用户名: 密码: 验证码:
高效有机电致磷光材料的合成、光电性能及器件
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高有机磷光发光器件(PhOLEDs)性能,设计了一系列新型磷光Ir-配合物,合成了2,5-二苯基吡啶,2-苯基噻唑,芳基喹啉(异喹啉),2-苯并噻吩吡啶及其衍生物配体12种(其中9种为新配体)及其环金属铱配合物(cyclometalated iridium complexes)有机磷光材料16种(其中新材料14种)。主要设计思路是修饰配体化合物,大多数配合物具有(C^N)2Ir(acac)通式,其中,acac为乙酰丙酮,(C^N)为环金属化配体(即:2,5-二苯基吡啶(dppy),2,5-二(4-甲氧基苯基)吡啶(dmoppy),2,5-二(4-乙氧基苯基)吡啶(deoppy),2,5-二(4-乙基苯基)吡啶(deppy),2-苯基噻唑(ptz),2-(4-乙基苯基)噻唑(eptz),2-(4-甲氧基苯基)喹啉(mopq),2-(4-联苯基)喹啉(bpq),1-(4-联苯基)异喹啉(bpiq),2-苯并噻吩基-4-甲基吡啶(btmp),2-苯并噻吩基-5-三氟甲基吡啶(btfmp)),同时还培养出了配合物(dppy)2Ir(acac), (bpq)2Ir(acac)及(btmp)2Ir(acac)的单晶,并用X-ray衍射法测定了结构,对其中的配合物(dppy)2Ir(acac)及(btmp)2Ir(acac),运用B3LYP密度泛函理论作了基态电子计算,了解到其HOMO能级由Ir及配体轨道组成,而LUMO能级主要基于环金属化配体。对配合物的吸收、发射、热稳定性及电化学性质作了系统的研究,发现这些配合物发射绿到红色磷光,波长范围为531-648nm,在电化学方面,这些配合物具有源于Ir(Ⅲ)→Ir(Ⅳ)的可逆氧化波,籍由氧化电势可确定其HOMO及LUMO能级。大多数配合物10%重量损失时的温度在300-400oC,适合器件的制作。基于Ir(dmoppy)3的绿色磷光器件,外量子效率为9%,流明效率36cd/A,最大亮度为35000cd/m2。以(btfmp)2Ir(acac)作磷光掺杂剂的红色器件,电流密度0.125 mA/cm2时外量子效率为9.6%,而电流密度为100 mA/cm2时仍然高达3.7%,发射波长为648nm,色坐标为(x=0.69, y=0.29)。以(btfmp)2Ir(acac)作磷光掺杂剂,以PVK-PBD为基质制作的红色聚合物磷光器件,发射峰位648nm,15%掺杂时获得最大外量子效率4.5%,这意味着降低了高浓度下浓度猝灭效应。
     总之,通过对配体化合物的不同位置及采用不同取代基修饰,获得了一些新型磷光Ir-配合物发光掺杂剂材料,并研制出了高性能OLED器件。
In order to increase the performances of phosphorescent OLEDs, in this thesis, a series of phosphorescent iridium complexes were designed and twelve ligands (including nine of new ligands) and sixteen of cyclometalated iridium complexes (including fourteen of new complexes) with 2,5-diphenylpyridine, 2-phenylthiazole, arylquinoline (isoquinoline), and 2-benzo[b]-thiophen-2-yl-pyridine based ligands have been synthesized and characterized to investigate the effect of the simple ligand modification on photophysics, thermostability and electrochemistry. The majority of the complexes have the general structure (C^N)2Ir(acac), where acac is acetylacetone, (C^N)2 is a monoanionic cyclometalating ligand (e.g., 2,5-diphenylpyridyl (dppy), 2,5-di(4-methoxyphenyl)-pyridyl (dmoppy), 2,5-di(4-ethoxyphenyl)pyridyl (deoppy), 2,5-di(4-ethylphenyl)-pyridyl (deppy), 2-phenylthiazole (ptz), 2-(4-ethylphenyl)- thiazole (eptz), 2-(4-methoxyphenyl)quinoline (mopq), 2-(4-biphenyl)quinoline (bpq), 1-(4-biphenyl)isoquinoline (bpiq), 2-benzo[b]thio-phenyl-4-methylpyridine (btmp), and 2-benzo[b]thiophenyl-5-trifluoromethyl- pyridine (btfmp) ). The (dppy)2Ir(acac), (bpq)2Ir(acac), and (btmp)2Ir(acac) have been characterized using X-ray crystallography. Calculation on the electronic ground state of (dppy)2Ir(acac) and (btmp)2Ir(acac) were carried out using B3LYP density functional theory. HOMO levels are a mixture of Ir and ligand orbitals, while the LUMO is predominantly monoanionic cyclometalating ligand based. The absorption, emission, cyclic voltammetry and thermostability of the complexes were systematically investigated. The complexes emit green to red phosphorescence with wavelengths ranging from 531 to 648nm. The iridium complexes exhibit an reversible oxidation wave due to Ir(Ⅲ)→Ir(Ⅳ). The HOMO and LUMO energy levels for each complexes are located from the cyclic voltammogram and the absorption edge. The 10% weight reduction temperatures of the major complexes are in the range from 300 to 400oC, and suitable
引文
[1] C. W. Tang, S. A. Vanslyke, Organic electroluminescent devices, Appl. Phys. Lett., 1987, 51: 913-915.
