Comparison of electrochromic amorphous and crystalline tungsten oxide films. Solar Energy Materials & Solar Cells, 2003, 79:439-448.
    [12] C.C.Liao, F.R. Chen, J.J. Kai. WO_(3-x) nanowires based electrochromic devices. Solar Energy Materials & Solar Cells, 2006, 90:1147-1155.
    [13] X.G. Wang, Y.S. Jang, N.H. Yang, et al. XPS and XRD study of the electrochromic mechanism of WO_x films. Surface and Coatings Technology. 1993, 99:82-86.
    [14] K.Hinokuma,A.Kishmoto,T.Kudo.Coloration dynamics of spin-coated MoO_3####nH_2O electrochromic films fabricated from peroxo-polymolybdate solution. J. Electrochem.Soc.1994,141(4):876-879.
    [15] 唐怀军,霍海玲,刘文杰,等.改进型过氧钼酸法制备无定形MoO_3薄膜.湖南大学学报(自然科学版),2004,31(5):9-12.
    [16] A. Ghicov, H. Tsuchiya,R.Hahn,et al.TiO_2 nanotubes: H~+ insertion and strong electrochromic effects. Electrochemistry Communications, 2006, 8:528-532.
    [17] M. Koelscha,S.Cassaignon, J.F. Guillemoles, et al. Comparison of optical and electrochemical properties of anatase and brookite TiO_2 synthesized by the sol-gel method. Thin Solid Films, 2002,403-404:312-319.
    [18] K.C.Cheng, F.R. Chen, J.J.Kai.V_2O_5 nanowires as a functional material for electrochromic device.Solar Energy Materials and Solar Cells, 2006, 90:1156-1165.
    [19] P.K.Sharma,M.C.A. Fantini, A. Gorenstein. Synthesis, characterization and electrochromic properties of NiOxHy thin film prepared by a sol-gel method.Solid State Ionics,1998,113-115:457-463.
    [20] S.K. Deb. Opportunities and challenges of electrochromic phenomena in transition metal oxides.Solar Energy Materials and Solar Cells, 1992,25(3-4):327-338.
    [21] 袁坚.有机-无机纳米复合电致变色材料及其性能研究.武汉理工大学博士学位论文,2001.5.
    [22] E. Pehlivan, F.Z. Tepehan, GG Tepehan. Comparison of optical, structural and electrochromic properties of undoped and WO_3-doped Nb_2O_5 thin films. Solid State Ionics, 2003,165:105-110.
    [23] N. Ozer, CM.Lampert. Electrochromic characterization of sol-gel deposited coatings. Solar Energy Materials and Solar Cells, 1998, 54:147-156.
    [24] C.G.Granqvist, A. Azens, A. Hjelm,et al.Recent advances in electrochromics for smart windows application. Solar Energy, 1998, 63(4): 199-216.
    [25] M. Schmitt, S. Heusing, M.A. Aegerter, et al. Electrochromic properties of Nb_2O_5 sol-gel coatings.Solar Energy Materials and Solar Cells, 1998, 54:9-17.
    [26] A.V. Rosario, E.C.Pereira. Optimisation of the electrochromic properties of Nb_2O_5 thin films produced by sol-gel route using factorial design. Solar Energy Materials & Solar Cells, 2002,71:41-50.
    [27] Z. Wang, J. Chen, X. Hu. Electrochromic properties of aqueous sol-gel derived vanadium oxide films with different thickness. Thin Solid Films, 2000, 375:238-241.
    [28] 王海红.氧化铑薄膜的电致变色性能研究.复旦大学博士学位论文,2002.5.
    [29] H. Wang, M. Yan and Z. Jiang. Electrochromic properties of rhodium oxide films prepared by a sol-gel method. Thin Solid Films, 2001,401(l-2):211-215.
    [30] C.G Granqvist, E. Avenda(?)o, A. Azens. Electrochromic coatings and devices: survey of some recent advances. Thin Solid Films, 2003,442(l-2):201-211.
    [31] C.G Granqvist. Electrochromic tungsten oxide films: Review of progress 1993-1998. Solar Energy Materials and Solar Cells, 2000, 60(3):201-262.
    [32] C.G Granqvist. Progress in electrochromics: tungsten oxide revisited. Electrochimica Acta, 1999,44(18):3005-3015.
    [33] 孙宇峰,孟凡利,黄行九,等.溶胶-凝胶法制备WO_3电致变色薄膜的研究进展.安徽工程科技学院学报.2004,19(3):6-11.
    [34] B.W.Faughnan, R.S. Crandall,et al.RCA.Review.1975, 36:177.
    [35] M. Deepa,P.Singh, S.N. SharMa,et aL.Effect of humidity on structure and electrochromic properties of sol-gel-derived tungsten oxide films. Solar Energy Materials & Solar Cells, 2006, 90:2665-2682.
    [36] C.C.Liao, F.R. Chen, J.J. Kai. WO_(3-x) nanowires based electrochromic devices. Solar Energy Materials & Solar Cells, 2006, 90:1147-1155.
    [37] K.C.Cheng, F.R. Chen, J.J. Kai.V_2O_5 nanowires as a functional material for electrochromic device.Solar Energy Materials & Solar Cells, 2006, 90:1156-1165.
    [38] X.L. Wei, P.K. Shen. Electrochromics of single crystalline WO_3·H_2O nanorods. Electrochemistry Communications, 2006, 8:293-298.
    [39] 吴永光,吴广明,倪星元,等.MoO_3薄膜的电化学及电致变色性质.功能材料,2006,27(5):385-387.
    [40] A.Azens, E. Avenda(?)o, J. Backholm, et al. Flexible foils with electrochromic coatings: science,technology and applications..Materials Science & Engineering B, 2005,119(3):214-223.
