用户名: 密码: 验证码:
宽禁带半导体器件的研制及其测量技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文围绕由宽禁带半导体材料SiC和ZnO构成的紫外光电探测器的研制以及宽禁带半导体材料电阻率测量仪器的研制这两方面展开,详细介绍了宽禁带半导体材料ZnO和SiC的性质、材料制备及器件方面的研究,介绍了两者在紫外光电探测器件方面的应用,并重点介绍了四种不同结构的紫外探测器工艺流程、I-V特性、光谱响应特性以及光谱响应随温度、电压的变化,最后还介绍了一台我们研制的基于高精度恒流源的高阻抗四探针测试仪,给出了该四探针测试仪的硬件电路、软件流程等。
     宽带隙(WBG)半导体材料ZnO具有禁带宽、激子能量大、高化学稳定性和热稳定性等特点,使得目前高质量ZnO材料和器件的制备成为国际上的研究热点之一。目前ZnO薄膜已经广泛应用于气体传感器、太阳能电池、紫外光电探测及激光器等众多领域。
     同为宽带隙半导体材料的SiC具有高临界击穿电场、高热导率、高载流子饱和漂移速度等优点,特别适合制作光电子、抗辐射、高频、大功率、高温、高压等方面的半导体器件。在一些要求较高的器件方面,SiC已经取代传统的Si成为国际上新的研究热点之一。
     本论文的研究工作和研究成果主要有:
     1)Au/n-ZnO/Au MSM结构的紫外增强光电探测的研制
     通过对该器件工艺的介绍,重点分析了该器件的I-V特性和光电流特性,实验结果表明该器件的光谱响应范围从200nm的紫外光波段到可见光波段,具备制成紫外探测器的条件。当工作在4V以上偏置电压时,电容小于3pF,可望用于较高频的环境。
     2)Au/n-4H-SiC肖特基紫外光电探测器的研制
     介绍了该肖特基器件的工艺流程,重点分析了该器件的光谱响应随偏置电压和环境温度的变化,实验结果表明该器件在高温、高压的极限条件下仍然保持着良好的I-V特性及光谱响应特性。该器件光谱响应范围200~400nm,反偏压下光谱响应灵敏度提高,当工作温度高于260℃时,该器件仍然保持良好的紫外响应特性。
     3)Au/n-ZnO/p-Si结构的紫外增强光电三极管的研制
     提出了一种以肖特基结作发射极、异质结作集电极的双极型紫外增强型光电三极管(SHBT),测量了该三极管的I-V特性和光谱响应特性。实验结果表明该器件增强了对200nm到400nm之间的紫外波段光谱响应的灵敏度,同时保留了普通硅基光电三极管的可见光特性,其在370nm处紫外光响应灵敏度相比ZnO/Si异质结紫外光电探测器有着5~10倍的提高。
     4)Au/n-ZnO/p-SiC结构的紫外光电探测器的研制
     对该结构的器件I-V特性和光谱响应特性进行了测量并做了理论上的分析。实验结果表明此结构紫外光电探测器具有良好的紫外响应特性和较低的反向漏电流以及很低的结电容。器件光谱响应范围200~400nm,响应峰值在313nm,响应半宽65nm。室温下,反向工作电压大于5V,反向击穿电压达到70V。
     5)高阻抗四探针测试仪的研制
     针对目前对宽禁带半导体材料电阻率测量的需求,研制了一台基于精密恒流源电路的高阻抗四探针测试仪,给出了该四探针测试仪的硬件电路和软件流程。其电流源模块量程为lnA-100mA,最小电流分辨率0.5pA,输出电压最高达200V;电压测量模块量程为20mV-2V,输入阻抗高达10~(13)Ω。
The works in this thesis include research on the UV detector based on wide band gap semiconductor material SiC and ZnO,and research on a high impedance 4-point probe instrument.Details on the nature,materials and devices of the research of the wide band gap semiconductor materials ZnO and SiC,introduced the application in the ultraviolet detector of the two material,and focuses on four different structure of the ultraviolet detector process technology,Ⅰ-Ⅴcharacteristics,spectral response characteristics,and spectral response with temperature and voltage changes.Finally introduced a high impedance 4-point probe instrument that we designed based on a high-precision current source,the hardware circuit and the software procedure were given.
     There are increasing emphases focused on ZnO,a new kind of wide band gap (WBG)semiconductor material with high exciton binding energy,high chemical and temperature stabilization.ZnO thin film has been used widely in gas sensors,solar cells,UV detector and UV blue photo LED,LDS.