    [2] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Markay, R. H. Friend, P. L. Burns, A. B. Holmes, Light emitting diodes based on conjugated polymers, Nature, 1990, 347: 539-541.
    [3] A. B. Chwang, M. A. Rothman, S. Y. Mao, R. H. Hewitt, M. s. Weaver, J. A. Silvernail, K. Rajan, M. Hack, J. J. Brown, X. Chu, L. Moro, T. Krajewski, N. Rutherford, Thin film encapsulated flexible organic electroluminescent display, Appl. Phys. Lett. 2003, 83: 413-415.
    [4] H.-F. CHEN, Encapsulation structure, method, and apparatus for organic light-emitting diodes, US Patent 2003, No.042852
    [5] E. Forsythe, M. Abkowitz, and Y. Gao, Tuning the Carrier Injection Efficiency for Organic Light-Emitting Diodes, J. Phys. Chem. B, 2000, 104: 3948-3952
    [6] Y. Shirota, Y. Kuwabara, H. Inada, Multilayered organic electroluminescent device using a novel starburst molecule, 4,4',4,4'-tris(3-methylphenylphenylamino) triphenylamine as a hole transport material, Appl. Phys. Lett. 1994, 65: 807-809.
    [7] Y. Yang, A. J. Heeger, Polyaniline as a transparent electrode for polymer light-emitting diodes: Lower operating voltage and higher efficiency, Appl. Phys. Lett. 1994, 64: 1245-1247.
    [8] Z. B. Deng, X. M. Ding, S. T. Lee, W. A. Gambling, Enhanced brightness and efficiency in organic electroluminescent devices using SiO2 buffer layers, Appl. Phys. Lett. 1999, 74: 2227-2229.
    [9] A. Elschner, F. Bruder, H. W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm, R. Wehrmann, PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes, Synth. Met.2000, 111: 139-143.
    [10] T. M. Brown, J. S. Kim, R. H. Friend, F. Caciall, R. Daik, W. J. Feast, Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer, Appl. Phys. Lett. 1999, 75: 1679-1681.
    [11] P. M. Borsenberger, W. Mey, A. Chowdry, Hole transport in binary solid solutions of triphenylamine and bisphenol-A-polycarbonate, J.Appl. Phys. 1978, 49: 273-279.
    [12] Y. Shirota, K. Okumoto, H. Inada, Thermally stable organic light-emitting diodes using new families of hole-transporting amorphous molecular materials, Synth. Met. 2000, 111: 387-391.
    [13] U. Bach, K. D. Cloedt, H. Spreitzer, M. Gratzel, Characterization of Hole Transport in a New Class of Spiro-Linked Oligotriphenylamine Compounds, Adv. Mater. 2000, 12:1060-1063.
    [14] H. Suzuki, Orientational enhancement in the electroluminescence of ionic emissive dyes doped in poly(vinylcarbazole), Thin Solid Films 2001, 393: 352-357.
    [15] C. H. Chen, J. Shi, Metal chelates as emitting materials for organic electroluminescence, Coord. Chem. Rev. 1998, 171: 161-174.
    [16] N. Johansson, J. Salbeck, J. Bauer, F. Weissortel, P. Broms, A. Andersson, W. R. Salaneck, Solid-State Amplified Spontaneous Emission in Some Spiro-Type Molecules: A New Concept for the Design of Solid-State Lasing Molecules, Adv. Mater. 1998, 10, 1137-1141.
    [17] C. Adachi, T. Tsutsui, S. Saito, Organic electroluminescent device having a hole conductor as an emitting layer, Appl. Phys. Lett. 1989, 55, 1489-1491.
    [18] Y. Hamada, C. Adachi, T. Tsutsui, S. Saito, Blue-light-emittingorganic electroluminescent devices with oxadiazole dimer dyes as an emitter, Jpn. J. Appl. Phys. 1992, 31: 1812-1816.
    [19] J. Kido, K. Hongawa, K. Okuyama, K. Nagai, White light-emitting organic electroluminescent devices using the poly(N-vinylcarbazole) emitter layer doped with three fluorescent dyes, Appl. Phys. Lett. 1994, 64: 815-817.
    [20] J. Shi, C. W. Tang, Doped organic electroluminescent devices with improved stability, Appl. Phys. Lett. 1997, 70, 1665-1667
    [21] J. L. Fox, C. H. Chen, Benzopyrano[6,7,8-i,j]quinolizine-11-one lasing dyes and intermediates for their preparation, US Patent 1988, No.4,736,032.
    [22] T. Inoue, K. Nakatani, Organic EL element, Japanese Patent 1994, No.6,009,952.
    [23] J. Ito, Organic thin film EL element, Japanese Patent 1995, No.7,166,160.
    [24] C. H. Chen, C. W. Tang, J. Shi, K.P. Klubek, Green organic electroluminescent devices, US Patent 2000, No.6,020,078.
    [25] C. H. Chen, C.-H. Chien, T.-H. Liu, in: Proceedings of the International Conference on Mater. Adv. Tech. (ICMAT2001), Singapore, 2001, p. 221 (Abstracts).
    [26] C. H. Chen, C. W. Tang, J. Shi, K. P. Klubek, Recent developments in the synthesis of red dopants for Alq3 hosted electroluminescence, Thin Solid. Films, 2000, 363: 327-331.