    [41] P.S. Patil,S.H. Mujawar, S.B. Sadale, et al. Effect of film thickness on electrochromic activity of spray deposited iridium oxide thin films. Materials Chemistry and Physics, 2006, 99(2-3):309-313.
    [42] Z.C.Wang, J.F. Chen, X.F. Hu. Electrochromic properties of aqueous sol-gel derived vanadium oxide films with different thickness. Thin Solid Films, 2000, 375:238-241.
    [43] S.K. Deb, S.H. Lee, C.E. Tracy, et al. Stand-alone photovoltaic-powered electrochromic smart window. Electrochimica Acta, 2001,46(13-14):2125-2130.
    [44] C.Bechinger, B.A. Gregg. Development of a new self-powered electrochromic device for light modulation without external power supply. Solar Energy Materials and Solar Cells,1998,54:405-410.
    [45] K.W. Park.Electrochromic properties of Au-WO_3 nanocomposite thin-film electrode. Electrochimica Acta,2005, 50(24):4690-4693.
    [46] E. Avenda(?)o,A.Azens,G.A.Niklasson, et al. Electrochromism in nickel oxide films containing Mg,Al, Si, V, Zr, Nb, Ag, or Ta. Solar Energy Materials and Solar Cells, 2004, 84(l-4):337-350.
    [47] Paul M.S. Monk, S.P. Akhtar, J. Boutevin, et al. Toward the tailoring of electrochromic bands of metal-oxide mixtures. Electrochimica Acta,2001,46(13-14):2091-2096.
    [48] P.R. Patil and P.S. Patil. Preparation of mixed oxide MoO_3-WO_3 thin films by spray pyrolysis technique and their characterisation. Thin Solid Films, 2001, 82(1-2):13-22.
    [49] T. Ivanova,K.Gesheva,F.Hamelmann. Optical and electrochromic properties of CVD mixed MoO_3-WO_3 thin films. Vacuum, 2004, 76:195-198.
    [50] 刘明志,程金树,袁坚.溶胶-疑胶法制备WO_3-Tio_2电致变色薄膜的研究.武汉工业大学学报,2000,22(6):22-23.
    [51] N.R. de Tacconi, C.R. Chenthamarakshan, K.L. Wouters, et al. Composite WO_3-TiO_2 films prepared by pulsed electrodeposition: morphological aspects and electrochromic behavior. Journal of Electroanalytical Chemistry, 2004, 566:249-256.
    [52] N. Ozer, C. M. Lampert. Electrochromic performance of sol-gel deposited WO_3-V_2O_5 films. Thin Solid Films, 1999, 349(1-2):205-211.
    [53] E. Pehlivan, F.Z. Tepehan, G.G. Tepehan. Comparison of optical, structural and electrochromic properties of undoped and WO_3-doped Nb_2O_5 thin films. Solid State Ionics, 2003, 165:105-110.
    [54] L. Kullman, A. Azens, C.G. Granqvist. Electrochromism and photochromism of reactively DC magnetron sputtered Mo-Ti oxide films. Solar Energy Materials and Solar Cells, 2000,61(2):189-196.
    [55] Y.M. Li, T. Kudo. Properties of mixed-oxide MoO_3/V_2O_5 electrochromic films coated from peroxo-polymolybdovanadate solutions. Solar Energy Materials and Solar Cells, 1995,39(2):179-190.
    [56] F.E. Ghodis, F.Z. Tepehan, GG Tepehan. Optical and electrochromic properties of sol-gel made CeO_2-TiO_2 thin films. Electrochimica Acta, 1999,44:3127-3136.
    [57] A. Lourenco, E. Masetti, F. Decker. Electrochemical and optical characterization of RF-sputtered thin films of vanadium-nickel mixed oxides. Electrochimica Acta, 2001,46(13-14):2257-2262.
    [58] H.J. Ann, H.S. Shim, Y.S. Kim, et al. Synthesis and characterization of NiO-Ta_2O_5 nanocomposite electrode for electrochromic devices. Electrochemistry Communications, 2005, 7:567-571.
    [59] E.C. Zampronio, D.N. Greggio, H.P. Oliveira. Preparation, characterization and properties of PVC/V_2O_5 hybrid organic-inorganic material. Journal of Non-Crystalline Solids, 2003, 332:249-254.
    [60] R.J. Mortimer, A.L. Dyer, J.R. Reynolds. Electrochromic organic and polymeric materials for display applications. Displays, 2006,27:2-18.
    
    [61] R.J. Mortimer. Organic electrochromic materials. Electrochimica Acta, 1999,44 :2971-2981.
    [62] P.R. Somani, S. Radhakrishnan. Electrochromic materials and devices: present and future. Materials Chemistry and Physics. 2002, 77:117-133.
    [63] S.K. Deb. Optical and Photoelectric Properties and Color Centers in Thin Films of WO_3. Phil. Mag.1973,27:801.
    [64] B.W. Faughnan, R.S. Crandall, P.M. Heyman, et al. Electrochromism in WO3 amorphous film. RCA.Review. 1975,36(1):177-197.
    
    [65] C.R. Otterman, et al. Thin Solid Films, 1990, 193-194:409.
    [66] O.F. Schirmer, V. Wittwer, G. Baur, et al. Dependence of WO3 electrochromic adsorption on crystallinity. J Electrochem Soc,1977, 124:749.
    
    [67] C. Bechinger. Chromic mechanism in amorphous WO_3 films. J Electrochem Soc, 1977, 124:749-753.
    [68] A. Azens, E. Avenda(?)o, J. Backholm, et. al. Flexible foils with electrochromic coatings: science,technology and applications. Materials Science & Engineering B, 2005,119(3):214-223.