     Meanwhile SiC is another excellent WBG semiconductor.It has a lot of good electrical and thermal properties,such as wide band gap,high breakdown field,high thermal conductivity and high saturation electron velocity.These properties make SiC a preferred semiconductor for the fabrication of devices in high temperature,high frequency,high voltage and high power conditions.For some higher required devices, SiC has replaced the traditional Si and become an international hot spot on one of the new study.
     The main research works and conclusions are as follows:
     1)Research of Au/n-ZnO/Au MSM structure UV enhanced photodetector
     Introduced the technics of the device,focuses on the deviceⅠ-Ⅴcharacteristics and photo current response.The experiments shown that the spectral response wavelength range of this device is from 200nm UV-band to visible light,it has the conditions for making UV detectors.When working in more than 4V bias voltage,the node capacitance is less than 3pF,making it possible to be used for high-frequency condition.
     2)Research of Au/n-4H-SiC schottky UV detector
     Introduced the technics of the device,focuses on analyzing the device's spectral response with the bias voltage and temperature changes.The experiments shown that the device remain goodⅠ-Ⅴcharacteristics and spectral response characteristics even in high-temperature,high pressure under the limit.The spectral response wavelength range is from 200nm to 400nm,the spectral response sensitivity increases in anti-bias condition,good UV response is still maintained when the temperature is higher than 260℃.
     3)Research of Au/n-ZnO/p-Si structure UV-enhanced phototransistor
     Fabrication and characteristics of Schottky-emitter heterojunction-collector UV-enhanced bipolar phototransistor(SHBT)are presented.The deviceⅠ-Ⅴcharacteristics and photo spectrum response have been tested.The experiments shown that The sensitivity of ultraviolet response from 200nm to 400nm has been enhanced evidently and the wavelength spectrum response of longer than 400nm that is the response wavelength range of traditional Si photo-detector also retained,the UV response sensitivity at 370nm of phototransistor is about 5 times than ZnO/Si hetero-junction UV enhanced photodiode
     4)Research of Au/n-ZnO/p-SiC structure UV detector
     Test and theoretical analysis has been done about the device characteristics ofⅠ-Ⅴand photo spectrum response of this structure device.The experiments shown that this structure UV detector has a good response of ultraviolet and low reverse leakage current and low node capacitance.The spectral response wavelength range of this device is from 200 to 400nm with peak value at 313nm,and the half width of response wavelength is 65nm.At room temperature,the reverse working voltage is greater than 5V,and the reverse breakdown voltage is 70V.
     5)Develop of high impedance 4-point probe instrument
     In the light of the wide band gap semiconductor materials resistivity measurement needs,we developed a high-impedance 4-point probe instrument based on a precision current source circuit,the hardware circuit and software processes is given.The current source output range if from 1nA to 100mA,the minimum output current resolution is 0.5pA and maximal output voltage is 200V.The voltage measurement module input range if from 20mV to 2V and the input impedance up to 10~(13)Ω.
引文
[1.1]Jenny JR,Malta DP,Muller SG,et al.Journal of Electronic Materials 2003,32:432
    [1.2]任学民.SiC单晶生长技术及器什研究进展.半导体情报,1998,35(4):7
    [1.3]邓志杰.SiC晶体生长和应用.半导体技术,1998,23(5):13-14.