    [27] B. Chen, X. Lin, L. Cheng, C. –S. Lee, W. A. Gambling, S. –T. Lee, Improvement of efficiency and colour purity of red-dopant organic light-emitting diodes by energy levels matching with the host materials, J. Phys. D: Appl. Phys, 2001, 34: 30-35.
    [28] S. Capecchi, O. Renault, D.-G. Moon, M. Halim, M. Etchells, P. J. Dobson, O. V. Salata, V. Christou, High-Efficiency Organic Electroluminescent Devices Using an Organoterbium Emitter, Adv. Mater. 2000, 12: 1591-1594
    [29] T. Kofuji, Electro. J. 6th FPD Seminar (Tokyo) 1999, 81
    [30] J. Shi, C. W. Tang, C. H. Chen, Organic electroluminescent element for stable electroluminescent devices, US Patents 1999, No.5935721.
    [31] B. X. Mi, Z. Q. Gao, C. S. Lee, S. T. Lee, H. L. Kwong, N. B. Wong, Reduction of molecular aggregation and its application to the high-performance blue perylene-doped organic electroluminescent device, Appl. Phys. Lett. 1999, 75: 4055-4057
    [32] C. E. Wayne and R. P. Wayne, Photochemistry, Photophysics, 1996, Oxford University Press, New York
    [33] M. A. Baldo, D. F. O'Brien, M. E. Thompson, S. R. Forrest, Excitonic singlet-triplet ratio in a semicoducting organic thin film, Phys. Rev. B 1999, 60: 14422-14428.
    [34] W. Helfrich, W. G. Schneider, Recombination radiation in anthracene crystals, Phys. Rev. Lett. 1965, 14: 229-231.
    [35] S. Hoshino, H. Suzuki, Electroluminescence from triplet excited states of benzophene, Appl. Phys. Lett. 1996, 69: 224-227.
    [36] C. Adichi, M. A. Baldo, S. R. Forrest, Electroluminescence mechanisms in organic light emitting devices employing a europium chelate doped in a wide energy gap bipolar conducting host, J. Appl. Phys., 2000, 87: 8049-8054
    [37] K. Kalyanasundaram, Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues, Coord. Chem. Rev. 1982, 46: 159-244.
    [38] K.-F. Chin, K.-K. Cheung, H.-K. Yip, T. C. W. Mak, C. M.Che, Luminescent nitridometal complexes. Photophysical and photochemical properties of the 3[(d xy )1(d*)1] excited state of nitridoosmium(VI) complexes with polypyridine ligands, J. Chem. Soc., Dalton Trans., 1995, 4: 657-663.
    [39] H. Rudmann, S. Shimada, M. F. Rubner, Solid-State Light-Emitting Devices Based on the Tris-Chelated Ruthenium(II) Complex. 4. High-Efficiency Light-Emitting DevicesBased on Derivatives of the Tris(2,2'-bipyridyl) Ruthenium(II) Complex, J. Am. Chem. Soc. 2002, 124: 4918-4921.
    [40] L. T.-S.-Hee, A. K.-D. Mesmaeker, Spectroelectrochemical and flash photochemical reduction of 1,4,5,8-tetraazaphenanthrene and 1,4,5,8,9,12-hexaaza-triphenylene mono- and bi-metallic ruthenium(II) complexes, J. Chem. Soc., Dalton Trans., 1994, 24: 3651-3658.
    [41] K. Kalyanasundaram and M. Gr?tzel, Applications of functionalized transition metal complexes in photonic and optoelectronic devices, Coord. Chem. Rev. 1998, 177: 347-414.
    [42] S. Bernhard, X. Gao, G. G. Malliaras, H. D. Abruna, Efficient electroluminescent devices based on a chelated osmium(II) complexes, Adv. Mater. 2002, 14: 433-436.
    [43] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices, Nature (London) 1998, 395: 151-154.
    [44] D.F. O'Brien, M.A. Baldo, M.E. Thompson, S.R. Forrest, Improved energy transfer in electrophosphorescent devices, Appl. Phys. Lett. 1999,74, 442-444.
    [45] S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee, C. Adachi,P. E. Burrows, S. R. Forrest, M. E. Thompson, Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization, and use in organic light emitting diodes, J. Am. Chem. Soc. 2001, 123: 4304-4312.
    [46] C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson, R. C. Kwong, High-efficiency red electrophosphorescence devices, Appl. Phys. Lett. 2001, 78: 1622-1624.
    [47] Y. J. Su, H. L. Huang, C. L. Li, C. H. Chien ,Y. T. Tao, P. T. Chou. S. Patta, R.-S. Liu. Red Electrophosphorescent Devices Based on Iridium Isoquinoline Complex: Remarkable External Quantum Efficiency Over a Wide Range of Current, Adv. Mater. 2003, 15: 884-888.
    [48] A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino, K. Ueno, Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode, J. Am. Chem. Soc. 2003,125: 12971-12979.
    [49] K. R.Justin Thomas, Marappan Velusamy, Jiann T. Lin, Chin-Hsiung Chien, Yu-Tai Tao, Yuh S. Wen, Ya-Hui Hu, Pi-Tai Chou, Efficient Red-Emitting Cyclometalated Iridium(Ⅲ)Complexes Containing Lepidine-Based Ligands, Inorg. Chem. 2005, 44: 5677-5685.
