用户名: 密码: 验证码:
光子辅助宽带微波模拟信号处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子辅助宽带微波模拟信号处理技术借助光子器件与子系统大带宽、高动态、低损耗以及便于集成化的优势,通过窄带的模拟光信号处理实现了超宽带的微波信号处理,在未来宽带接入、深空探测以及国防军事等领域有着巨大的应用前景。本论文主要对超宽带脉冲的产生和调制技术、高动态微波光子下变频技术以及硅基集成微波光子信号处理单元技术三方面内容进行了深入的研究。
     为了提高未来UWBoF系统接入的灵活性、降低系统的复杂度,论文首先提出了一种基于对称PM-IM转换的高阶UWB脉冲产生和调制方案,并搭建了UWBoF系统进行了实验验证。实验中实现了1Gbit/s的3阶和5阶UWB脉冲OOK、BPSK、OPPM、NPPM调制格式以及20km光纤和0.25m无线链路的传输。之后为进一步抑制UWB的功率谱对GPS频段的干扰并提高系统的频谱利用率,论文提出了一种基于相位调制的UWB波形和频谱的优化方法。实验中产生的改进型triplet脉冲,中心频率为6.3GHz,10dB带宽为7.2GHz,频谱利用率达到了52.6%与理论分析相吻合,并且正/负极性triplet脉冲信号均实现了20km光纤链路的无误码传输。
     在高动态微波光子下变频技术方面,论文主要针对系统噪声抑制和非线性失真补偿技术进行了相关研究。文中首先提出了一种新型的基于强度和相位级联调制的全光下变频结构,利用双输出光信号边带滤波和平衡检测的方法实现了LO-ASE拍频噪声的抑制。实验中系统的SNR得到了约2.6dB改善,并实现了频率覆盖X到Ka波段的全光下变频,系统的动态范围达到了104.5dB-Hz2/3以上。其次,为抵消非线性交调失真,论文提出了一种基于DSP后补偿的X和K波段高线性模拟光链路。实验中经过DSP算法补偿后IMD3被抑制了21dB以上,X和K波段模拟光链路的SFDR分别提高了约8dB,达到了124.2dB-Hz2/3。
     针对以上两方面的研究内容与应用,论文还对硅基集成的微波光子滤波技术进行了探索研究,并分别对FIR和IIR滤波单元的Z域传递函数进行了理论分析。实验上利用临界耦合的跑道型硅基微环,实现了3种UWB脉冲的双极性编码;在K波段下变频模拟光链路中,利用3dB带宽为1.536GHz,FSR为13.5GHz的硅基窄带光滤波器实现了光信号单边带滤波,链路的SFDR约为104dB-Hz2/3。
Photonic-assisted broadband microwave signal processing technology which takesadvantage of the photonic devices and subsystems with large bandwidth, high dynamicrange, low loss and easy integration, enables the processing of ultra-wideband (UWB)microwave signal by means of narrow-band analog optical signal processing. Hence, itshows great potential to meet the ever-increasing demand in many novel applicationsareas such as broadband wireless access, deep space exploration and national defenseand military. In this thesis, the UWB generation and modulation technology, highdynamic range microwave photonic (MWP) downconversion technology as well as theSOI based MWP signal processor are studied in detail.
     Firstly, in order to achieve more flexible access and reduce the system complexityin the future UWBoF application, a reconfigurable high-order UWB pulse generationand modulation method based on the symmetric PM-IM conversion architecture isproposed and a UWBoF system is also experimentally demonstrated. In the experiment,1Gbit/s excellent OOK, BPSK, OPPM and NPPM modulation formats for both the3rd-order and5th-order UWB pulses and transmission over a combined20km SMF and0.25m wireless link are successfully realized. Then to further achieve noninterferenceoperation with the global positioning system (GPS) and enhance the spectral powerefficiency of the UWB system, an optimization method for UWB temporal waveformand spectra simply based on a phase modulator is proposed and experimentally verified.In the experiment, a novel modified triplet pulse is generated with central frequency ofabout6.3GHz,10dB bandwidth of7.2GHz and power efficiency of52.6%, which hasa good agreement with the calculated results. In addition, an error-free transmission forboth the positive and negative triplet pulses after20km SMF transmission is achieved.