    [1.4]吕建国,汪雷,叶志镇,等.ZnO薄膜应用的最新研究进展.功能材料与器件学报.2002.9,8(3):303-308
    [1.5]Han-Ki Kim,Sang-Heon Han,Tae-Yeon Seong.Low-resistance Ti/Au ohmic contacts to Al-doped ZnO layer[J].Applied Physics Letters.2000.9,77(11):1647-1649
    [1.6]刘恩科,朱秉升,罗晋生,等.半导体物理学.国防工业出版社,1997,367-368
    [1.7]Zhuge F.,Zhu L.R,Ye Z.Z.et al.Effects of growth ambient on electrical properties of A1-N co-doped p-type ZnO films.Thin Solid Films.2005.4,476:272-275
    [1.8]Qi XQ,Yao DL,Huang Y et al.The study on the growth process of ZnO nanorods.Spectroscopy and Spectral Analysis.2005.3,25(3):321-325
    [1.9]刘超,李建平,孙国胜等.溶胶-凝胶法制备ZnO纳米薄膜的工艺和应用.发光学报.2004.4,25(2):123-127
    [1.10]Eunice S.P.Leong,M.K.Chong,S.F.Yu et al.Sol-Gel ZnO-SiO2 Composite Waveguide Ultraviolet Lasers.IEEE.Photonics Technology Letters.2004,16(11):2418-2420
    [1.11]Bender,Marcus,Fortunato et al.Highly sensitive ZnO ozone detectors at room temperature.Japanese Journal of Applied Physics.2003.4,42(4B):L435-L437
    [1.12]Sharma,Parmanand,Sreenivas et al.Highly sensitive ultraviolet detector based on ZnO/LiNbO_3 hybrid surface acoustic wave filter.Applied Physics Letters.2003.10,83(17):3617-3619
    [1.13]Emanetoglu Nuri W.,Zhu Jun,Chert Ying et al.Surface acoustic wave ultraviolet photodetectors using epitaxial ZnO multilayers grown on r-plane sapphire.Applied Physics Letters.2004.10,85(17):3702-3704
    [2.1]刘坤,季振国.氧化锌薄膜制备技术的评价.真空科学与技术.2002.7,22(4):282-286
    [2.2]蒋向东,张怀武,黄祥成.透明导电半导体ZnO膜的研究.应用光学.2002,23(2):35-38
    [2.3]J Nause,B Nemeth.Pressurized melt growth of ZnO boules.Semiconductor Science and Technology.2005.4,20(4):45-48
    [2.4]B.J.Jin,S.H.Bae et al.Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition.Materials Science and Engineering.2000,B71:301-305
    [2.5]林碧霞,傅竹西,刘磁辉等.氧化锌宽禁带半导体薄膜的发光及其p-n结特性.固体电子学研究与进展.2002.11,22(4):417-420
    [2.6]V.Srikant,D.R.Clarke.On the optical band gap of zinc oxide.Journal of Applied Physics.1998.5,83(10):5447-5451
    [2.7]Takashi Minemoto,Takayuki Negami et al.Preparation ofZn_(1-x)Mg_xO films by radio frequency magnetron sputtering.Thin Solid Films.2000,372:173-176
    [2.8]Guillermo Santana et al.Structural and optical properties of(ZnO)_x(CdO)_(1-x)thin films obtained by spray pyrolysis.Thin Solid Films.2000,373:235-238
    [2.9]M.Liu,A.H.Kitai et al.Journal of Luminescence.1992,54:35-42
    [2.10]Bornstein L,et al.In semiconductors.Springer,Berlin,1982,17:50
    [2.11]应春,沈杰,陈华仙等.ZnO:Al透明导电薄膜的研制.真空科学与技术.1998.3,18(2):125-129
    [2.12]Wen-Ching Shih,Mu-Shiang Wu.Journal of Crystal Growth.1994,137:319-325
    [2.13]刘玉华,孙汪典.ZnO薄膜的射频磁控溅射法制备及特性.暨南大学学报(自然科学版).2004.6,25(3):289-292
    [2.14]张凤翙.脉冲激光沉积工艺.真空电子技术.1998,3:43-46
    [2.15]刘彦松,王连卫,李伟群等.用PLD法制备声表面波器件用ZnO薄膜.功能材料.2001,32(1):78-80
    [2.16]D.M.Bagnall,Y.F.Chen et al.Optically pumped lasing of ZnO at room temperature.Appl.Phys.Lett.1997.4,70(17):2230-2232
    [2.17]Hee-Bog Kang,K.Nakamura et al.Jpn.J.Appl.Phys.1997.7,36:L933-L935
    [2.18]P.Yu,Z.K.Tang et al.Journal of Crystal Growth.1998,184/185:601-604
    [2.19]周映雪,俞根才,吴志浩等.ZnO薄膜的分子束外延生长及性能.发光学报.2004.6, 25(3):287-290
    [2.20]马瑾,李淑英.真空反应蒸发法制备ZnO透明导电薄膜.山东大学学报(自然科学版).1994.6,29(2):230-234