    [50] J.-P. Duan, P.-P. Sun, C.-H. Cheng, New Iridium Complexes as Highly Efficient Orange-Red Emitters in Organic Light-Emitting Diodes, Adv. Mater. 2003, 15: 224-228.
    [51] Y.-H. Song, S.–J. Yeh, C.–T. Chen, Y. Chi, C.–S. Liu, J.–K. Yu, Y.–H. Hu, P.–T. Chou, S.-M. Peng, G.-H. Lee, Bright and Efficient, Non-Doped, Phosphorescent Organic Red-Light-Emitting Diodes, Adv. Funct. Mater. 2004,14: 1221-1226.
    [52] D. K. Rayabarapu, B. M. J. S. Paulose, J.-P. Duan, C.-H. Cheng, New Iridium Complexes with cyclometalated Alkenylquinoline Ligands asHighly Efficient Saturated Red-Light Emitters for Organic Light-Emitting Diodes, Adv. Mater. 2005, 17: 349-353.
    [53] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, Very high-efficiency green organic light-emitting devices based on electrophosphorescence, Appl. Phys. Lett. 1999, 75: 4-6.
    [54] T. Tsutsui, M.-J. Yang, M. Yahiro, K. Nakamura, T. Watanabe, T. Tsuji, Y. Fukuda, T. Wakimoto and S. Miyaguchi, High Quantum Efficiency in Organic Light-Emitting Devices with Iridium-Complex as a Triplet Emissive Center, Jpn. J. Appl. Phys. Part2, 1999, 38: L1502-L1504.
    [55] S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, R. Kwong, I. Tsyba, M. Bortz, B. Mui, R. Bau, M. E. Thompson, Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes, Inorg. Chem. 2001, 40: 1704-1711.
    [56] C. Adachi, M. A. baldo, M. E. Thompson, S. R. Forrest, Nearly 100% internal phosphorescence efficiency in an organic light emitting device, J. Appl. Phys. 2001, 90: 5048-5051.
    [57] T. Tsuzuki, N. Shirasawa, T. Suzuki, S. Tokito, Color Tunable Organic Light-Emitting Diodes Using Pentafluorophenyl-substituted Iridium Complexes, Adv. Mater. 2003, 15: 1455-1458.
    [58] J. C. Ostrowski, M. R. Robinson, A. J. Heeger, G. C. Bazan, Amorphous iridium complexes for electrophosphorescent light emitting devices, Chem. Commun. 2002, 784-785.
    [59] W.-S. Huang, J. T. Lin, C.-H. Chien, Y.-T. Tao, S.-S. Sun, Y.-S. Wen, Highly phosphorescent bis-cyclometalated iridium complexes containing benzoimidazole-based ligands, Chem. Mater. 2004, 16: 2480-2488.
    [60] B. M. J. S. Paulose, D. K. Rayabarapu, J.-P. Duan, C.-H. Cheng, First Examples of Alkenyl Pyridines as Organic Ligands for PhosphorescentIridium Complexes, Adv. Mater. 2004, 16: 2003-2007.
    [61] P.I. Djurovich, A. Tamayo, M.E. Thompson, in: Proceedings of the 3rd International Conference on EL Mol. Mater. Relat. Phenom. (ICEL-3), P-45, Los Angelos, CA, USA, 5–8 September 2001 (Abstracts).
    [62] C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, S. R. Forrest, Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials, Appl. Phys. Lett. 2001, 79: 2082-2084.
    [63] S.-J. Yeh, M.-F Wu, C.-T. Chen, Y.-H. Song, Y. Chi, M.-H. Ho, S.-F. Hsu, C. H. Chen, New dopant and host materials for blue-light- emitting phosphorescent organic electroluminescent devices, Adv. Mater. 2005, 17 285-289.
    [64] R. J. Holmes, B. W. D'Andrade, S. R. Forrest, Efficient, deep-blue organic electrophosphorescence by guest charge trapping, Appl. Phys. Lett. 2003, 83: 3818-3820.
    [65] S. Tokito, T. Lijima, T. Tsuzuki, F. Sato, High-efficiency white phosphorescent organic light-emitting devices with greenish-blue and red-emitting layers, Appl. Phys. Lett. 2003, 83: 2459-2461.
    [66] S. Tokito, T. Lijima, Y. Suzuri, H. Kita,T.Tsuzuki,F.Sato, Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices, Appl. Phys. Lett. 2003, 83: 569-571.
    [67] R. J. Holmes, S. R. Forrest, Y.-J. Tung, R. C. Kwong, J. J. Brown, S. Garon, M. E. Thompson, Blue organic electrophosphorescence using exothermic host-guest energy transfer, Appl. Phys. Lett. 2003, 82:2422-2424.
    [68] P. Coppo, E. A. Plummer, L. D. Cola, Tuning iridium(Ⅲ)complexes in the “almost blue” region, Chem. Commun. 2004, 1774-1775.
    [69] M. A. Baldo, S. R. Forrest, Transient analysis of organic electrophosphorescence: Ⅰ. Transient analysis of triplet energy transfer, Physical Review B 2000, 62: 10958-10966.