    [69] A. Azens, A. Hjelm, D.L. Bellac, et al. Electrochromism of W-oxide-based thin films: Recent advances. Solid State Ionics, 1996, 86-88:943-948.
    [70] J.S.E.M. Svensson, C.G. Granqvist. Electrochromic coatings for "smart windows".Solar Energy Materials, 1985, 12:391-402.
    [71] J.S.E.M. Svensson, C.G. Granqvist. Electrochromic coatings for smart windows: Crystalline and amorphous WO_3 films. Thin Solid Film, 1985, 126(1-2):31-36.
    [72] H.J.Byker. Electrochromics and polymers. Electrochimica Acta, 2001,46:2015-2022.
    [73] M. Deepa,M.Kar and S. A. Agnihotry. Electrodeposited tungsten oxide films: annealing effects on structure and electrochromic performance. Thin Solid Films, 2004, 468(1-2):32-42.
    [74] E. Ozkan, S.H. Lee, C.E. Tracy, et al.Comparison of electrochromic amorphous and crystalline tungsten oxide films. Solar Energy Materials & Solar Cells, 2003, 79: 439-448.
    [75] G. Leftheriotis, S. Papaefthimiou, P. Yianoulis. The effect of water on the electrochromic properties of WO_3 films prepared by vacuum and chemical methods. Solar Energy Materials & Solar Cells,2004,83:115-124.
    [76] M. Deepa,T.K.Saxena,D.P.Singh, et al.Spin coated versus dip coated electrochromic tungsten oxide films:structure, morphology, optical and electrochemical properties. Electrochimica Acta,2006,51:1974-1989.
    [77] G. Leftheriotis, S. Papaefthimiou, P. Yianoulis. The effect of water on the electrochromic properties of WO_3 films prepared by vacuum and chemical methods. Solar Energy Materials & Solar Cells, 2004,83:115-124.
    [78] 黄佳木,施萍萍,张新元.工艺参数对WO_x薄膜电致变色特性和结构的影响.电子元件与材料,2003,22(10):38-41
    [79] 郝晓涛,张德恒,马瑾,等.柔性衬底氧化物半导体透明导电膜的研究进展.功能材料,2002,33(4):354-359.
    [80] S.S. Kim, S.Y. Choi, C.G Park, et al. Transparent conductive ITO thin films through the sol-gel process using metal salts. Thin Solid Films, 1999, 347:155-160.
    [81] 史金涛,赵高凌,杜王一,等.溶胶凝胶法制备SnO_2:Sb膜的光学电学性能.太阳能学报,2003,24(1):5-9.
    [82] 葛水兵,程珊华,宁兆远.ZnO:Al透明导电膜的制备及其性能的研究.材料科学与工程,2000,18(3):77-79.
    [83] S.S. Sekhon, Deepa, S.A. Agnihotry. Solvent effect on gel electrolytes containing lithium salts. Solid State Ionics, 2000, 136-137:1189-1192.
    [84] P. Jannasch. Physically crosslinked gel electrolytes based on a self-assembling ABA triblock copolymer.Polymer,2002,43:6449-6453.
    [85] T. Ren, X. Huang, X. Tang. A novel gel polymer electrolyte based on the comb crosslinking polymer.Materials Letters, 2003, 57:1863-1866.
    [86] C. Svanberg, R. Bergman, L.B(?)jesson, et al. Diffusion of solvent:salt and segmental relaxation in polymer gel electrolytes. Electrochimica Acta,2001, 46:1447-1451.
    [87] H.P. Singh, S.S. Sekhon. Non-aqueous proton conducting polymer gel electrolytes. Electrochimica Acta,2004, 50:621-625.
    [88] S. Rajendran, R.Kannan,O.Mahendran. An electrochemical investigation on PMMA-PVdF blend-based polymer electrolytes. Materials Letters,2001,49:172-179.
    [89] S. Rajendran, T. Uma.Conductivity studies on PVC-PMMA polymer blend electrolyte. Materials Letters,2000, 44:242-247.
    [90] Y.G Andreev, P.G Bruce. Polymer electrolyte structure and its implications. Electrochimica Acta,2000,45:1417-1423.
    [91] C.C. Yang, S.J. Lin. Preparation of composite alkaline polymer electrolyte. Materials Letters, 2002,57:873-881.
    [92] A.E. Aliev, H.W. Shin. Image diffusion and cross-talk in passive matrix electrochromic displays.Displays, 2002, 23(5):239-247.
    [93] R.J.Mortimer, A.L. Dyer, J.R. Reynolds. Electrochromic organic and polymeric materials for display applications. Displays, 2006, 27(1):2-18.
    [94] H.Pages, P. Topart, D.Lemordant.Wide band electrochromic displays based on thin conducting polymer films. Electrochimica Acta,2001,46(13-14):2137-2143.
    [95] J.A.Castellano. Fundamentals of liquid crystals and other liquid display technologies. Optics & Laser Technology, 1975, 7(6):259-265.
    [96] C.G Granqvist,E.Avenda(?)o,A.Azens. Electrochromic coatings and devices: survey of some recent advances. Thin Solid Films, 2003,442(l-2):201-211.
    [97] 吴正华,邱思畴,谢洪泉.氧乙烯-高氯酸锂配合物电致变色光窗的研究.应用化学,1996,13(6):39-41.
    [98] 陈晓峰,胡行方,李智勇,等.以聚合物凝胶为电解质的多层全固态电变色器件的研究.无机材料学报,1997,12(4):623-626。
    [99] 忻贤堃,忻云龙.以高氯酸锂-丙二醇碳酸酯为电解质的大面积电致变色玻璃.激光与光电子学进展,2000,12:30-35.