    [2.21]马勇,王万录,廖克俊等.真空蒸发法择优定向生长 ZnO薄膜.光电子技术.2004.3,24(1):1-3
    [2.22]Yi LiXin,Xu Zheng et al.Chinese Science Bulletin.2001.7,46(14):1223-1226
    [2.23]马艳,杜国同,杨天鹏等.MOCVD法生长 ZnO薄膜的结构及光学特性.发光学报.2004.6,25(3):305-308
    [2.24]T.A.Polley,W.B.Carter,D.B.Poker.Deposition of zinc oxide thin films by combustion CVD.Thin.SolidFilms.1999,357:132-136
    [2.25]A.Smith.Thin Solid Films.2000,376:47-55
    [2.26]杨成兴,季振国,刘坤等.雾化热解法制备ZnO薄膜及其光电性能.半导体学报.2002.10,23(10):1083-1087
    [2.27]M.Ohyama,H.Kozuka et al.Thin Solid Films.1997,306:78-85
    [2.28]T.Nagase,T.Ooie,J.Sakakibara.Thin Solid Films.1999,357:151-158
    [2.29]Brian J.Bozleea,Gregory J.Exarhos.Thin Solid Films.2000,377-378:1-7
    [2.30]季振国,宋永梁,杨成兴等.溶胶-凝胶法制备ZnO薄膜及表征.2004.2,22(1):9-11
    [2.31]刘大力,杜国同,王金忠等.ZnO薄膜的掺杂特性.发光学报.2004.4,25(2):134-137
    [2.32]Xin-Li Guo,Hitoshi Tabata,Tomoji Kawai.Pulsed laser reactive deposition of p-type film enhanced by an electron cyclotron resonance.Journal of Crystal Growth.2001.2,223(1-2):135-139
    [2.33]叶志镇,张银珠,徐伟中等.ZnO薄膜p型掺杂的研究进展.无机材料学报.2003.1,18(1):11-18
    [2.34]段理,林碧霞,傅竹西.ZnO薄膜的掺杂及其结型材料的研究进展.物理.2003,32(1):27-31
    [2.35]S.T.uzemen,Gang Xiong et al.Production and properties of p-n junctions in reactively sputtered ZnO.Physica B.2001,308-310:1197-1200
    [2.36]钱庆,叶志镇,袁国栋等.Al、N共掺杂实现ZnO的p型转变及其掺杂机理探讨.真空科学与技术学报.2004.9/10,24(5):347-349
    [2.37]杨田林,杨光德.薄膜厚度对ZnO:Al透明导电膜的结构和光电性能的影响.淄博学院学报.2002.6,4(2):32-35
    [2.38]R.Groenen,J.L.Linden et al.Applied Surface Science.2001,173(1-2):40-43
    [2.39]E.B.Yousfi,B.Weinberger et al.Thin Solid Fihns.2001,387:29-32
    [2.40]Liu Y.,Gorla C.R.,Liang S.et al.Ultraviolet Detectors Based on Epitaxial ZnO Films Grown by MOCVD.Journal of Electronic Materials.2000,29(1):69-74
    [2.41]Liang S.,Sheng H.,Liu Y.et al.ZnO Schottky ultraviolet photodetector.Journal of Crystal Growth.2001,225:110-113
    [2.42]Zu P.Yang Z K,Kawasaki M,et al.Ultraviolet spontaneous and stimulated emission from ZnO microcrystalline thin films at room temperature.Solid State Communications.1997,103(8):459-463
    [2.43]Sunglae Cho,Jing Ma,Yunki Kim et al.Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn.Appl.Phys Lett.1999,75(18):2761-2763
    [2.44]张德恒,王卿璞,薛忠营等.不同衬底上的ZnO薄膜紫外光致发光.物理学报.2003.6,52(6):1484-1487
    [2.45]吕建国,叶志镇.ZnO薄膜的最新研究进展.功能材料.2002,33(6):581-583
    [2.46]叶建东,顾书林,朱顺明等.高质鼙ZnO薄膜的退火性质研究.高技术通讯.2002.12:45-48
    [2.47]林碧霞,傅竹西,刘磁辉等.氧化锌宽禁带半导体薄膜的发光及其p-n结特性.固体电子学研究与进展.2002.11,22(4):417-420
    [2.48]Z.K.Tang,G.K.L.Wong,and P.Yu Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films.Appl.Phys.Lett.1998.6,72(25):3270-3272
    [2.49]M.Kawasaki,A.Ohtomo et al.Materials Science and Engineering.1998,B56:239-245
    [2.50]吕建国,叶志镇,汪雷.ZnO薄膜紫外受激发射研究的最新进展.半导体光电.2002.6,23(3):154-158
    [2.51]H.Cao,Y.G.Zhao et al.Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films.Appl.Phys.Lett.1998.12,73(25):3656-3658
    [2.52]H.Cao,Y.G.Zhao et al.Random laser action in semiconductor powder.Physical Review Letters.1999.3,82(11):2278-2281
    [2.53]H.Ohta,K.Kawamura et al.Appl.Phys.Lett.2000.7,77(4):475-477