    [70] T. Thoms, S. Okada, J.-P. Chen, M. Furugori, Improved host material design for phosphorescent guest–host systems, Thin solid films 2003, 436: 264-268
    [71] G. T. Lei, L. D. Wang, L. Duan, J. H. Wang and Y. Qiu, Highly efficient blue electrophosphorescent devices with a novel host material, Synth. Met. 2004, 144: 249-252.
    [72] Y. Kuwabara, H. Ogawa, H. Inada, N. Noma, Y. Shirota, Thermally stable multilared organic electroluminescent devices using novel starburst molecules, 4,4',4"-Tri(N-carbazolyl)triphenylamine (TCTA) and 4,4',4"-Tris(3-methyl phenyl phenylamino)triphenyl amine (m-MTDATA), as hole-transport materials, Adv. Mater. 1994, 6: 677-679.
    [73] C. Adachi, M. A. baldo, S. R. Forrest, High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine) iridium doped into electron-transporting materials, Appl. Phys. Lett. 2000, 77: 904-906.
    [74] R. C. Kwong, M. R. Nugent, L. Michalski, T. Ngo, K. Rajan, Y.-J. Tung, M. S. Weaver, T. X. Zhou, M. Hack, M. E. Thompson, S. R. Forrest, J. J. Brown, High operational stability of electrophosphorescent devices, Appl. Phys. Lett. 2002, 81: 162-164.
    [75] Y. T. Tao, E. Balasubramaniam, A. Danel, P. Tomasik, Dipyrazolopyridine derivatives as bright blue electroluminescent materials, Appl. Phys. Lett. 2000, 77: 933-935.
    [76] Y. Sakamoto, T. Suzuki, A. Miura, H. Fujikawa, S. Tokito, Y. Taga, Synthesis, Characterization, and Electron-Transport Property of Perfluorinated Phenylene Dendrimers, J. Am. Chem. Soc. 2000, 122:1832-1833.
    [77] K. Okumoto, Y. Shirota, New Class of Hole-Blocking Amorphous Molecular Materials and Their Application in Blue-Violet-Emitting Fluorescent and Green-Emitting Phosphorescent Organic Electroluminescent Devices, Chem. Mater. 2003, 15: 699-707.
    [78] V. I. Adamovich, S. R. Cordero, P. I. Djurovich, A. Tamayo, M. E. Thompson, B. W. D’Andrade, S. R. Forrest, New charge-carrier blocking materials for high efficiency OLEDs, org. electron. 2003, 4: 77-87.
    [79] M. A. Baldo, M. E. Thompson, S. R. Forrest, High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer, Adv. Mater. 2000, 403: 750-753.
    [80] M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, Y. Taga, Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer, Appl. Phys. Lett. 2001, 79: 156-158.
    [81] M. A. Baldo, C. Adachi, S. R. Forrest, Transient analysis of organic electrophosphorescence: Ⅱ. Transient analysis of triplet-triplet annihilation, Physical Review B 2000, 62: 10967-10977.
    [82] R. C. Kwong, S. Lamansky, M. E. Thompson, Organic Light-emitting Devices Based on Phosphorescent Hosts and Dyes, Adv. Mater. 2000, 12: 1134-1138.
    [83] H. Z. Xie, M. W. Liu, O. Y. Wang, X. H. Zhang, C. S. Lee, L. S. Hung, S. T. Lee, P. F. Teng, H. L. Kwong, H. Zheng, C. M. Che, Reduction of Self-Quenching Effect in Organic Electrophosphorescence Emitting Devices via the Use of Sterically Hindered Spacers in Phosphorescence Molecules, Adv. Mater. 2001, 13: 1245-1248.
    [84] Y. Wang, N. Herron, V. V. Grushin, D. LeCloux, V. Petrov, Highly efficient electroluminescent materials based on fluorinated organometallic iridium compounds, Appl. Phys. Lett. 2001, 79:449-451.
    [85] V. Cleave, G. Yahioglu, P. L. Barny, R. H. Friend, N. Tessler, Harvesting Singlet and Triplet Energy in Polymer LEDs, Adv. Mater. 1999, 11: 285-288.
    [86] J. Kido, K. Hongawa, K. Okuyama, K. Nagai, Bright blue electroluminescence from poly(N-vinylcarbazole), Appl. Phys. Lett. 1993, 63: 2627-2627.
    [87] Y.-Z. Lee, X. Chen, S.-A. Chen, P.-K. Wei, W.-S. Fann, Soluble Electroluminescent Poly(phenylene vinylene)s with Balanced Electron- and Hole Injections, J. Am. Chem. Soc. 2001, 123: 2296-2307.
    [88] X. Chen, J.-L. Liao, Y. Liang, M. O. Ahmed, H.-E. Tseng, S.-A. Chen, High-Efficiency Red-Light Emission from Polyfluorenes Grafted with Cyclometalated Iridium Complexes and Charge Transport Moiety, J. Am. Chem. Soc. 2003, 125: 636-637.
    [89] A. V. Dijken, J. J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, C. Rothe, A. Monkman, I. Bach, P. Stossel, K. Brunner, Carbazole Compounds as Host Materials for Triplet Emitters in Organic Light-Emitting Diodes: Polymer Hosts for High-Efficiency Light-Emitting Diodes, J. Am. Chem. Soc. 2004, 126: 7718-7727.