    [100] D.Corr, U. Bach, D. Fay, et al.Coloured electrochromic "paper-quality" displays based on modified mesoporous electrodes. Solid State Ionics, 2003,165(1-4):315-321.
    [101] C.M. Lampert, A. Agrawal, C. Baertlien, et al. Durability evaluation of electrochromic devices- an industry perspective. Solar Energy Materials and Solar Cells, 1999, 56(3-4):449-463.
    [102] T.Kamimori, J. Nagai, M. Mizuhashi.Electrochromic devices for transmissive and reflective light control. Solar Energy Materials, 1987,16(l-3):27-38.
    [103] T.J.Richardson. New electrochromic mirror systems. Solid State Ionics, 2003, 165(l-4):305-308.
    [104] C.M.Lampert. Smart switchable glazing for solar energy and daylight control. Solar Energy Materials and Solar Cells, 1998, 52:207-221.
    [105] E.S.Lee,D.L. Bartolomeo, S.E. Selkowitz.Daylighting control performance of a thin-film ceramic electrochromic window:Field study results. Encrgy and Buildings, 2006, 38:30-44.
    [106] E.Syrrakou, S. Papaefthimiou, P. Yianoulis. Eco-efficiency evaluation of a smart window prototype.Science of the Total Environment, 2006, 359:267-282.
    [107] S.Papaefthimiou, E. Syrrakou, P. Yianoulis. Energy performance assessment of an electrochromic window.Thin Solid Films, 2006, 502:257-264.
    [108] S.K.Deb, S.H. Lee, C.E. Tracy, et al.Stand-alone photovoltaic-powered electrochromic smart window. Electrochimica Acta,20014,6:2125-2130.
    [109] 周红,李晓霞,张胜虎,等.基于电致变色膜的复合激光隐身技术研究.激光与红外,2005,35(7):512-514.
    [110] 张胜虎,李晓霞,凌永顺.电致变色膜的制备及其在军事伪装中的应用前景.中国人民解放军电子工程学院学报.2003,22(3):37-39.
    [111] C. Brigouleix, P. Topart, E. Bruneton, et al. Roll-to-roll pulsed dc magnetron sputtering deposition of WO_3 for electrochromic windows. Electrochimica Acta,2001,46(13-14):1931-1936.
    [112] A. Azens, G. Gustavsson, R. Karmhag, et al. Electrochromic devices on polyester foil. Solid State Ionics. 2003, 165(l-4):l-5.
    [113] A. Bessière, J.C.Badot, M.C.Certiat, et al. Sol-gel deposition of electrochromic WO_3 thin film on flexible ITO/PET substrate. Electrochimica Acta,2001, 46(13-14):2251-2256.
    [114] A. Bessiere, C. Duhamel,J.C. Badot, et al. Study and optimization of a flexible electrochromic device based on polyaniline. Electrochimica Acta,2004,49(12):2051-2055.
    [115] De Paoli,et al. All-polymeric electrochromic and photoelectrochemical devices: new advances.Electrochimica Acta, 2001, 46(26-27):4243-4249.
    [116] J.M. Bell,I.L.Skryabin. Failure modes of sol-gel deposited electrochromic devices. Solar Energy Materials & Solar Cells, 1999, 56:437-448.
    [117] J.P.Matthews, J.M. Bell, I.L.Skryabin. Effect of temperature on electrochromic device switching voltages. Electrochimica Acta,1999,44:3245-3250.
    [118] A.T. Baker, S.G. Bosi, J.M. Bell, et al. Degradation mechanisms in electrochromic devices based on sol-gel deposited thin films. Solar Energy Materials and Solar Cells, 1995, 39:133-143.
    [119] 罗宇强,李筱琳,任豪,等.不同膜厚WO_3薄膜的电致变色特性研究.太阳能学报,2004,25(5):647-650.
    [120] 黄佳木,施萍萍.磁控溅射WO_x电致变色薄膜的结构.重庆大学学报:自然科学版,2004,27(5):81-84.
    [121]T.S. Yang, Z.R. Lin, M.S. Wong. Structures and electrochromic properties of tungsten oxide films prepared by magnetron sputtering. Applied Surface Science, 2005, 252(5):2029-2037.
    [122]M. Kharrazi, A. Azens, L. Kullman, et al. High-rate dual-target d.c.magnetron sputter deposition of electrochromic MoO_3 films,Thin Solid F ilms,1997,295(1-2): 117-121.
    [123] 沈杰,沃松涛,崔晓莉,等.射频磁控溅射制备纳米TiO_2薄膜及其光致特性研究.真空科学与技术学报,2004,24(2):81-86.
    [124] C.R. Maga(?)a,D.R. Acosta,A.I. Martínez, et al.Electrochemically induced electrochromic properties in nickel thin films deposited by DC magnetron sputtering. Solar Energy, 2006, 80(2):161-169.
    [125] L.Ottaviano, A. Pennisi, F. Simone. RF sputtered electrochromic V_2O_5 films. Optical Materials, 2004,27(2):307-313.
    [126] M.S. Burdis. Properties of sputtered thin films of vanadium-titanium oxide for use in electrochromic windows, Thin Solid Films, 1997, 311(l-2):286-298.
    [127] 黄佳木,施萍萍,吕佳.WO_x:Mo薄膜的结构及电致变色性能研究.硅酸盐学报,2004,32(5):580-584.
    [128] 黄剑锋编.溶胶-凝胶原理与技术.北京:化学工业出版社,2005.
    [129] J. Livage, D. Ganguli. Sol-gel electrochromic coatings and devices:A review. Solar Energy Materials & Solar Cells, 2001, 68:365-381.
    [130] 刘明志,程金树,何峰.溶胶-凝胶法在制备电致变色薄膜中的应用.国外建材科技,2000,21(2):7-10.
