用户名: 密码: 验证码:
有机电致发光材料及器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机发光器件(OLEDs)驱动电压低、发光亮度大、视角宽、响应速度快、制作工艺简单,是新一代平板显示技术中的一大亮点;是21世纪首选的绿色照明光源之一。目前阻碍OLEDs走向实用化和市场化的关键问题是其发光效率低、工作寿命短、性能稳定性差。进一步开发高效率与物理性质稳定的电致发光有机发光材料、选择合适的电极材料、探索新的制膜工艺、优化器件结构、提高器件效率和寿命及探索彩色化的最佳方案等,仍然是现阶段乃至今后研究工作的主要目标。本论文结合国家自然科学基金项目(No.60276026)和甘肃省自然科学基金项目(ZS031-A25-012-G),总结和介绍了本人在攻读博士学位期间所作的研究成果。其主要集中在:对蓝色有机电致发光器件的制作工艺和器件特性的研究;在深入分析研究影响器件发光效率和发光寿命及稳定性因素的基础上对器件发光层的表面和界面特性及缓冲层在器件中的作用的研究;在深入研究掺杂对发光器件性能影响的基础上成功研制了白色有机OLED器件,并对其发光原理和光学及电学特性进行了研究;对有机电致发光器件的电极的研究进展进行了综合的基础上,分析了电极性能改进的机制。分列如下:
     1、研究了蓝色有机发光材料的性质和蓝色有机电致发光器件的制备工艺及器件的光电特性,系统地分析了缓冲层材料CuPc对蓝色有机电致发光器件的性能的影响。本文详细地介绍了蓝色有机发光材料LiBq_4的性质、合成工艺,并利用了红外吸收光谱、核磁共振谱、吸收光谱和荧光光谱对其进行结构表征。得出了:LiBq_4的荧光是发生在8-羟基喹啉配体上,LiBq_4是一种受中心原子“微扰”的有机配体(即喹啉环)发光材料;荧光峰位的蓝移的原因是由于LiBq4的空间结构和B-O成键强度的影响及B没有和N形成配位的结论。
     系统地介绍了以LiBq_4为发光层的蓝色有机电致发光器件的制备工艺,并对加入和不加入缓冲层的器件的光电特性进行了对比分析。发现,CuPc缓冲层加入后,器件的启亮电压升高,且在相同电压下的发光亮度降低了。分析其原因主要
Organic light-emitting devices(OLEDs) is not only a great point of new flat panel displays, but also one of the first choices of green lighting source of the 21 century, during to their merits such as low drive voltage, high brightness, wide visual angle, quick response, and simple fabrication technics. As the present time, low power-conversion efficiency, short useful life and bad long-term stability are the critical problems to block the utility and marketization of OLEDs. However, exploiting organic light-emitting materials with high efficiency and stable physic characteristics, choosing appropriate electrode materials, searching for new film fabrication technics, and optimizing device configuration, improving the efficiency and useful life of device, and questing for the best scheme to realize full color are still the primary aims of study work. This paper summarizes and introduces the research in my doctor period, accompanied by the national Natural Science Foundation of China(NO.60276026) and provincial Natural Science Foundation of Gansu(ZS031-A25-012-G). The key points are listed blow: study of fabrication technics and characteristics of blue light-emitting devices;research of the surface and interface characters of emitting layer and the action of buffer layer in device based on the study of light-emitting efficiency, useful life and stability;white OLED is triumphantly fabricated based on the study of the infection to device by adulteration, and the luminescence principle and the characteristics of optics and electrics are researched;improvement mechanism is analyzed on the base of the synthesis of electrode study. The analyses are listed blow:1. The characters of blue organic light-emitting material, the fabrication technics of blue OLED and current illumination characteristic of device are studied, and infections of buffer material CuPc in BOLED is analyzed systematically. The characters and synthesis technics of blue organic light-emitting material LiBq_4 are described systematically, and the structure token of LiBq_4 is carried out by infrared absorption spectrum, nuclear magnetic resonance spectrum, absorption spectrum and fluorescence spectrum. So we can conclude: fluorescence of LiBq_4 takes place on 8-hydroxyquinoline ligand, and LiBq_4 is an organic ligand (quinoline ring)