     In the high dynamic range MWP downconverting technology part, the noisesuppression and nonlinear distortion compensation method are studied. A novel all-optical downconversion scheme based on the cascaded intensity and phase modulationis proposed, and the LO-ASE noise can be suppressed thanks to the dual-output-portoptical sideband filtering and balanced detection. In the experiment, the SNR of thedownconverting system covering from X-to Ka-band, is improved by about2.6dB and the measured SFDR is higher than104.5dB-Hz2/3. As to the cancellation of the IMD, ahigh linear analog photonic link (APL) for the X-and K-band downconversion based onDSP post-compensation method is proposed. In the experiment, the IMD3is suppressedby more than21dB and the SFDR for both X-and K-band is improved by about8dB,and an SFDR as high as124.2dB-Hz2/3is achieved.
     For the research and applications mentioned above, the SOI based MWP filteringtechnology is also studied. The transfer functions of both the FIR and IIR filtering unitsare analyzed theoretically in the Z domain. In the experiment, three kinds of BPSKcoded UWB pulses are generated using a racetrack silicon microring resonator which isunder the critical coupling condition. Additionally, in the K-band analog photonic link,optical single sideband filtering is achieved by a SOI based narrow-band filter, of whichthe3dB bandwidth is about1.536GHz and the FSR is13.5GHz. The measured SFDRof the downconversion link is about104dB-Hz2/3.
引文
[1] Smulder P. Exploiting the60GHz band for local wireless multimedia access: prospects andfuture directions. IEEE Communications Magazine,2002,40(1):140-147.
    [2] Razavi B. A60-GHz CMOS receiver front-end. IEEE Journal of Solid-State Circuits,2006,41(1):17-22.
    [3] Uher J, Hoefer W J R. Tunable microwave and millimeter-wave band-pass filters. IEEETransactions on Microwave Theory and Techniques,1991,39(4):643-653.
    [4] De Fina S, Ruggieri M, Bosisio A V. Exploitation of the W-band for high capacity satellitecommunications. Aerospace and Electronic Systems, IEEE Transactions on,2003,39(1):82-93.
    [5] Spezio A E. Electronic warfare systems. IEEE Transactions on Microwave Theory andTechniques,2002,50(3):633-644.
    [6] Massonnet D, Souyris J C. Imaging with Synthetic Aperture Radar.1st ed., New York:CRC Press,2008.
    [7] Capmany J, Ortega B, Pastor D, et al. Discrete-time optical processing of microwavesignals. Journal of Lightwave Technology,2005,23(2):702-723.
    [8] Minasian R A. Photonic signal processing of microwave signals. IEEE Transactions onMicrowave Theory and Techniques,2006,54(2):832-846.
    [9] Capmany J, Novak D. Microwave photonics combines two worlds. Nature Photonics,2007,1(6):319-330.
    [10] Yao J. Microwave photonics. Journal of Lightwave Technology,2009,27(3):314-335.
    [11] Won R. Microwave photonics shines. Nature Photonics,2011,5:736.
    [12] Van Djik F, Boula-Picard R, Parillaud O, et al. Ku-band microwave optical emitter basedon a directly modulated DFB laser. IEEE International Topical Meeting on MicrowavePhotonics (MWP), Ogunquit, ME,2004.
    [13] Stohr A, Babiel S, Cannard P J, et al. Millimeter-wave photonic components for broadbandwireless systems. IEEE Transactions on Microwave Theory and Techniques,2010,58(11):3071-3082.
    [14] Shi Y, Zhang C, Zhang H, et al. Low (sub-1-volt) halfwave voltage polymeric electro-opticmodulators achieved by controlling chromophore shape. Science,2000,288(5463):119-122.
    [15] Jiang Z, Huang C B, Leaird D E, et al. Optical arbitrary waveform processing of more than100spectral comb lines. Nature Photonics,2007,1(8):463-467.
    [16] Chin S, Thévenaz L, Sancho J, et al. Broadband true time delay for microwave signalprocessing, using slow light based on stimulated Brillouin scattering in optical fibers.Optics Express,2010,18(21):22599-22613.