    [90] K. Brunner, A. V. Dijken, H. Borner, J. J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, Carbazole Compounds as Host Materials for Triplet Emitters in Organic Light-Emitting Diodes: Tuning the HOMO Level without Influencing the Triplet Energy in Small Molecules, J. Am. Chem. Soc. 2004, 126: 6035-6042.
    [91] M. Suzuki, T. Hatakeyama, S. Tokito, F. Sato, High-efficiency white phosphorescent polymer light-emitting devices, IEEE J. Sel. Top. Quantum Electron. 2004, 10: 115-120.
    [92] X. Wang, K. Ogno, K. Tanaka, H. Usui, Novel iridium complex and itscopolymer with N-vinyl carbazole for electroluminescent devices, IEEE J. Sel. Top. Quantum Electron. 2004, 10: 121-125.
    [93] A. J. Sandee, C. K. Williams, N. R. Evans, J. E. Davies, C. E. Boothby, A. Kohler, R. H. Friend, A. B. Holmes, Solution-Processible Conjugated Electrophosphorescent Polymers, J. Am. Chem. Soc. 2004, 126: 7041-7048.
    [94] S. Tokito, M. Suzuki, F. Sato, M. Kamachi, K. Shirane, High-efficiency phosphorescent polymer light-emitting devices, Org. Electron. 2003, 4: 105-111.
    [95] S. Tokito, M. Suzuki, F. Sato, Improvement of emission efficiency in polymer light-emitting devices based on phosphorescent polymers, Thin Solid Films 2003, 445: 353-357.
    [96] S. Tokito, M. Suzuki, M. Kamachi, K. Shirane, F. Sato, 2002, 11th Inter Workshop on Inorg and org Electroluminescence & 2002 Inter Conf on the Sci and Tech of Emissive Display and Lighting, Sept 23-26, Ghent Balgium (E L 2002) Session 4.
    [97] W. Zhu, Y. Mo, M. Yuan, W. Yang, Y. Cao, Highly efficient electrophosphorescent devices based on conjugated polymers doped with iridium complexes, Appl. Phys. Lett. 2002, 80: 2045-2047.
    [98] X. Gong, M. R. Robinson, J. C. Ostrowski, D. Moses, G. C. Bazan, A. J. Heeger, High-efficiency polymer-based electrophosphorescent devices, Adv. Mater. 2002, 14: 581-585.
    [99] X. Gong, J. C. Ostrowski, G. C. Bazan, D. Moses, A. J. Heeger, Red electrophosphorescence from polymer doped with iridium complex, Appl. Phys. Lett. 2002, 81: 3711-3713.
    [100] F.-I. Wu, H.-J. Su, C.-F. Shu, L. Luo, W.-G. Diau C.-H. Cheng, J.-P. Duan, G.-H. Lee, Tuning the emission and morphology of cyclometalated iridium complexes and their application to organic light-emitting diodes, J. Mater. Chem. 2005, 25: 1035-1042.
    [101] S.-C. Lo, N. A. H. Male, J. P. J. Markham, S. W. Magennis, P. L. Burn, O. V. Salata, I. D. W. Samuel, Green phosphorescent dendrimer for light-emitting diodes, Adv. Mater. 2002, 14: 975-979.
    [102] T. D. Anthopoulos, M. J. Frampton, E. B. Namdas, P. L. Burn, I. D. W. Samuel, Solution-processable red phosphorescent dendrimers for light-emitting device applications, Adv. Mater. 2004, 16: 557-560.
    [1] F. R. Bean, J. R. Johnson, Derivatives of phenylboric acid, their preparation and action upon bacteria. Ⅱ.Hydroxyphenylboric acids, J. Am. Chem. Soc. 1932, 54: 4415-4425.
    [2] W. J. Thompson, J. Gaudino, A General Synthesis of 5-Arylnicotinates, J. Org. Chem. 1984, 49: 5237-5243.
    [3] G. Marck, A. Villiger, R. Buchecker, Aryl Couplings with Heterogeneous Palladium Catalysts, Tetrahedron Lett. 1994, 35: 3277-3280.
    [4] T. Tagata, M. Nishida, Palladium Charcoal-Catalyzed Suzuki-Miyaura Coupling to Obtain Arylpyridines and Arylquinolines, J. Org. Chem. 2003, 68: 9412-9415.
    [5] M. Nonoyama, Benzo[h]quinolin-10-yl-N Iridium(Ⅲ) complexes, Bull. Chem. Soc. Jpn. 1974, 47: 767-768.
    [6] S. Sprouse, K. A. King, P. J. Spellane, R. J. Watts, Photophysical Effects of Metal-Carbon σ Bonds in Ortho-Metalated Complexes of Ir(Ⅲ) and Rh(Ⅲ), J. Am. Chem. Soc. 1984, 106: 6647-6653.
    [7] S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, R. Kwong, I. Tsyba, M. Bortz, B. Mui, R. Bau, M. E. Thompson, Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes, Inorg. Chem. 2001, 40: 1704-1711.
    [8] K. A. King, P. J. Spellane, R. J. Watts, Excited-state properties of a triply ortho-metalated iridium(III) complex, J. Am. Chem. Soc. 1985, 107: 1431-1432.
    [9] K. Dedeian, P. I. Djurovich, F. O. Garces, G. Carlson, R. J. Watts, A new synthetic route to the preparation of a series of strong photoreducing agents: Fac Tris-Ortho-Metalated Complexes of Iridium(III) with Substituted 2-phenylpyridines, Inorg. Chem. 1991, 30: 1685-1687.