    [2.54]H.Kima,C.M.Gilmore et al.Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices.Appl.Phys.Lett.2000.1,76(3):259-261
    [2.55]Toru Aokia,Yoshinori Hatanaka,David C.Look et al.ZnO diode fabricated by excimerlaser doping.Appl.Phys.Lett.2000.5,76(22):3257-3258
    [2.56]祝柏林,谢成生.ZnO气敏材料的研究进展.传感技术学报.2002.12,4:353-359
    [2.57]吕建国,汪雷,叶志镇等.ZnO薄膜应用的最新研究进展.功能材料与器件学报.2002.9,8(3):303-308
    [2.58]Hong Youl Bae,Gyeong Man Choi.Electrical and reducing gas sensing properties of ZnO and ZnO-CuO thin films fabricated by spin coating method.Sensors and Actuators.1999,B55(1):47-54
    [2.59]F.Paraguay D.,M.Miki-Yoshida et al.Influence oral,In,Cu,Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour.Thin Solid Films.2000,373:137-140
    [2.60]Tae-Ha Kwon,Sung-Hyun Park et al.Sensors and Actuators.1998,B46(2):75-79
    [2.61]贾锐,武光明等.喷雾热分解法制备ZnO系低压压敏薄膜.硅酸盐学报,1999.8,27(4):505-507
    [2.62]Y.R.Ryu,S.Zhu et al.Comparative study of textured and epitaxial ZnO films.Journal of Crystal Growth.2000,216:326-329
    [2.63]M.B.Assouar,O.Elmazria et al.MPACVD diamond films for surface acoustic wave filters.Diamond and Related Materials.2001,10(3-7):681-685
    [2.64]许小亮,谢家纯等.以硅为衬底的ZnO p-n结的制备及其结构、光学和电学特性.发光学报.2004.6,25(3):295-299
    [2.65]Emanetoglu N W,et al.1998 IEEE International Frequency Control Symposium.1998,790
    [2.66]陈运祥等,压电与声光,1997,19(3):187
    [2.67]Tan G L,et al.J Mater Sci Technol,1997,13:302
    [3.1]郝跃,彭军,杨银堂,碳化硅宽带隙半导体技术,科学出版社,2000,14-184
    [3.2]Faessler A,Proc.Int.Conf.Semiconductor Phys.,Praque,Academic Press Inc.,1960,914
    [3.3]Pensl G,Physical B,1993,185:264
    [3.4]邓志杰.SiC晶体生长和应用.半导体技术,1998,23(5):13-14
    [3.5]W.J.Schaffer et al.in Diamond,Silicon Carbide and Nitride Wide Band Gap Semiconductors,Ed.by C.H.Carter et al.MRS Symposium Proceedings,1994,339,595.
    [3.6]J.Drowart et al.J.Chem.Phys.1958,29,1015
    [3.7]W.F.Knippenberg,Philips Research Reports,1963,18,161
    [3.8]R.I.Scace et al.J.Chem.Phys.1959,30,1551
    [3.9]G.Wiebke,Berichte der Deutschen Keramichan Gesellschaft,1960,37,H5,219
    [3.10]J.A.Lely et al.Proc.Int.Conf.Semiconductors and Phosphors,Vieweg Braunschweig,1958,514
    [3.11]G.Pensl and W.J.Chyke,Physical B,1993,185,264
    [3.12]P.Flatresse and T.Ouisse,Solid State Electron.1995,38,971
    [3.13]W.F.Knippenberg,Philips Rev.Repts.,1963,18,162-163
    [3.14]A.Lely,Berichte der Deutschen Keramichan Gesellschaft,1995,32,229
    [3.15]Tairov YM,Tsvetkov VF,J.Cryst.Growth,1978,43,209
    [3.16]Tairov YM,Tsvetkov VF,J.Cryst.Growth,1981,52,146
    [3.17]CREE Research Inc.2810 Meridian Parkway,Durham,Nc27713
    [3.18]N.W.Thibault,American Mineralogist,1944,29,328
    [3.19]S.Amelinekx et al.J.Appl.Phys.1960,31,1359
    [3.20]Black D,Robin L,Inst.Phys.Conf.Ser.1994,137,337
    [3.21]Frank FC,Acta Cryst.Growth,1951,4,497
    [3.22]Nishino S,Higashino T,Tanaka T,et al.Journal of Crystal Growth,1995,147,339
    [3.23]杨威,Ni/4H-SiC肖特基二极管输运性质及SiC薄膜制备研究,2003,13
    [3.24]S.Nishino et al.Appl.Phys.Lett.1983,42,460
    [3.25]M.Yamanaka and K.Ikoma,Physical B,1993,185,308
    [3.26]朱作云等,SiC/Si异质生长研究,西交电子科技大学学报,1997,24(1):122
    [3.27]S.H.Tan et al.J.Mater.Res.1992,7,1816