    [17] Zheng S, Ge S, Zhang X, et al. High-resolution multiple microwave frequencymeasurement based on stimulated Brillouin scattering. IEEE Photonics Technology Letters,2012,24(13):1115-1117.
    [18] Clark T R, Callahan P T, Dennis M L. Photonic downconversion and microwave-to-digitalsubsystems. IEEE Microwave Symposium Digest (MTT), Barcelona, Spain.
    [19] Winnall S T, Lindsay A C, Austin M W, et al. A microwave channelizer and spectroscopebased on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lenssystem. IEEE Transactions on Microwave Theory and Techniques,2006,54(2):868-872.
    [20] Gasulla I, Capmany J. Analog Filtered links: A unifying approach for Microwave Photonicsystems. IEEE Transparent Optical Networks (ICTON), Coventry, England2012.
    [21] Loayssa A, Lahoz F J. Broad-band RF photonic phase shifter based on stimulated Brillouinscattering and single-sideband modulation. IEEE Photonics Technology Letters,2006,18(1):208-210.
    [22] Langley L N, Elkin M D, Edge C, et al. Packaged semiconductor laser optical phase-lockedloop (OPLL) for photonic generation, processing and transmission of microwave signals.IEEE Transactions on Microwave Theory and Techniques,1999,47(7):1257-1264.
    [23] Ramaswamy A, Johansson L A, Klamkin J, et al. Integrated coherent receivers forhigh-linearity microwave photonic links. Journal of Lightwave Technology,2008,26(1):209-216.
    [24] Zhu D, Pan S, Cai S, et al. High-performance photonic microwave downconverter based ona frequency-doubling optoelectronic oscillator. Journal of Lightwave Technology,2012,30(18):3036-3042.
    [25] Yan L, Dai Y, Xu K, et al. Integrated multifrequency recognition and downconversionbased on photonics-assisted compressive sampling. IEEE Photonics Journal,2012,4(3):664-670.
    [26] Xie X, Dai Y, Xu K, et al. Broadband photonic RF channelization based on coherent opticalfrequency combs and I/Q demodulators. Photonics Journal, IEEE,2012,4(4):1196-1202.
    [27] Chou J, Boyraz O, Solli D, et al. Femtosecond real-time single-shot digitizer. AppliedPhysics Letters,2007,91(16):161105-161105-3.
    [28] Yao J. Photonics for Ultrawideband communications. IEEE Microwave Magazine,2009,10(4):82-95.
    [29] Yao J, Zeng F, Wang Q. Photonic generation of ultrawideband signals. Journal ofLightwave Technology,2007,25(11):3219-3235.
    [30] Aiello G R, Rogerson G D. Ultra-wideband wireless systems. IEEE Microwave Magazine,2003,4(2):36-47.
    [31] US Federal Communications Commission. Revision of part15of the Commission’s rulesregarding ultra-wideband transmission system first report and order. ET Docket98,153.
    [32] Beresford R. ASKAP photonic requirements. IEEE International Topical Meeting onMicrowave Photonics (MWP), Gold Coast, Australia,2008.
    [33] Spencer R, Hu L, Smith B, et al. The use of optical fibres in radio astronomy. Journal ofModern Optics,2000,47(11):2015-2020.
    [34] McManamon P F, Dorschner T A, Corkum D L, et al. Optical phased array technology.Proceedings of the IEEE,1996,84(2):268-298.
    [35] Sun J, Timurdogan E, Yaacobi A, et al. Large-scale nanophotonic phased array. Nature,2013,493(7431):195-199.
    [36] http://www.epixnet.org/workshop/
    [37] Abtahi M, Magn J, Mirshafiei M, et al. Experimental generation of FCC-compliant UWBpulse using FBGs.European Conference and Ehxibition of Optical Communication (ECOC),Berlin, Germany,2007.
    [38] Pan S, Yao J. UWB-over-fiber communications: modulation and transmission. Journal ofLightwave Technology,2010,28(16):2445-2455.
    [39] Capmany J, Mora J, Gasulla I, et al. Microwave photonic signal processing. Journal ofLightwave Technology,2013,31(4):571-586.
    [40] http://www.finisar.com/products/optical-instrumentation
    [41] Toliver P, Menendez R, Banwell T, et al. A programmable optical filter unit cell elementfor high resolution RF signal processing in silicon photonics. Optical Fiber CommunicationConference (OFC). San Diego, CA,2010.