    [10] F. O. Garces, K. Dedeian, N. L. Keder, R. J. Watts, Acta Crystallogr. 1993, C49, 1117.
    [11] M. G. Colombo, T. C. Brunold, T. Riedener, H. U.Güdel, M. F?rtsch, H.–B. Bürgi, Facial tris cyclometalated rhodium(3+) and iridium(3+) complexes: their synthesis, structure, optical spectroscopic properties, Inorg. Chem. 1994, 33: 545-550.
    [12] C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 1988, 37, 785-789.
    [13] A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 1993, 98, 5648-5652.
    [14] P. J. Hay, Theoretical Studies of the Ground and Excited States in Cyclometalated Phenylpyridine Ir(III) Complexes Using Density Functional Theory, J. Phys. Chem. A 2002, 106, 1634.
    [15] N. M. Ali, A. McKillop, M. B. Mitchell, R. A. Rebelo, P. J. Wallbank, Palladium-Catalysed Cross-Coupling Reactions of Arylboronic Acids with π-DeficientHeteroaryl Chlorides, Tetrahedron 1992, 48: 8117-8126.
    [16] H. Gilman, D. A. Shirley, Some Substituted 2-Arylquinolines, J. Am. Chem. Soc. 1950, 72: 2181-2182.
    [17] H. Gilman, E.A. Weipert, T. Soddy, F. N. Hayes, Some Derivatives of Aza-aromatic Heterocycles as Liquid Scintillator Solutes, J. org. Chem. 1957, 22: 1169-1171.
    [18] H. Gilman, G. C. Gainer, The Reaction of Aryllithium Compounds with 2-Arylquinolines, J. Am. Chem. Soc. 1947, 69: 877-880.
    [19] A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino, K. Ueno, Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to OrganicLight-Emitting Diode, J. Am. Chem. Soc. 2003, 125: 12971-12979.
    [20] N. Miyaura, A. Suzuki, Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds, Chem. Rev. 1995, 95: 2457-2483.
    [21] L. Olivier, T. Philippe, W. Erwin, The palladium catalysed Suzuki coupling of 2- and 4-chloropyridines, Synlett. 1999, 1: 45-48.
    [22] S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, M. E. Thompson, Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization, and use in organic light emitting diodes, J. Am. Chem. Soc. 2001, 123: 4304-4312.
    [23] S. Kotha, K. Lahiri, D. Kashinath, Recent application of the Suzuki-Miyaura cross-coupling reaction in organic synthesis, Tetrahedron 2002, 58: 9633-9695.
    [24] B.Schmid,F.O.Garces,and R.J.Watts, Synthesis and characterizations of cyclometalated iridium(III) solvento complexes, Inorg. Chem. 1994, 33: 9-14.
    [1]. S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, R. Kwong, I. Tsyba, M. Bortz, B. Mui, R. Bau, M. E. Thompson, Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes, Inorg. Chem. 2001, 40: 1704-1711.
    [2]. V. V. Grushin, N. Herron, D. D. LeCloux, W. J. Marshall, V. A. Petrov, Y. Wang, New, efficient electroluminescent materials based on organometallic Ir complexes, Chem. Commun. 2001, 1494-1995.
    [3]. P. Coppo, E. A. Plummer, L. D. Cola, Tuning iridium(Ⅲ)complexes in the “almost blue” region, Chem.Commun. 2004, 1774-1775.
    [4]. P. J. Hay, Theoretical Studies of the Ground and Excited States in Cyclometalated Phenylpyridine Ir(III) Complexes Using Density Functional Theory, J. Phys. Chem. A 2002, 106, 1634.
    [5]. I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules, Academic Press, N. Y. –London , 1965.
    [6]. A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino, K. Ueno, Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode, J. Am. Chem. Soc. 2003, 125: 12971-12979.
    [7]. S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, M. E. Thompson, Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization, and use in organic light emitting diodes, J. Am. Chem. Soc. 2001, 123: 4304-4312.
    [8]. N. G. Park, G. C. Choi, J. E. Lee, Y. S. Kim, Theoretical studies of cyclometalated phenylpyrazol Ir(ш) complex using densityfunctional theory, Curr. Appl. Phys. 2005, 5: 79-84.
    [9]. M. G. Colombo, T.C. Brunold, T. Riedener, H. U. Güdel, M. F?rtsch, H.-B. Bürgi, Facial tris cyclometalated rhodium(3+) and iridium(3+) complexes: their synthesis, structure, optical spectroscopic properties, Inorg. Chem. 1994, 33: 545-550.
    [10]. Y. Wang, N. Herron, V. V. Grushin, D. LeCloux, V. Petrov, Highly efficient electroluminescent materials based on fluorinated organometallic iridium compounds, Appl. Phys. Lett. 2001,19: 449-451.
    [1] C. W. Tang, S. A. Vanslyke, Organic electroluminescent devices, Appl. Phys. Lett., 1987, 51: 913-915.
    [2]. C. C. Wu, C. I. Wu, J. C. Sturm, A. Kahn, Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices, Appl. Phys. Lett. 70 (1997) 1348-1350.