    luminescent material which is disturbed by central atom;the blue shift of the peak in fluorescence spectrum is a result of infection of LiBq4 structure and B-0 bonding intensity and the unbond between B atom and N atom.The fabrication technics of BOLEDs using LiBq4 as emitting layer are described systematically, and the current illumination characteristic of device with buffer layer is analyzed compared to the device with no buffer layer. The drive voltage is found to have increased and the brightness becomes lower under the same electric voltage after CuPc is added as a buffer layer. The main reason may be: CuPc has depressed the potential barrier of hole injection, and increased the number of holes on the interface of PVK:TPD/LiBq4. Inverted drift electric field comes into being in HTL, and the hole injection is blocked, which induces the current decrease under the same electric voltage;Meanwhile, the number of holes injected into emitting layer LiBq4 is also decreased, which causes the decrease of the probability of exciton formation. The build-in electric field in LiBq4 is strengthened, which increases the probability of exciton dissociation, and the brightness and efficiency of devices using CuPc is decreased.2. The surface and interface of organic layer and buffer layer in OLEDs are analyzed by AFM and XPS. The research of interface is carried out based on the study of the luminescence character of TPD/Alq3, and we find: there is an interaction on the interface between TPD molecules and Alq3 molecules, and this caused a red shift of the peak in luminescence spectrum compared to the fluorescence spectrum of Alq3. So this action is the reason of exciplex formation on the interface of TPD/Alq3 in devices.Through the analysis of surface and interface of LiBq4/ITO using AFM and XPS, LiBq4 is found to has decomposed by thermal reason when it is evaporated and deposited onto the ITO film, which causes the dissociation of B atoms on the interface and the number of B atoms is decreased;The interface of LiBq4/ITO is not smooth and there are many cracks and interspaces, which will absorb a great deal of gas molecules.The analysis of buffer layer CuPc in OLEDs using AFM and XPS validates that CuPc and PTCDA can cover the defects on ITO surface basically;In organic light-emitting devices with multi layer structure, the addition of CuPc or PTCDA can restrain the diffusion of chemical constituent to HTL by ITO, which reduces the luminescence quenching centers, and weakens the retrograde effect of ITO to HTL.
    This improves the injection efficiency and stability of devices, which is propitious to improve the characteristics and useful life.3. White OLED is triumphantly fabricated based on the study of the infection to device by adulteration, and the luminescence principle and the characteristics of optics and electrics are researched. During the manufacture of WOLED, Rubrene is added into 8-hydroxyquinoline Lituium (Liq) film. When the ratio is 1.1%, white light is got (color coordinate is x=0.286,y=0.357). The drive voltage is 8v, and the brightness is 1400cd/m2 when the voltage increases to 25v. The recombination and emission mechanism of carriers is found to be a result of the conjunct action among the capture of carriers, Forster energy transfer and charge transfer process.4. Improvement mechanism of electrode is also studied based on the synthesis of research process of electrode. To the anode material ITO, Carbon pollution is the main infection to the work function of ITO. Moderate oxygen plasma disposal is a ideal method relatively, which is not only can increase ITO work function but also reduce the resistivity, and the square resistance is decreased. To cathode material, alloy electrode, Al/LiF double layer electrode and compound electrode are thought to be well. A thin insulator layer is added in metal/insulator electrode to improve electron injection efficiency, and this paper has analyzed the three kinds of explanations to the improvement of equilibrium condition of electron and hole.