    [42] Djordjevic S S, Luo L W, Ibrahim S, et al. Fully reconfigurable silicon photonic latticefilters with four cascaded unit cells. IEEE Photonics Technology Letters,2011,23(1):42-44.
    [43] Cox III C H. Analog Optical Links: Theory and Practice. Cambridge University Press,2006.
    [44] Marpaung D A I. High dynamic range analog photonic links: design and implementation.PhD thesis, University of Twente,2009.
    [45] Marpaung D, Roeloffzen C, Heideman R, et al. Integrated microwave photonics. arXiv:1211.4114(2012).
    [46] Urick V J, Godinez M E, Devgan P S, et al. Analysis of an analog fiber-optic linkemploying a low-biased Mach–Zehnder modulator followed by an erbium-doped fiberamplifier. Journal of Lightwave Technology,2009,27(12):2013-2019.
    [47] Karim A, Devenport J. High dynamic range microwave photonic links for RF signaltransport and RF-IF conversion. Journal of Lightwave Technology,2008,26(15):2718-2724.
    [48] Shen Y, Hraimel B, Zhang X, et al. A novel analog broadband RF predistortion circuit tolinearize electro-absorption modulators in multiband OFDM radio-over-fiber systems. IEEETransactions on Microwave Theory and Techniques,2010,58(11):3327-3335.
    [49] http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000458
    [50] http://optoelectronics.ece.ucsb.edu/phor-front
    [51] http://darpa.webflat.net/mto/aosp/nrl.html
    [52] http://sierra.ece.ucdavis.edu/(S(4wi2kl55mzrbjpjeqau10e45))/OAWG.ashx
    [53] http://www.isis-rd.com/
    [54] http://www.ist-iphobac.org/
    [55] Bolea M, Mora J, Ortega B, et al. Optical UWB pulse generator using an N tap microwavephotonic filter and phase inversion adaptable to different pulse modulation formats. OpticsExpress,2009,17(7):5023-5032.
    [56] Khan M H, Shen H, Xuan Y, et al. Ultrabroad-bandwidth arbitrary radiofrequencywaveform generation with a silicon photonic chip-based spectral shaper. Nature Photonics,2010,4(2):117-122.
    [57] Li M, Chen H, Chen M, et al. P Arbitrary response design for incoherent microwavephotonic filters based on basic filtering cell combination. Optics Communications,2011,284(1):136-139.
    [58] Li P, Chen H, Chen M, et al. Gigabit/s photonic generation, modulation, and transmissionfor a reconfigurable impulse radio UWB over fiber system. Photonics Journal, IEEE,2012,4(3):805-816.
    [59] Lv Q, Xu K, Dai Y, et al. I/Q intensity-demodulation analog photonic link based onpolarization modulator. Optics letters,2011,36(23):4602-4604.
    [60] Chen Y, Chi H, Zheng S, et al. Differentially Encoded Photonic Analog-to-DigitalConversion Based on Phase Modulation and Interferometric Demodulation. IEEE PhotonicsTechnology Letters,2011,23(24):1890-1892.
    [61] Li Z, Zhang X, Chi H, et al. A reconfigurable microwave photonic channelized receiverbased on dense wavelength division multiplexing using an optical comb. OpticsCommunications,2012,285(9):2311-2315.
    [62] Zhang Y, Pan S. Tunable multitap microwave photonic filter with all complex coefficients.Optics Letters,2013,38(5):802-804.
    [63] Zeng F, Yao J. Ultrawideband impulse radio signal generation using a high-speedelectrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator.Photonics Technology Letters, IEEE,2006,18(19):2062-2064.
    [64] Yao J, Wang Q. Photonic microwave bandpass filter with negative coefficients using apolarization modulator. IEEE Photonics Technology Letters,2007,19(9):644-646.
    [65] Dong J, Zhang X, Xu J, et al. Ultrawideband monocycle generation using cross-phasemodulation in a semiconductor optical amplifier. Optics letters,2007,32(10):1223-1225.
    [66] Wang Q, Yao J. Switchable optical UWB monocycle and doublet generation using areconfigurable photonic microwave delay-line filter. Optics express,2007,15(22):14667-14672.