    [131] F.E. Ghodis, F.Z. Tepehan, G.G Tepehan. Optical and electrochromic properties of sol-gel made CeO_2-TiO_2 thin films. Electrochimica Acta, 1999,44:3127-3136.
    [132] M. Macek,B. Orel. Electrochromism of sol-gel derived niobium oxide films. Solar Energy Materials and Solar Cells, 1998, 54:121-130.
    [133] 杨秋红,顾莹,郭存济.Sol-gel法制备WO_3电致变色薄膜.上海大学学报,1997,3(3):313-318.
    [134] T.Kudo, S. Takano, A. Kishimoto, et al. Electrochromism in spin-coated thin films from peroxo-polytungstate solutions. Proceeding of 2nd asian conference on solid state ionics, 1990, 10, Beijing.
    [135] Z.Wang, X. Hu. Fabrication and electrochromic properties of spin-coated TiO_2 thin films from peroxo-polytitanic acid, Thin Solid Films, 1999, 352(l-2):62-65.
    [136] K.Hinokuma,A.Kishmoto,T.Kudo.Coloration dynamics of spin-coated MoO_3·nH_2O electrochromic films fabricated from peroxo-polymolybdate solution. J. Electrochem. Soc.1994,141(4):876-879.
    [137] P.Bonh(?)te, E.Gogniat, M. Gratzel, et al. Novel electrochromic devices based on complementary nanocrystalline TiO_2 and WO_3 thin films. Thin Solid Films, 1999,350(l-2):269-275.
    [138] Z.Wang, J. Chen, X. Hu. Electrochromic properties of aqueous sol-gel derived vanadium oxide films with different thickness. Thin Solid Films, 2000, 375:238-241.
    [139] M. Kitao, S. Yamada,Y.Hiruta,et al. Electrochromic absorption spectra modulated by the composition of WO_3/MoO_3 mixed films, Applied Surface Science, 1988, 33-34:812-817.
    [140] B.Munro, S. Kramer, P. Zapp, et al. All Sol-gel electrochromic system for plate glass. Journal of Non-Crystalline Solids, 1997, 218:185-188.
    [1] Y.H. Ye, J.Y. Zhang, P.F. Gu,et al.Study on the WO_3 dry lithiation for all-solid-state electrochromic device. Solar Energy Materials and Solar Cells, 1997, 46:349-355.
    [2] G.A. Niklasson, L. Berggren, A. L. Larsson. Electrochromic tungsten oxide: the role of defects. Solar Energy Materials & Solar Cells, 2004, 84:315-328.
    [3] E.Ozkan, S.H. Lee, P. Liu, et al.Electrochromic and optical properties of mesoporous tungsten oxide films. Solid State Ionics, 2002, 149:139-146.
    [4] H. Kamal,A.A.Akl,K. Abdel-Hady. Influence of proton insertion on the conductivity, structural and optical properties of amorphous and crystalline electrochromic WO_3 films. Physica B, 2004,349:192-205.
    [5] T.S. Sian, G.B. Reddy. Optical, structural and photoelectron spectroscopic studies on amorphous and crystalline molybdenum oxide thin films. Solar Energy Materials & Solar Cells, 2004, 82:375-386.
    [6] T.M. McEvoy, K.J. Stevenson. Electrochemical quartz crystal microbalance study of the electrodeposition mechanism of molybdenum oxide thin films from peroxo-polymolybdate solution.Analytica Chimica Acta, 2003, 496:39-51.
    [7] 黄佳木,施萍萍,吕佳.Wo_x:Mo薄膜的结构及电致变色性能研究.硅酸盐学报,2004,32(5):580-589.
    [8] Kil Dong Lee. Preparation and electrochromic properties of WO_3 coating deposited by the sol-gel method. Solar Energy Materials & Solar Cells, 1999, 57:21-30.
    [9] L.H.M. Krings,W.Talen.W. Talen.Wet chemical preparation and characterization of electrochromic WO_3.Solare Energy Materials and Solar Cells,1998,57:27-37.
    [10] 张静蓉,陈铮,杨长生,等.溶胶-凝胶法制备钨电致变色膜.功能材料,2000,31(4):385-387.
    [11] T. Kudo, H. Okamoto, K. Matsumoto, et al. Peroxopolytungstic acids synthesized by direct reaction of tungsten or tungsten carbide with hydrogen peroxide. Inorganica Chimica Acta,1986, 111(2),1527-1528.
    [12] 吴贵生.试验设计与数据处理.北京:冶金工业出版社,1997.
    [13] 丁汉哲.试验技术.北京:机械工业出版社,1982.
    [14] T. Nanba,S.Takano, I. Yasui, et al. Structural study of peroxopolytungstic acid prepared from metallic tungsten and hydrogen peroxide. Journal of Solid State Chemistry, 1991, 90(1):47-53.
    [15] 袁坚.有机-无机纳米复合电致变色材料及其性能研究,武汉理工大学博士学位论文,2001.5.
    [16] 徐雪青,沈辉.三氧化钨溶胶稳定机理及薄膜结构变化特征探讨.光谱实验室,2001,18(1):129-133.
    [17] 王果庭.胶体稳定性.北京:科学出版社.1990.
    [18] 郑忠,李宁.分子力与胶体的稳定和聚沉.北京:高等教育出版社,1995.
    [19] T.M. McEvoy, K.J. Stevenson. Electrochemical quartz crystal microbalance study of the electrodeposition mechanism of molybdenum oxide thin films from peroxo-polymolybdate solution.Analytica Chimica Acta,2003,496:39-51.
    [20] 唐怀军,霍海玲,刘文杰等.改进型过氧钼酸法制备无定形MoO_3薄膜.湖南大学学报(自然科学版),2004,31(5):9-12.