    [3.28]J.D.Parsons et al.J.Electrochem.Soc.1993,140,1756
    [3.29]J.A.et al.Appl.Phys.Lett.1990,56,1442
    [3.30]J.A.Powell et al.AppI.Phys.Lett.1991,59,333
    [3.31]彭军等,第六届全国MOCVD学术年会论文集,1999,157
    [3.32]B.S.Sywe et al.J.Electrohem.Soc.1994,141,510
    [3.33]D.B.Holt,J.Phys.Chem.Solods,1969,30,1297
    [3.34]Wahab Q,Ellison A,Zhang J,et al.Mater.Sci.Forum,2000,1171,338-342
    [3.35]Johnson CM,Wright NG,Uren MJ,et al.IEE Proc-Circuit Devices Syst.2001,148,101
    [3.36]尚也淳,刘忠立等,SiC Schottky结反向特性的研究,物理学报,2003,52(1):211-215
    [3.37]杨林安,张义门,于春利等,SiC功率金属一半导体场效应管的陷阱效应模型,物理学报,2003,52(2):302-306
    [3.38]程开富,新型紫外摄像器什及应用,http://www.56789.com/data/958.htm,2003.2.16
    [3.39]Boston Electronics Corporation 资料 《Ultra Violet Photodetectors》 中的 《JEC Series SiC Ultraviolet Photodiodes》,www.boselec.com,uv@boselec.com
    [3.40]#12
    [3.41]J.Spitz,M.R.Melloch,et al.2.6KV 4H-SiC Lateral DMOSFET's IEEE Electron Device Letters,1998,19(4):100-102
    [3.42]Chaudry M I.Electrical transport properties of crystalline sillicon carbide/sillicon heterojunctions,IEEE Electron Devices Lett.1991,12,670-672
    [3.43]Sugii T,Ito T,Furumura Y,et al.Si heterojunction bipolar transistor with singlecrystalline β-SiC emitter.J.Electrochem.Soc.1987,134,2545-2549
    [3.44]孙国胜,孙艳玲,王雷等,Si(100)衬底上n-3C-SiC/p-Si异质结构研究,发光学报,2003年4月,24(2):130-133
    [3.45]谢建民,邱毓昌,姜唯等,半导体碳化硅在伪火花放电高能开关中的应用,高电压技术,2002年8月,28(8):26-28
    [3.46]KIM.J.,et al.Jpn J Appl Phys Part 1,2000,39,4826
    [3.47]HORIGUGHI N,FUTATSUGI T,NAKATA Y,et al.Jpn J Appl Phys Part 2,1997,36,L 1246
    [3.48]TIWARI S,RANA F,CHAN K,et al.Appl Phys.Lett.1996,69,1232
    [3.49]张立同,成来飞,徐永东,新型碳化硅陶瓷基复合材料的研究进展,航空制造技术,2003年第1期,24-32
    [4.1]V.Saxena,J.N.Su,A.J.Steckl.High-voltage,Ni-and Pt-SiC Schottky diodesutilizing metal field plate termination[J],IEEE Electron Devices,1999,46(3):456-464.
    [4.2]A.Kestle,S.P.Wilks,P.R.Dunstan,et al.Improved Ni/SiC Schottky diode formation,IEEE Electronics Lett.,2000,36(3):267-268.
    [4.3]Liu Enke,Zhu Bingsheng,Luo Jinsheng et al.Semiconductor Physics[M](半导体物理学[M]).the fourth edition.Beijing:National Defence Industry Press.1997:178-188
    [4.4]Rolf E.Hummel,Electronic Properties of Materials,Springer,Berlin,1992,p.373.
    [4.5]Wang Liyu,Xie Jiachun,Lin Bixia et al.Study on n-ZnO/p-Si Heterojunction UV Enhanced Photoelectric Detectors.Electronic Components & Materials.2004.1,23(1):42-44
    [4.6]S.P.Leong Eunice,Chong M.K.,Yu S.F.et al.Sol-Gel ZnO-SiO2 Composite Waveguide Ultraviolet Lasers.IEEE.Photonics Technology Letters.2004,16(11):2418-2420
    [4.7]Liang S.,Sheng H.,Liu Y.et al.ZnO Schottky ultraviolet photodetector,Crystal Growth.2001,225:110-113
    [4.8]Kim H.Y.,Kim J.H.,Park M.O.et al.Photoelectric,Stoichiometric and Structrual Properties of n-ZnO Film on p-Si.Thin Solid Film.2001,398-399:93-98
    [4.9]Gao Zhonglin,Wang Kaiyuan.Photoelectron Device(光电子器件).South-east University Press.1991.6:101-119
    [5.1]J.A.Cooper Jr et al.Foreword-Special Issue on Silicon Carbide Electronic Devices[A].James A.Cooper Jr.Special Issue on Silicon Carbide Electronic Devices[C].New York:IEEE,1999:442.