    [67] McKinney J D, Lin I S, Weiner A M. Shaping the power spectrum of ultra-widebandradio-frequency signals. Microwave IEEE Transactions on Theory and Techniques,2006,54(12):4247-4255.
    [68] Yu X, Gibbon T B, Pawlik M, et al. A photonic ultra-wideband pulse generator based onrelaxation oscillations of a semiconductor laser. Opt. Express,2009,17(12):9680-9687.
    [69] Li W, Wang L X, Hofmann W, et al. Generation of ultra-wideband triplet pulses based onfour-wave mixing and phase-to-intensity modulation conversion. Optics Express,2012,20(18):20222-20227.
    [70] Zadok A, Wu X, Sendowski J, et al. Reconfigurable generation of high-orderultra-wideband waveforms using edge detection. Journal of Lightwave Technology,2010,28(16):2207-2212.
    [71] Pan S, Yao J. Performance evaluation of UWB signal transmission over optical fiber. IEEEJournal on Selected Areas in Communications,2010,28(6):889-900.
    [72] Pan S, Yao J. A photonic UWB generator reconfigurable for multiple modulation formats.Photonics Technology Letters, IEEE,2009,21(19):1381-1383.
    [73] Tan K, Shao J, Sun J, et al. Photonic ultra-wideband pulse generation, hybrid modulationand dispersion-compensation-free transmission in multi-access communication systems.Optics Express,2012,20(2):1184-1201.
    [74]葛利嘉,朱林,袁晓芳,等译.超宽带无线电基础.北京:电子工业出版社,2005.
    [75] Ghavami M, Michael L B, Kohno R, Ultra Wideband Signals and Systems inCommunication Engineering.2nd ed., John Wiley&Sons, Ltd,2004.
    [76]张中兆,沙学军,张钦宇,等.超宽带通信系统.北京:电子工业出版社,2010.
    [77] Luo X, Yang L, Giannakis G B. Designing optimal pulse-shapers for ultra-wideband radios.IEEE Conference on Ultra Wideband Systems and Technologies, Reston, Virginia, USA,2003.
    [78] Abtahi M, Mirshafiei M, LaRochelle S, et al. All-optical500-Mb/s UWB transceiver: Anexperimental demonstration. Journal of Lightwave Technology,2008,26(15):2795-2802.
    [79] Abtahi M, Magné J, Mirshafiei M, et al. Generation of power-efficient FCC-compliantUWB waveforms using FBGs: Analysis and experiment. Journal of Lightwave Technology,2008,26(5):628-635.
    [80] Wu S P, Boyd S, Vandenberghe L. FIR filter design via semidefinite programming andspectral factorization. Proceedings of IEEE Decision and Control, Kobe, Japan,1996.
    [81] Wang S, Chen H, Xin M, et al. Optical ultra-wide-band pulse bipolar and shape modulationbased on a symmetric PM-IM conversion architecture. Optics letters,2009,34(20):3092-3094.
    [82]贾东方,余震虹,谈斌,等.非线性光纤光学原理及应用.北京:电子工业出版社,2002.
    [83] Gibbon T B, Yu X, Monroy I T. Photonic ultra-wideband781.25-Mb/s signal generationand transmission incorporating digital signal processing detection. IEEE PhotonicsTechnology Letters,2009,21(15):1060-1062.
    [84] Lin I S, McKinney J D, Weiner A M. Photonic synthesis of broadband microwave arbitrarywaveforms applicable to ultra-wideband communication. IEEE Microwave and WirelessComponents Letters,2005,15(4):226-228.
    [85] Abraha S T, Okonkwo C, Yang H, et al. Performance Evaluation of IR-UWB inShort-Range Fiber Communication Using Linear Combination of Monocycles. Journal ofLightwave Technology,2011,29(8):1143-1151.
    [86] Zhou E, Xu X, Lui K S, et al. High-speed photonic power-efficient ultra-widebandtransceiver based on multiple PM-IM conversions. IEEE Transactions on MicrowaveTheory and Techniques,2010,58(11):3344-3351.