    [1] Y.A. Yang, J.N. Yao. Microstructural properties of an electrochromic WO_3 thin film. Journal of Physics and Chemistry of Solids, 2000, 61(4):647-650.
    [2] P.M.S. Monk, S.L. Chester. Electro-deposition of films of electrochromic tungsten oxide containing additional metal oxides. ElectrochimicaActa,1993, 38(11):1521-1526.
    [3] J.I. Martins, F. Delmas,H.Casquinha and S. Costa.The influence of particle size of raw materials on the final WO_3 grain size. Hydrometallurgy, 2002, 67(1-3):117-123.
    [4] A. Siokou, G.Lefttheriotis, S. Papaefthimiou, et al.Effect of the tungsten and molybdenum oxidation states on the thermal coloration of amorphous WO_3 and MoO_3 films. Surface Science, 2001,482-485:294-299.
    [5] M. Deepa,M.Kar,S.A.Agnihotry. Electrodeposited tungsten oxide films: annealing effects on structure and electrochromic performance. Thin Solid Films, 2004, 468:32-42.
    [6] H.Kamal, A.A.Akl,K.Abdel-Hady.Influence of proton insertion on the conductivity, structural and optical properties of amorphous and crystalline electrochromic WO_3 films. Physica B: Condensed Matter, 2004, 349(l-4):192-205.
    [7] E. Masetti, M.L. Grilli, G Dautzenberg, et al.Analysis of the influence of the gas pressure during the deposition of electrochromic WO_3 films by reactive r.f. sputtering of W and WO_3 target. Solar Energy Materials and Solar Cells,1999, 56(3-4): 259-269.
    [8] 李再轲.TbDyFe/Fe多层膜磁致伸缩及其与压电衬底的磁-电转换性能研究.国防科学技术大学工学硕士论文,2002.10.
    [9] T. Nanba,S. Takano, I.Yasui, et al. Structural study of peroxopolytungstic acid prepared from metallic tungsten and hydrogen peroxide. Journal of Solid State Chemistry, 1991, 90(1):47-53.
    [10] B. Gerand, L. Seguin. The soft chemistry of molybdenum and tungsten oxides: a review. Solid State Ionics, 1996, 84:199-204.
    [11] Y. Zhang, S.Kuai,Z.Wang, et al. Preparation and electrochromic properties of Li-doped MoO_3 films fabricated by the peroxo sol-gel process. Applied Surface Science, 2000, 165(l):56-59.
    [12] K. Hinokuma,K.Ogasawara,A.Kishimoto, et al. ElectrochroMism of spin-coated MoO_3·nH_2O thin films from peroxo-polyMolybdate. Solid State Ionics, 1992, 53-56:507-512.
    [13] N. Sharma,M. Deepa,P.Varshney, et al. FTIR investigations of tungsten oxide electrochromic films derived from organically modified peroxotungstic acid precursors. Thin Solid Films, 2001,401(l-2):45-51.
    [14] H. Tao, Y.Jiannian. Photochromism of molybdenum oxide. Journal of Photochemistry and Photo-biology C: Photochemistry Reviews, 2003,4:125-143.
    [1] 陈艾,邓宏,编著.快离子导体及器件.北京:电子工业出版社.1993.
    [2] 袁坚.有机-无机纳米复合电致变色材料及其性能研究,武汉理工大学博士学位论文,2001.5.
    [3] 王海红.氧化铑薄膜的电致变色性能研究,复旦大学博士学位论文,2002.5.
    [4] U.O. Kra(?)ovec,A.S.Vuk, B. Orel. Comparative studies of "all sol-gel" electrochromic windows employing various counter-electrodes. Solar energy materials and solar cells, 2002,73:21-37.
    [5] C.Brigouleix, P. Topart, E. Bruneton, et al.Roll-to-roll pulsed dc magnetron sputtering deposition of WO_3 for electrochromic windows. Electrochimica Acta,2001,46(13-14):1931-1936.
    [6] C.E. Tracy, J.G. Zhang, D.K.Benson, et al. Accelerated durability testing of electrochromic windows.Electrochimica Acta,1999,44:3195-3202.
    [7] R.Lechner, L.K. Thomas. All solid state electrochromic devices on glass and polymeric foils. Solar Energy Materials and Solar Cells, 1998, 54:139-146.
    [8] 高颖,邬兵.电化学基础一匕京:化学工业出版社.2004.
    [9] 杨绮琴,方北龙,童页翔.应用电化学.广州:中山大学出版社(第二版).2005.
    [10] 刘世洪,王当憨,潘承璜.X射线光电子能谱分析.北京:科学出版社,1988.
    [11] M. Deepa,P. Singh, S.N. Sharma,et al.Effect of humidity on structure and electrochromic properties of sol-gel-derived tungsten oxide films. Solar Energy Materials & Solar Cells, 2006, 90:2665-2682.
    [12] E. Ozkan, S.H. Lee, C.E. Tracy, et al. Comparison of electrochromic amorphous and crystalline tungsten oxide films. Solar Energy Materials & Solar Cells, 2003, 79:439-448.
    [13] J.D. Mackenzie. Applications of the sol-gel process. Journal of Non-Crystalline Solids, 1988,100(l-3):162-168.
    [14] 李建军,陈国平,刘云峰,等.掺杂WO_3薄膜的电致变色特性.真空,2001,2:33-35.
    [15] X.G Wang, Y.S. Jang, N.H. Yang, et al. XPS and XRD study of the electrochromic mechanism of WO_X films. Surface and Coatings Technology, 1998, 99:82-86.
    [1] J. Garc(?)a-Ca(?)adasa,F.Fabregat-Santiagoa,Ⅰ. Porquerasb, et al.Charging and diffusional aspects of Li~+ insertion in electrochromic a-WO_3.Solid State Ionics, 2004, 175:521-525.