引文
[1] A. Bemanose et al. J. Chem. Phys. 1955, 39:326
    [2] M. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys., 1963, 38:2042
    [3] W. Helfrich and W. G. Schneider, Phys. Rev. Lett., 1965,14:229
    [4] W. Helfrich and W. G. Schneider, J. Chem. Phys., 1963, 44:2902
    [5] W. Mehl and W. Bucher, Z. Chem. Phys., 1965, 47:76
    [6] J. Dresner, RCA Rev, 1969, 30:322
    [7] N. V. Vityuk and V. V. Mikho. Soc. Phys. Semicond., 1973,6:1479
    [8] P. S. Vincett., W. A. Barlow., R. A. Hann, G. G. Roberts, Thin Solid Films, 1982, 94:171
    [9] C.W. Tang, S. A. VanSlyke, "Organic electroluminescent diodes", 1987, Appl. Phys. Lett. 51:913
    [10] C. Adachi, S. Tokito, T. Tsutsui, et al, Jpn. J. Appl. Phys., 1988, 27:L269
    [11] C. Adachi, T. Tsutsui and S. Saito, Appl. Phys. Lett., 1990, 56:779
    [12] J. R.Sheats, H. Antoniadis, M. Hueschen, et al, Science, 1996, 273:884
    [13] J. H. Burroughes, D. D. C. Bardley, A. R. Brown, et al, Nature, 1990, 347:539
    [14] D. Braun and A. J. Heeger, Appl. Phys. Lett., 1991, 58:1982
    [15] C. W. Tang, S.A. Vanslyke, C. H. Chen, J. Appl. Phys., 1989, 65:3610
    [16] C. H. Chen, C. W. Tang, J. Shi, K. P. Klubek, Macromol. Symp., 1998, 125:49
    [17] T. Wakimoto, Y. Yonemoto, J. Funkai, M. Tsuchinda, R. Murayama, H. Nakada, H. Matsumoto, S. Yamamura, M. Nomura, Synth.. Met., 1997, 91:49
    [18] J. Kido, Jpn. J. Appl. Phys. Part2, 1993, 32(7A): L917
    [19] Y. Hamada, C. Adachi, T. Tsutsui, S. Saito, Optoelectronics, 1992, 7:83
    [20] H. Tokailin, M. Matsuura, H. Higashi, C. Hosokawa, T. Kusumoto, Proc. SPIE, 1993,191:38
    [21] J. Kido, K. Nagai and Y. Ohashi, Chem. Lett., 1990, 65:7
    [22] W. L. Li, J. Q. Yu, G. Sun, Z. R. Hong, Y. Yu, Y. Zhao, J. B. Peng, T. Tsutsui, Synth. Met., 1997,91:263
    [23] X. C. Gao, H. Cao, C. H. Huang, B. G. Li, K. Ibrahim, F. Q. Liu, S. Umitani, Chem. Phys. Lett., 1998, 297:530
    [24] A. Edards, T. Y. Chu, C. Claude, I. Sokolik, Y. Okamoto, R. Dorsinville, Synth. Met., 1997, 84:433
    [25] Y. X. Zheng, C. Y. Shi, Y. J. Liang, Q. Lin, C. Guo, H. J. Zhang, Synth. Met., 2000, 114:321
    [27] J. Kido, K. Nagai, Y. Okamoto, T. Skothetm, Y. Yamagata, Chemistry Letter, 1991,12:67
    [28] J. Kido, H. Hayase, K. Hongawa, K. Nagai, K.Okuyama, Appl. Phys. Lett., 1994, 65:3124
    [29] T. Sano, M. Fujita, T. Fujii, Y. Hamada, K. Shibata and K. Kuroki, Jpn. J. Appl. Phys.,1995, 34:1883
    [30] C. J. Liang, D. Zhao, Z. R. Hong, D. X. Zhao, X. Y. Liu, W. L. Li, J. B. Peng, J. Q. Yu, C. S. Lee, S. T. Lee, Appl. Phys. Lett., 2000, 76:67
    [31] W. G. Zhu, Q. Jiang, Z. Y. Lu, X. Q. Wei, M. G. Xie, D. C. Zou, T. Tsutsui, Synth. Met., 2000, 111:445
    [32] W. G. Zhu, Q. Jiang, Z. Y. Lu, X. Q. Wei, M. G. Xie, D. C. Zou, T. Tsutsui, Thin Solid Films, 2000, 363:167
    [33] Y. Hanada, et al., Chem. Lett., 1993, 905
    [34] Y. Hamada, T. Sano, M. Fujita, T. Fujii, Jpn. Appl. Phys., 1993, 32:L511
    [35] Y. Hamada, T. Sano, M. Fujita, T. Fujii, Y. Nishino, K. Shibata, Jpn. J. Appl. Phys., 1993, Part2, 32:L514
    [36] Y. Hamada, T. Sano, M. Fujita, T. Fujii, Y. Nlshino, K. Shibata, Chem. Lett., 1993, 905
    [37] N. Nakamura, Eur, Pat. Appl. EP 65: 2273.