    [87] Li P, Chen H, Wang X, et al. Photonic generation and transmission of2Gbit/spower-efficient IR-UWB signals employing an electro-optic phase modulator.2013,25(2):144-146.
    [88] Wu X, Tian Z, Davidson T N, et al. Optimal waveform design for UWB radios. IEEETransactions on Signal Processing,2006,54(6):2009-2021.
    [89] Luo X, Yang L, Giannakis G B. Designing optimal pulse-shapers for ultra-wideband radios.IEEE Journal of Communications and Networks,2003,5(4):344-353.
    [90] Zhang H, Zhou X, Yazdandoost K Y, et al. Multiple signal waveforms adaptation incognitive ultra-wideband radio evolution. IEEE Journal on Selected Areas inCommunications,2006,24(4):878-884.
    [91] Sheng H, Orlik P, Haimovich A M, et al. On the spectral and power requirements forultra-wideband transmission. IEEE International Conference on Communications,Anchorage, Alaska, USA,2003.
    [92] Yu X, Gibbon T B, Rodes R, et al. System Wide Implementation of Photonically GeneratedImpulse Radio Ultra-Wideband for Gigabit Fiber-Wireless Access. Journal of LightwaveTechnology,2013,31(2):264-275.
    [93] Hanawa M, Nakamura K, Nonaka K. FCC-indoor-mask compliant UWB-IR signalgeneration. IEEE Opto-Electronics and Communications Conference (OECC), SydneyAustralia2008.
    [94] Abraha S T, Okonkwo C M, Tangdiongga E, et al. Power-efficient impulse radioultrawideband pulse generator based on the linear sum of modified doublet pulses. Opticsletters,2011,36(12):2363-2365.
    [95] Li G L, Yu P K L. Optical intensity modulators for digital and analog applications. Journalof Lightwave Technology,2003,21(9):2010-2030.
    [96] McKinney J D, Godinez M, Urick V J, et al. Sub-10-dB noise figure in a multiple-GHzanalog optical link. IEEE Photonics Technology Letters,2007,19(7):465-467.
    [97] Clark T R, O'Connor S R, Dennis M L. A phase-modulation I/Q-demodulationmicrowave-to-digital photonic link. IEEE Transactions on Microwave Theory andTechniques,2010,58(11):3039-3058.
    [98] Banwell T, Agarwal A, Toliver P, et al. Analytical expression for large signal transferfunction of an optically filtered analog link. Optics express,2009,17(18):15449-15454.
    [99] Agarwal A, Banwell T, Woodward T K. Optically filtered microwave photonic links for RFsignal processing applications. Journal of Lightwave Technology,2011,29(16):2394-2401.
    [100] Haas B M, Murphy T E. Linearized downconverting microwave photonic link usingdual-wavelength phase modulation and optical filtering. IEEE Photonics Journal,2011,3(1):1-12.
    [101] Middleton C, DeSalvo R. Optical Carrier Suppression and Balanced Coherent HeterodyneDetection for Improved Performance in Wide-band Microwave Photonic Links. OpticalFiber Communication Conference (OFC). San Diego, CA,2010.
    [102] LaGasse M J, Charczenko W, Hamilton M C, et al. Optical carrier filtering for highdynamic range fibre optic links. Electronics Letters,1994,30(25):2157-2158.
    [103] Farwell M L, Chang W S C, Huber D R. Increased linear dynamic range by low biasing theMach-Zehnder modulator. Photonics Technology Letters, IEEE,1993,5(7):779-782.
    [104] Dai J, Xu K, Duan R, et al. Optical linearization for intensity-modulated analog linksemploying equivalent incoherent combination technique. IEEE International TopicalMeeting on Microwave Photonics (MWP), Singapore,2011.
    [105] Li P, Shi R, Chen M, et al. Linearized photonic IF downconversion of analog microwavesignals based on balanced detection and digital signal post-processing. IEEE InternationalTopical Meeting on Microwave Photonics (MWP), Katwijk, Netherland,2012.
    [106] Li P, Shi R, Minghua C, et al. Downconversion and linearization of X-and K-band analogphotonic links using digital post-compensation. Optical Fiber Communication Conference(OFC). Anaheim, CA,2013.