    [5.2]Peter P.Chow,Jody J.Klaassen,James M.VanHove,et al.Group Ⅲ-nitride materials for ultraviolet detection applications[J].SPIE Optoelectronics,2000,vol.3948:295-303.
    [5.3]Hao yao,Peng Jun,Yang Yintang.Technology of semiconductor of Sic wide-gap[M].Be-jing:Science Press,2000:190-196,12-14.[郝跃,彭军,杨银堂.碳化硅宽带隙半导体技术[M].北京:科学出版社,2000:190-196,12-14。]
    [5.4]S.M.Sze Semiconductor devices:Physics and technology[M].Beijing:Science Press,1992:308-315.[施敏(美)著,王阳元,嵇光大,卢文豪 译.半导体器件:物理与工艺[M].北京:科学出版社,1992:308-315.]
    [5.5]Liu Enke,Zhu Bingsheng,Luo Jinsheng,et al.Semiconductor physics[M].Beijing:National defense industry press,1997:178-188.[刘恩科,朱秉生,罗晋生,等.半导体物理学[M].第4版.北京:国防工业出版社,1997:178-188.]
    [5.6]Igor V.Grekhov et al.SiC-Based Phototransistor with a Tunnel MOS Emitter.IEEE Transactions on electron devices.1999,46(3):577.
    [5.7]S.Liang,H.Sheng,Y.Liu,et al.ZnO Schottky ultraviolet photodetectors[J].Journal of Crystal Growth,2001,225:110-113.
    [5.8]Dale M.Brown,Evan T.Downey,Mario Ghezzo,et al.Silicon Carbide UV Photodiodes[J].IEEE Transactions on Electron Devices,1993,40(2):325-333.
    [5.9]T.V.Blank,Y.A.Goldberg,O.V.Konstantinov.Temperature dependence of the performance of ultraviolet detectors.Nucl.Instr.and Meth.A 509,2003..109-117.
    [6.1]Fabricius Henrik,Skettrup Torben,and Bisgaard Paul.Ultraviolet detectors in thin sputtered ZnO films.Appled Optics,1986,8(25):16
    [6.2]Liang S,Sheng H,Liu Y,Huo Z,Lua Y,and H.Shen.ZnO.Schottky ultraviolet photodetectors.Journal of Crystal Growth,2001(225):110-113
    [6.3]Liu Y,Gorla C R,Liang S,Emanetoglu N,Lu Y,Shen H,and Wraback M.Ultraviolet Detectors Based on Epitaxial ZnO Films Grown by MOCVD.Journal of Electronic Materials,2000,29(1):69-74
    [6.4]Kim H Y,Kim J H,Park M O,and Im S.Photoelectric,stoichiometric and structural properties of n-ZnO film on p-Si.Thin Solid Films,2001,(93-98):398-399
    [6.5]Park Won Il,Yi Gyu-Chul,Kim J W.,and Park S M.Schottky nanocontacts on ZnO nanorod arrays.Applied Physics Letters,2003(82):24.