    [3]. S. R. Forrest, D. D. C. Bradley, and M. E. Thompson, Measuring the efficiency of organic light-emitting devices, Adv. Mater. 2003, 15: 1043-1048.
    [4]. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices, Nature (London) 1998, 395: 151-154.
    [5]. M.A. Baldo, S. Lamansky, P.E. Burrows, M.E. Thompson, S.R. Forrest, Very high-efficiency green organic light-emitting devices based on electrophosphorescence, Appl. Phys. Lett. 1999, 75: 4-6.
    [6]. C. Adachi, M. A. baldo, M. E. Thompson, S. R. Forrest, Nearly 100% internal phosphorescence efficiency in an organic light emitting device, J. Appl. Phys. 2001, 90: 5048-5051.
    [7]. V. V. Grushin, N. Herron, D. D. LeCloux, W. J. Marshall, V. A. Petrov, Y. Wang, New, efficient electroluminescent materials based on organometallic Ir complexes, Chem. Commun. 2001, 1494-1495.
    [8]. J. C. Ostrowski, M. R. Robinson, A. J. Heeger, G. C. Bazan, Amorphous iridium complexes for electrophosphorescent light emitting devices, Chem. Commun. 2002, 784-785.
    [9]. A. Beeby, S. Bettington, Ifor D. W. Samuel, Z. J. Wang, Tuning the emission of cyclometalated iridium complexes by simple ligand modification, J. Mater.Chem. 2003, 13: 80-83.
    [10]. T. Tsuzuki, N. Shirasawa, T. Suzuki, S. Tokito, Color Tunable Organic Light-Emitting Diodes Using Pentafluorophenyl-substituted Iridium Complexes, Adv. Mater. 2003, 15:1455-1458.
    [11]. P. A. Lane, L. C. Palilis, D. F. O'Brien, C. Giebeler, A. J. Cadby, D. G. Lidzey, A. J. Campbell, W. Blau, D. D. C. Bradley, Origin of electrophosphorescence from a doped polymer light emitting diode, Phys. Rev. B. 2001, 63: 235206-(1-8).
    [12]. C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson, R. C. Kwong, High-efficiency red electrophosphorescence devices, Appl. Phys. Lett. 2001, 78: 1622-1624.
    [13]. M. A. Baldo, C. Adachi, S. R. Forrest, Transient analysis of organic electrophosphorescence: Ⅱ. Transient analysis of triplet-triplet annihilation, Physical Review B 2000, 62: 10967-10977.
    [14]. D. F. O’Brien, M. A. Baldo, M. E. Thompson, S. R. Forrest, Improved energy transfer in electrophosphorescent devices, Appl. Phys. Lett. 1999, 74: 442-444
    [15]. M. A. Baldo, M. E. Thompson, S. R. Forrest, High-efficiency fluorescent organic ligh-emitting devices using a phosphorescent sensitizer, Nature, 2000, 403: 750-753.
    [16]. Z. Bao, A. J. Lovinger, J. Brown, New Air-Stable n-Channel Organic Thin Film Transistors, J. Am. Chem. Soc. 1998, 120: 207-208.
    [17]. Y.-J. Su, H.-L. Huang, C.-L. Li, C.-H. Chien, Y.-T. Tao, P.-T. Chou, S. Datta, and R.-S. Liu, Highly efficient red electrophosphorescent devices based on iridium isoquinoline complexes: remarkable external quantum efficiency over a wide range of current, Adv. Mater. 2003, 15: 884-888.
    [18]. Y. Wang, N. Herron, V. V. Grushin, D. LeCloux, V. Petrov, Highly efficient electroluminescent materials based on fluorinated organometallic iridium compounds, Appl. Phys. Lett. 2001, 79: 449-451.
    [19]. C. Adichi, M. A. Baldo, S. R. Forrest, Electroluminescence mechanismsin organic light emitting devices employing a europium chelate doped in a wide energy gap bipolar conducting host, J. Appl. Phys., 2000, 87: 8049-8054.
    [20]. S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, M. E. Thompson, Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization, and use in organic light emitting diodes, J. Am. Chem. Soc. 2001, 123: 4304-4312.
    [21]. V. Cleave, G. Yahioglu, P. L. Barny, R. H. Friend, N. Tessler, Harvesting Singlet and Triplet Energy in Polymer LEDs, Adv. Mater. 1999, 11: 285-288.
    [22]. S. Tokito, M. Suzuki, M. Kamachi, K. Shirane, F. Sato, 2002, 11th Inter Workshop on Inorg and org Electroluminescence & 2002 Inter Conf on the Sci and Tech of Emissive Display and Lighting, Sept 23-26, Ghent Balgium (E L 2002) Session 4.
    [23]. H. Z. Xie, M. W. Liu, O. Y. Wang, X. H. Zhang, C. S. Lee, L. S. Hung, S. T. Lee, P. F. Teng, H. L. Kwong, H. Zheng, C. M. Che, Reduction of Self-Quenching Effect in Organic Electrophosphorescence Emitting Devices via the Use of Sterically Hindered Spacers in Phosphorescence Molecules, Adv. Mater. 2001, 13: 1245-1248.
    [24]. F. –C. Chen, Y. Yang, M. E. Thompson, and J. kido, High-performance polymer light-emitting diodes doped with a red phosphorescent iridium complex, Appl. Phys. Lett. 2002, 80: 2308-2310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700