    [107] Yamashita S, Okoshi T. Suppression of beat noise from optical amplifier using coherentreceivers. Journal of Lightwave Technology,1994,12(6):1029-1035.
    [108] Middleton C, Borbath M, Wyatt J, et al. Measurement of SFDR and noise in EDF amplifiedanalog RF links using all-optical down-conversion and balanced receivers. Proceedings ofSPIE,2008.
    [109] Yamashita S, Okoshi T. Suppression of common-mode beat noise from optical amplifierusing a balanced receiver. Electronics Letters,1992,28(21):1970-1972.
    [110] Jalali B, Fathpour S. Silicon photonics. Journal of Lightwave Technology,2006,24(12):4600-4615.
    [111] Yegnanarayanan S, Trinh P D, Coppinger F, et al. Compact silicon-based integrated optictime delays. Photonics Technology Letters, IEEE,1997,9(5):634-635.
    [112] Liu F, Wang T, Zhang Z, et al. On-chip photonic generation of ultra-wideband monocyclepulses. Electronics letters,2009,45(24):1247-1249.
    [113] Chang Q, Li Q, Zhang Z, et al. A tunable broadband photonic RF phase shifter based on asilicon microring resonator. IEEE Photonics Technology Letters,2009,21(1):60-62.
    [114] Cardenas J, Foster M A, Sherwood-Droz N, et al. Wide-bandwidth continuously tunableoptical delay line using silicon microring resonators. Opt. Express,2010,18(25):26525-26534.
    [115] Dong P, Feng N N, Feng D, et al. GHz-bandwidth optical filters based on high-order siliconring resonators. Optics Express,2010,18(23):23784-23789.
    [116] Giuntoni I, Stolarek D, Kroushkov D I, et al. Continuously tunable delay line based on SOItapered Bragg gratings. Optics Express,2012,20(10):11241-11246.
    [117] Yue Y, Huang H, Zhang L, et al. UWB monocycle pulse generation using two-photonabsorption in a silicon waveguide. Optics letters,2012,37(4):551-553.
    [118] Khilo A, Spector S J, Grein M E, et al. Photonic ADC: overcoming the bottleneck ofelectronic jitter. Optics Express,2012,20(4):4454-4469.
    [119] Mirshafiei M, LaRochelle S, Rusch L A. Optical UWB waveform generation using amicro-ring resonator. IEEE Photonics Technology Letters,2012,24(15):1316-1318.
    [120] Yu H, Chen M, Li P, et al. Silicon-on-insulator narrow-passband filter based on cascadedMZIs incorporating enhanced FSR for downconverting analog photonic links. OpticsExpress,2013,21(6):6749-6755.
    [121] Rahim A, Schwarz S, Bruns J, et al. Terabit Optical OFDM demultiplexer in SiliconPhotonics. Optical Fiber Communication Conference (OFC). Anaheim, CA,2013.
    [122]应启珩,冯一云,窦唯蓓.离散时间信号分析与处理.北京:清华大学出版社,2001.
    [123] Landobasa Y M, Darmawan S, Chin M K. Matrix analysis of2-D microresonator latticeoptical filters. IEEE Journal of Quantum Electronics,2005,41(11):1410-1418.
    [124] Pu M. Silicon nano-photonic devices. PhD thesis, Technical University of Denmark,2010.
    [125] Madsen C, Zhao J. Optical filter design and analysis: a signal processing approach. NewYork: Wiley-interscience,1999.
    [126] Bogaerts W. Nanophotonics in silicon-on-insulator. http://photonics.intec.ugent.be
    [127] Almeida V R, Panepucci R R, Lipson M. Nanotaper for compact mode conversion. OpticsLetters,2003,28(15):1302-1304.
    [128] Taillaert D, Van Laere F, Ayre M, et al. Grating couplers for coupling between opticalfibers and nanophotonic waveguides. Japanese Journal of Applied Physics,2006,45(8A):6071-6077.
    [129] Zhang Z, Dainese M, Wosinski L, et al. Resonance-splitting and enhanced notch depth inSOI ring resonators with mutual mode coupling. Optics Express,2008,16(7):4621-4630.
    [130] Wang Q, Yao J. Approach to all-optical bipolar direct-sequence ultrawideband coding.Optics letters,2008,33(9):1017-1019.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700