    [2] J. Bisquert. Analysis of the kinetics of ion intercalation Ion trapping approach to solid-state relaxation processes. Electrochimica Acta,2002,47:2435-2449.
    [3] J. Wang, J.M. Bell, I.L.Skryabin. The kinetic behaviour of ion transport in WO_3 based films produced by sputter and sol-gel deposition: Part Ⅰ.The simulation model. Solar Energy Materials & Solar Cells, 1999,59:167-183.
    [4] Y.M. Li, T. Kudo. Properties of mixed-oxide MoO_3/V_2O_5 electrochromic films coated from peroxo-poly- molybdovanadate solutions. Solar Energy Materials and Solar Cells, 1995, 39:179-190.
    [5] H.Yamad, M. Hibino, T. Kudo. Lithium insertion to ReO_3-type metastable phase in the Nb_2O_5-WO_3 system. Solid State Ionics, 2001,140:249-255.
    [6] 方国家.WO_3及V_2O_5电致变色薄膜的脉冲激光淀积与性能研究.华中科技大学博士学位论文,2000.11.
    [7] G.Garcia-Belmonte, V.S. Vikhrenko, J. García-Ca(?)adas, et al. Interpretation of variations of jump diffusion coefficient of lithium intercalated into amorphous WO_3 electrochromic films. Solid State Ionics, 2004, 170:123-127.
    [8] J.M. Bell, J.P. Matthews, I.L. Skryabin, et al. Sol-gel deposited electrochromic devices. Renewable Energy, 1998, 15:312-317.
    [9] CO. Avellaneda,L.O.S. Bulh(?)es. Intercalation in WO_3 and WO_3:Li films. Solid State Ionics, 2003,165:59-64.
    [10] J. Bisquert, V.S. Vikhrenko. Analysis of the kinetics of ion intercalation: two state model describing the coupling of solid state ion diffusion and ion binding processes. Electrochimica Acta, 2002,47:3977-3988.
    [11] 陈艾,邓宏编著.快离子导体及器件.北京:电子工业出版社.1993.
    [12] R.S. Crandall, P.J. Wojtowicz, B.W. Faughnan. Theory and measurement of the change in chemical potential of hydrogen in amorphous H_XWO_3 as a function of the stoichiometric parameter x. Solid State Communications, 1976,18(11-12):1409-1411.
    [13] C. Ho, I.D. Raistrick, R.A. Huggins. Application of A-C techniques to the study of lithium diffusion in tungsten trioxide thin films. J. Electrochem. Soc. 1980,127:343-350.
    [14] K. Hinokuma, A. Kishimoto, T. Kudo. Coloration dynamics of spin-coated MoO_3·nH_2O electrochromic films fabricated from peoxo-polymolybdate solution. J. Electrochem. Soc. 1994,141(4):876-879.
    [15] 袁坚.有机-无机纳米复合电致变色材料及其性能研究,武汉理工大学博士学位论文,2001.5.
    [16] 高颖,邬兵主编.电化学基础.北京:化学工业出版社.2004.
    [1] C. Arbizzani, M. Mastragostino, A. Zanelli. Electrochromic devices: A comparison of several systems.Solar Energy Materials and Solar Cells. 1995, 39(2-4):213-222.
    
    [2] C.G. Granqvist, A. Azens, A. Hjelm, et al. Recent advances in electrochromics for smart windows applications. Solar Energy. 1998, 63(4): 199-216.
    
    [3] J.W. Alpha. Glass sealing technology for displays. Optics & Laser Technology, 1976, 8(6):259-264.
    [4] W.F. Chen, S.Y. Wu, Y.F. Ferng. The electrochromic properties of nickel oxide by chemical deposition and oxidization. Materials Letters, 2006, 60(6):790-795.
    [5] P.S. Patil, R.K. Kawar, S.B. Sadale. Effect of substrate temperature on electrochromic properties of spray-deposited Ir-oxide thin films. Applied Surface Science, 2005,249(1-4):367-374.
    [6] Z. Wang, J. Chen, X. Hu Electrochromic properties of aqueous sol-gel derived vanadium oxide films with different thickness. Thin Solid Films, 2000, 375(l-2):238-241.
    [7] D.L. Sun, S. Heusing, J. Puetz, et al. Aegerter. Influence of water on the electrochemical properties of (CeO_2)_x(TiO_2)_(1-x) and WO_3 sol-gel coatings and electrochromic devices. Solid State Ionics, 2003,165(1-4): 181-189.
    [8] M.A.C. Berton, C.O. Avellaneda, L.O.S. Bulhoes. Thin film of CeO_2-SiO_2: a new ion storage layer for smart windows. Solar Energy Materials and Solar Cells, 2003, 80(4):443-449.
    [9] P.J. Bjorn, H. Georg. Performance of an electrochromic window based on polyaniline, prussian blue and tungsten oxide. Solar Energy Materials & Solar Cells, 1999, 58:277-286.
    [10] L.C. Chen, K.C. Ho. Design equations for complementary electrochromic devices: application to the tungsten oxide-Prussian blue system. Electrochimica Acta, 2001, 46(13-14):2151-2158.
    
    [11] F. Michalak, P. Aldebert. Flexible electrochromic device based on colloidal tungsten oxide and polyaniline. Solid State Ionics. 1996, 85(1-4):265-272.
    
    [12] A. Ghicov, H. Tsuchiya, R. Hahn, et al. TiO_2 nanotubes: H+insertion and strong electrochromic effects. Electrochemistry Communications, 2006, 8(4):528-532.