    [6.6]Lee J Y,Choi Y S,Kim J H,Park M O,and Im S.Optimizing n-ZnO p-Si heterojunctions for photodiode applications.Thin Solid Films,2002(403-404):553-557
    [6.7]Jeong I S,Kim Jae Hoon,and Im Seongil.Ultraviolet-enhanced photodiode employing n-ZnO p-Si structure.Applied Physics Letters,2003,10(83):14
    [6.8]Wang Liyu,Xie Jiachun,Lin Bixia,Wang Keyan,Fu Zhuxi.Study of n-ZnO/p-Si Heterojunction UV Enhanced Photodetector.Electronic Devices and Materials,2004,1(23):25(in Chinese)[王丽玉,谢家纯,林碧霞,王克彦,傅竹西.n-ZnO/p-Si 异质结UV增强型光电探测器的研究.电子元件与材料,2004,1(23):251
    [6.9]Ju Q M,Liu H B,Hui M Q.Physics of Semiconductors Devices.(Science Press,Be.jing,China 2005.1):221,531-234
    [6.10]Kim Han-Ki,Seong Tae-Yeon,Kim Koung-Kook,Park Seoug-Ju,Yoon Young Soo and Adesida Ilesanmi.Mechanism of Nonalloyed Al Ohmic Contacts to n-Type ZnO:Al Epitaxial Layer.Japanese Journal ofApplied Physics 2004,43(3):976-979
    [6.11]Sze S M,Physics of Semiconductors Devices(Wiley,New York,1981):849
    [6.12]Zhu Junjie,Lin Bixia,Yao Ran,Zhao Guoliang,Fu Zhuxi.Hetero-Epitaxy ZnO/SiC/Si by LP-MOCVD.Chinese Journal of Semiconductors,2004,25(12):1662(in Chinese)[朱俊杰,林碧霞,姚然,赵国亮,傅竹西.ZnO/SiC/Si(111)异质外延.半导体学报,2004,25(12):1662]
    [7.1]Fabricius Henrik,Skettrup Torben,and Bisgaard Paul.Ultraviolet detectors in thin sputtered ZnO films.Appled Optics,1986,8(25):16
    [7.2]Liang S,Sheng H,Liu Y,Huo Z,Lua Y,and H.Shen.ZnO,Schottky ultraviolet photodetectors.Journal of Crystal Growth,2001(225):110-113
    [7.3]V.Saxena,J.N.Su,A.J.Steckl,High-voltage Ni- and Pt- SiC Schottky diodesutilizing metal field plate termination[J],IEEE Electron Devices,1999,46(3):456-464.
    [7.4]A.Kestle,S.P.Wilks,P.R.Dunstan,et al.,Improved Ni/SiC Schottky diode formation[J],IEEE Electronics Lett.,2000,36(3):267-268.
    [7.5]施敏(美)著,王阳元,嵇光大,卢文豪 译.半导体器件物理与工艺[M].北京:科学出版社,1992.308-315。
    [7.6]Huang Limin,Xie Jiachun,Liang jin.High Quality Ultraviolet Photodetectors Based on Silicon Carbide.Chinese Journal of Semiconductors,2005,26(6):256 Supplement(in Chinese)[黄莉敏、谢家纯、梁锦。SiC基的高性能紫外光电探测器。半导体学报,2005,26(6):256增刊]
    [7.7]Guo Junfu,xie Jiachun,Duan Li,et al.Study and Fabrication of a Au/n-ZnO/p-Si Structure UV-Ehanced Phototransistor.Chinese Journal of Semiconductors,2006,27(1):5(in English)[郭俊福、谢家纯、段理、何广宏,等.Au/n-ZnO/p-Si结构的紫外增强型光电三极管的研制。半导体学报,2006,27(1):5]
    [8.1]孙以材.半导体测试技术[M].北京:冶金工业出版社,1984:7-24
    [8.2]PERLOFF D.S.,et al.[J].J Electrochem Soc,1977,124(4):582-590
    [8.3]VAN DER P.A method of measuring specific resistivity and Hall effect of discs of arbitrary shape[R].Philips Research Reports,1958,13(1):1-9.
    [8.4]Sun Yicai,Shi Junsheng,Meng Qinghao.Measurement of sheet resistance of cross microareas using a modified Vander Pauw method[J].Semiconductor Sci&Tech,1996,11:805-811.
    [8.5]宿昌厚.双位绍.合四探针法测量硅薄片电阻率如何进行厚度修正[A].全国半导体集成电路与硅材料学术年会[C].中国:杭州,1993.518-519.
    [8.6]孙以材,范兆书,孙新宇,等.电阻率两种测试方法间几何效应修正的相关性[J].半导体技术,2000,25(5):38-41.
    [8.7]石俊生,孙以材.四探针测试技术中边缘修正的有关方法[J].半导体杂志,1997,22(1):35-42.
    [8.8]宿昌厚,鲁效明.双电测组合法测试半导体电阻率的研究[J].半导体学报,2003,24(3):298-305.
    [8.9]F.M.Smits.Measurement of Sheet Resisitivities with the Four-Point Proobe.The Bell System Technical Journal,1958,37:711-719.
    [8.10]RYMASZEWSKI R.Empirical method of calibrating a 4-point micro-array for measuring thin-film-sheet resistance[J].Electronics Letters,1962,3(2):57-58.
    [8.11]KEITHLEY公司.低电平测量手册第六版

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700