用户名: 密码: 验证码:
激光干涉粒子成像测量技术的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粒子场测量在工业、科研等领域具有重要的意义。激光干涉粒子成像技术是一种相对较新的粒子测量技术,它利用粒子散射光的干涉图得到粒子尺寸和位置信息,实现粒子场测量。本文对激光干涉粒子成像测量技术的理论及其在雾场中的应用进行了研究,所做的主要工作如下:
     1.基于几何光学模型对激光干涉粒子成像测量技术的基本理论进行了研究。
     2.分析了实验系统参数对可测粒径范围、最大可测粒子场浓度及粒径测量不确定性的影响,给出了设计最优化实验测量系统的方法。
     3.提出一种基于小波匹配和傅里叶变换技术的干涉图条纹数/条纹间距的提取方法,利用修正Rife方法对频率进行亚象素细分,并进行了计算机模拟。模拟结果:当重叠系数? <11.62%时,算法识别率高于90%,频率提取误差小于0.0185%。研究结果验证了该方法的可行性。
     4.利用连续半导体激光器和高分辨率CCD搭建激光干涉粒子成像测量实验系统,对直径为51.1?m和119.4?m的标准粒子进行测量。测量结果:粒子直径分别为49.79? 0.41?m和117.89? 1.49?m,相对误差分别为2.56%和1.26%。并应用于乙醇喷雾场和水喷雾场测量,给出了不同测量点处的粒径分布以及沿X方向、Y方向上的SMD变化曲线。实验结果证明了该方法在粒子场测量中的可行性。
     5.设计一种全相位多普勒测量实验系统,对直径为51.1?m和105?m的标准粒子分别进行点模式测量和条纹模式测量,测量相对误差分别为0.29%和3.81%。研究结果表明了该实验系统的可行性。
The measurement of particle field is important in science and engineering and the like fields. Interferometric particle imaging (IPI) technique is a relatively new particle measuring technique which can obtain the size and the location of particle by the interferogram of particle scattering light. The paper centers about the theory of the IPI technique and its application in spray field, the main work as follows has been done:
     1. The basic theory of the IPI technique is studied based on geometrical optics model (GOM).
     2. The impact of experimental parameters on the measurable particle size range, the maximum measurable concentration of the particle field and the uncertainty of particle diameter measurement is analyzed for a given experimental system, and an optimized experimental system can be designed.
     3. A method of extracting the number of fringes/spacing of interferogram based on wavelet matched filter and FFT technique is proposed, and sub-pixel accuracy of the extracted frequency is obtained with the modified Rife algorithm and computer simulations are performed. The simulation results are that the recognition ratio is more than 90% and the frequency error is less than 0.0185% for the overlap coefficient ? <11.62%. The research results show that the method presented in this paper is feasible.
     4. The experimental system of IPI has been set up with CW semiconductor laser and high-resolution CCD, and the experiments are conducted for the diameter 51.1?m and 119.4?m standard particles. The measurement results are that the particle diameters are 49.79? 0.41?m and 117.89? 1.49?m, and the relative errors 2.56% and 1.26% respectively. And the alcohol spray and the water spray are measured and the particle size distribution of different measuring points and SMD variation curves along X axis and Y axis are given. From the experimental results, it can be seen that the IPI technique is feasible in the particle field measurement.
     5. The experimental system of Global phase doppler (GPD) technique is designed, and the experiment for the diameter 51.1?m and 105?m standard particles are carried out with glare points and fringe pattern respectively, and the relative errors are 0.29% and 3.81%. And the research results testify the feasibility of the experimental system presented in this paper.