    [13] A. Verma, A. Basu, A.K. Bakhshi, et al. Structural, optical and electrochemical properties of sol-gel derived TiO_2 films: Annealing effects. Solid State Ionics, 2005, 176(29-30):2285-2295.
    [14] A. Verma, S.B. Samanta, A.K. Bakhshi, et al. Effect of stabilizer on structural, optical and electrochemical properties of sol-gel derived spin coated TiO_2 films. Solar Energy Materials and Solar Cells, 2005, 88(1):47-64.
    [15] M. Koelsch, S. Cassaignon, J.F. Guillemoles, et al. Comparison of optical and electrochemical properties of anatase and brookite TiO_2 synthesized by the sol-gel method. Thin Solid Films, 2002,403-404:312-319.
    [16] D. Dumitriu, C. Bally, et al. Photocatalytic degradation of phenol by TiO_2 thin flims prepared by sputtering. Applied Catalysis B: Environmental, 2000,25:83.
    [17] M. Burgos, M. Langlet. Condensation and Densification Mechanism of Sol-Gel TiO_2 Layers at Low Temperature. Journal of Sol-Gel Science and Technology,1999,126-276.
    [18] 方世杰.纳米TiO_2光催化剂的制备方法.硅酸盐通报,2002,21(2):38-42.
    [19] 王忠春,胡行方.水相溶胶-凝胶法制备电变色TiO_2薄膜.材料研究学报,1999,13(5):527-530.
    [20] S.M.Atria,吴广明,马建华,等.热处理对溶胶-凝胶TiO_2薄膜的特性影响.同济大学学报,2001,29(11):1327-1330.
    [21] 税比刚.纳米二氧化钛薄膜的制备与结构表征.理化检验-物理分册,2005,41(11):562-565.
    [22] 袁坚.有机-无机纳米复合电致变色材料及其性能研究,武汉理工大学博士学位论文,2001.5.
    [1] 李忠阳,戴晓兵,付人俊,等.PMMA基凝胶聚合物电解质研究进展.功能材料,2004,35:2057-2061.
    [2] 唐致远,王占良.PEO基聚合物电解质.高分子材料科学与工程,2003,19(2):48-51.
    [3] B. Singh, R. Kumar, S.S. Sekhon. Conductivity and viscosity behaviour of PMMA based gels and nano dispersed gels: Role of dielectric constant of the solvent. Solid State Ionics, 2005,176:1577-1583.
    [4] S. Ramesh, A.H. Yahaya, A.K. Arof. Miscibility studies of PVC blends (PVC/PMMA and PVC/PEO) based polymer electrolytes. Solid State Ionics, 2002, 148:483-486.
    [5] S. Rajendran, O.Mahendran, R. Kannan. Lithium ion conduction in plasticized PMMA-PVdF polymer blend electrolytes. Materials Chemistry and Physics, 2002, 74:52-57.
    [6] S.A. Agnihotry, Nidhi, Pradeep, et al.Li~+ conducting gel electrolyte for electrochromic windows.Solid State Ionics, 2000, 136-137:573-576.
    [7] J.Y. Song, Y.Y. Wang, C.C. Wan. Review of gel-type polymer electrolytes for lithium-ion batteries.Journal of Power Sources, 1999, 77:183-197.
    [8] C. Capiglia,Y.Saito, H. Yamamoto, et al. Transport properties and microstructure of gel polymer electrolytes. Electrochimica Acta, 2000,45:1341-1345.
    [9] 汪国杰,潘慧铭.聚合物结构对凝胶聚合物电解质热稳定性的影响.高分子材料科学与工程,2002,18(5):196-198.
    [10] 唐致远,王占良,薛建军,刘春燕.增塑剂对聚合物电解质锂离子电池性能的影响.应用化学,2002,19(6):560-563.
    [11] 余晴春,黄海燕,吴益华.增塑剂对聚合物电解质性能的影响.功能材料,2001,32(2):213-214.
    [12] P. Periasamy, K. Tatsumi, M. Shikano, et al. Studies on PVdF-based gel polymer electrolytes. Journal of Power Sources, 2000, 88:269-273.
    [13] Y. Liu, J.Y. Lee, L. Hong. Synthesis, characterization and electrochemical properties of poly(methyl methacrylate)-grafted-poly(vinylidene fluoride-hexafluoropropylene) gel electrolytes. Solid State Ionics, 2002, 150:317-326.
    [14] S.A. Hashmi, A. Kumar, S.K. Tripathi. Investigations on electrochemical supercapacitors using polypyrrole redox electrodes and PMMA based gel electrolytes. European Polymer Journal, 2005,41:1373-1379.
    [15] S. Rajendran, R. Kannan,O.Mahendran. An electrochemical investigation on PMMA/PVdF blend-based polymer electrolytes. Materials Letters, 2001, 49:172-179.
    [16] P. Georen, G. Lindbergh. Characterisation and modelling of the transport properties in lithium battery gel electrolytes Part I. The binary electrolyte PC/LiClO_4.Electrochimica Acta, 2004, 49:3497-3505.
    [17] J. Adebahr, N. Byrne, M. Forsyth, et al.Enhancement of ion dynamics in PMMA-based gels with addition of TiO_2 nano-particles. Electrochimica Acta,2003,48:2099-2103.
    [18] 刘景东,姚陈混,王文继,等.含水的聚甲基丙烯酸凝胶电解质膜离子导电性研究.功能材料,2003,34(2):162-163.
    [19] Y.G. Andreev, P.G. Bruce. Polymer electrolyte structure and its implications. Electrochimica Acta,2000,45:1417-1423.
    [20] X. Hou, K.S. Siow. Mechanical properties and ionic conductivities of plasticized polymer electrolytes based on ABS/PMMA blends. Polymer, 2000, 41:8689-8696.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700