    [38] S. Q. Shi, US 548:6406
    [39] Y. Sakakibara, S.Okutsu, T. Enokida, T. Tani, Appl. Phys. Lett., 1997, 70:152
    [40] 彭俊彪,刘志斌,李文连等,发光学报,1997,18(27):155
    [41] I. H. Campbell, P. S. Davids, D. L. Smith, et al, Appl. Phys. Lett., 1998, 72(15): 1863
    [42] M. C. J. M. Vissenberg, M.J.M. de Jong, Phys. Rev. Lett., 1996, 77(23): 4820
    [43] R .Kersting, U. Lemmer, R. E Mahrt, et al, Phys. Rev. Lett., 1993, 70(34):3820
    [44] 吴哲夫,黄达诠,有机电致发光研究进展。中国图象图形学报,2000,5(10):877
    [45] T. Ohnisti, S. Doi, Y. Tsuchida, T. Noguchi, IEEE Transactions on Electron Devices, 1997, 44:1253
    [46] 赵俊卿,解士杰,韩圣浩等,半导体学报,2001,22:2
    [47] L. M. Do, E. M. Han, Y. Niidome, et al, J. Appl. Phys. 1994, 76:5118
    [48] M. Thelakkat, R. Fink, P. Posch, J. Ring, H. W. Schmidt, Polym. Prepr. 1997, 38:394
    [49] S. Tokito, H. Tanaka, K. Noda, et al, Polym. Prepr. 1997, 38:388
    [50] C. Adachi, T. Tsutsui, S. Saito, Appl. Phys. Lett., 1989, 55:1489
    [51] C. Adachi, T. Tsutsui, S. Saito, Appl. Phys. Lett., 1990, 56:799
    [52] Y. Hamada, C. Adachi, T. Tsutsui, S. Saito, Jpn. J. Appl. Phys., 1992, 31:1812
    [53] J. Kido, T. Matsmoto, Appl. Phys. Lett., 1998 73:2866
    [54] P. S. Vincett, W. A. Barlow, R. A. Hann and G. G. Roberts, Thin Solid Films 1982, 94:171
    [55] 刘黎明,熊玉卿等,物理学报,2000,49:1883
    [56] 张志林,蒋雪茵,赵伟明等,发光学报,1998,19:367
    [57] I. M. Chan, W. C. Cheng and F. C. Hong, Appl. Phys. Lett., 2002, 80:13
    [58] J. S. Kim, F. Cacialli, A. Cola, G. Gigli, and R. Cingolani, Appl. Phys. Lett., 1999, 75:19
    [59] B. Choi, H. Yoon, and H. H. Lee, Appl. Phys. Lett., 2000, 76:412
    [60] Y Kurosaka, N Tada, Y Ohmori, et al, Jpn. J. Appl. Phys., 1998, 37L: 872
    [61] S A VanSlyke, C H Chen and C W Tang, Appl. Phys. Lett., 1997, 69:2160
    [62] Y Shirota, Y Kuwabara, H Inada, et al, Appl. Phys. Lett., 1994, 65:807
    [63] Z B Deng, X M Ding, S T Lee, et al, Appl. Phys. Lett., 1999,74:2227
    [64] H Jiang, Y Zhou, B S Ooi, et al, Thin Solid Films, 2000, 363:25
    [65] S Tokito, K Noda and Y Taga, J. Phys. D: Appl. Phys, 1996, 29:2750
    [66] H Peisert, T Schwieger, J M Auerhammer, et al, J. Appl. Phys., 2001, 90:466
    [67] 胡远川,王立铎,董桂芳等,功能材料,2002,33:321.
    [68] J C Scott, J H Kaufman, P J Brock, et al, J. Appl. Phys., 1996, 79:2745
    [69] D S Zheng, Z Y Gao, X Y He, et al, Appl. Surf. Sci., 2003, 211:24
    [70] J. kido, H. Shionoga, Appl. Phys. Lett., 1995, 67:2281
    [71] G. E. Johnson, K. M. McGrane, M. Stolka, Pure Appl. Chem., 1995, 67:175
    [72] C. Zhang, H. Vonseggem, B. Kraakel, Synth. Met., 1995, 72:185
    [73] 陈燕来,朱卫国,卢志云,等,发光学报,1998,19(增):17
    [74] Z. L. Shen, P. E. Burrow, V. Bulovic, et al, Science, 1997, 276:2009
    [75] J. R. Sheats, Science, 1997, 277:191
    [76] G. Gu, G. Parthasarathy, S. R. Forrest, Appl. Phys. Lett., 1999, 74:305
    [77] Z. Y. Xie, J. S. Huang, C. N. Li, et al, Appl. Phys. Lett., 1999, 74:641
    [78] Y. Yang, E. Westerweele, et al, J. Appl. Phys., 1995, 77:694
    [79] 汤顺青,色度学,北京理工大学出版社,1990,152~183
    [80] 李亨,颜色技术原理及其应用,科学出版社,北京1994,53~66.
    [81] J. Shi, C. W. Tang, Appl. Phys. Lett., 1997, 70:1665
    [82] A .Aziz, Z. D. Popovic, et al, Science, 1999, 283:5409
    [83] L. M. Do, E. M. Han, et al, J. Appl Phys., 1994, 76:5118
    [84] 何钧,廖良生等,发光学报,1995,19:169
    [85] M. Fujihira, L. M. Do, et al, Appl. Phys. Lett., 1996, 68:1787
    [86] M. Fujihira, L. M. Do, et al, Polymer, 1997, 38:380
    [87] H. Antoniadis, M. R. Hueschen, et al, Polymer, 1997, 38:382
    [88] J. McElvain, H. Antoniadis, et al, J. Appl. Phys., 1996, 80:6002
    [89] 高观志,黄维,固体中的电输运,北京,科学出版社,1991
    [90] R. A. Keller, H. Z. Rost, J. Chem. Phys., 1962, 36:2640
    [91] G .Kemeny, B. Rosenberg, J. Chem. Phys., 1970, 52:4151
    [92] G .Kemeny, B. Rosenberg, J. Chem. Phys., 1970, 55:3549
    [93] M. Stolka, J. E Yanus, J. Phys. Chem., 1984, 88:4707
    [94] T. Katsume, M. Hiyamoto, et al, Appl. Phys. Lett., 1994, 64:2546
    [95] C. Hosokuwa, H. Higashi, et al, Appl. Phys. Lett., 1993, 62:3238
    [96] A. B. Brown, D. D. C. Bredley, et al, Appl. Phys. Lett., 1992, 61:2793
    [97] P. E. Burrows, S. R. Forrest, Appl. Phys. Lett., 1994, 64:2285
    [98] A. Donald, Sdanor, Electrica Properties of Polymers, Academic Press, INC.(London) LTD. 1982.32
    [99] R. V. Coleman, L. D. Bell, et al, Phvs Rev., 1984, B29:4246
    [100] Y. Ohmori, M. Ockida, et al, Jpn. J. Appl. Phys., 1993, 32:1663

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700