引文
[1]王乃宁,颗粒粒径的光学测量技术及应用,北京:原子能出版社,2000
    [2] M. Sommerfeld, H. H. Qiu, Particle Concentration Measurements by Phase Doppler Anemometry in Complex Dispersed Two-Phase Flows, Exp. Fluids, 1995, 18(3): 187-198
    [3] M. Sommerfeld, Analysis of Isothermal and Evaporating Turbulent Sprays by Phase-Doppler Anemometry and Numerical Calculations, Int J Heat Fluid Fl, 1998, 19(2): 173-186
    [4]高岩,粒子场数字全息测量方法研究,[硕士学位论文],天津大学,2008
    [5] G. Konig, K. Anders, A. Frohn, A New Light-Scattering Technique to Measure the Diameter of Periodically Generated Moving Droplets, J Aerosol Sci, 1986, 17(2): 157-167
    [6] K. H. Hesselbacher, K. Anders, A. Frohn, Experimental Investigation of Gaussian Beam Effects On the Accuracy of a Droplet Sizing Method, Appl. Opt., 1991, 30(33): 4930-4935
    [7] A. R. Glover, S. M. Skippon, R. D. Boyle, Interferometric Laser Imaging for Droplet Sizing: A Method for Droplet-Size Measurement in Sparse Spray Systems, Appl. Opt., 1995, 34(36): 8409-8421
    [8] C. Mounaim-Rousselle, O. Pajot, Droplet Sizing by Mie Scattering Interferometry in a Spark Ignition Engine, Part. Part. Syst. Char, 1999, 16(4): 160-168
    [9] Y. Niwa, Y. Kamiya, T. Kawaguchi, et.al., Bubble Sizing by Interferometric Laser Imaging, Proc. 10th Int. Symp. on Application of laser techniques to fluid mechanics, Lisbon, 2000
    [10] J. Madsen, J. Harbo, T. I. Nonn, et.al., Measurement of Droplet Size an Velocity Distribution in Spray Using Interferometric Particle Imaging (IPI) and Particle Tracking Velocimetry (PTV), International Congress on liquid atimisation and spray systems, Sorrento, 2003
    [11] K. Jorabchi, R. G. Brennan, J. A. Levine, et.al., Interferometric Droplet Imaging for in Situ Aerosol Characterization in an Inductively Coupled Plasma, Analytical Atomic Spectrometry, 2006, 21(9): 839-846
    [12] A. Querel, P. Lemaitre, M. Brunel, et.al., Real-Time Global Interferometric Laser Imaging for the Droplet Sizing (ILIDS) Algorithm for Airborne Research, Meas. Sci. Technol., 2010, 21(1): 15306
    [13] N. Damaschke, H. Nobach, C. Tropea, Optical Limits of Particle Concentration for Multi-Dimensional Particle Sizing Techniques in Fluid Mechanics, Exp. Fluids, 2002, 32(2): 143-152
    [14] M. Maeda, T. Kawaguchi, K. Hishida, Novel Interferometric Measurement of Size and Velocity Distributions of Spherical Particles in Fluid Flows, Meas. Sci. Technol., 2000, 11(12): L13-L18
    [15] T. Kawaguchi, Y. Akasaka, M. Maeda, Size Measurements of Droplets and Bubbles by Advanced Interferometric Laser Imaging Technique, Meas. Sci. Technol., 2002, 13(3): 308-316
    [16] M. Maeda, Y. Akasaka, T. Kawaguchi, Improvements of the Interferometric Technique for Simultaneous Measurement of Droplet Size and Velocity Vector Field and its Application to a Transient Spray, Exp. Fluids, 2002, 33(1): 125-134
    [17] D. Sugimoto, K. Zarogoulidis, T. Kawaguchi, Extension of the Compressed Interferometric Particle Sizing Technique for Three-Component Velocity Measurements, Proc. 13th Int. Symp. on applications of laser techniques to fluid mechanics, Lisbon, 2006
    [18] R. Calabria, P. Massoli, Scattering Imaging to Measure Size and Velocity of Small Particles in Dense Particle Systems, Proc. 12th Int. Symp. on applications of laser techniques to fluid mechanics, Lisbon, 2004
    [19] N. Damaschke, H. Nobach, T. I. Nonn, Size and Velocity Measurements with the Global Phase Doppler Technique, Proc. 11th Int. Symp. on Applications of laser techniques to fluid mechanics, Lisbon, 2002
    [20] N. Damaschke, H. Nobach, C. Tropea, Global Phase Doppler Technique for Size and Velocity Measurements, Proc. 4th Int. Symp. on Particle image velocimetry, Gottingen, 2001
    [21] N. Damaschke, H. Nobach, T. I. Nonn, et.al., Multi-Dimensional Particle Sizing Techniques, Exp. Fluids, 2005, 39(2): 336-350
    [22] Y. Hardalupas, S. Sahu, A. M. Taylor, et.al., Simultaneous Planar Measurement of Droplet Velocity and Size with Gas Phase Velocities in a Spray by Combined Ilids and Piv Techniques, Exp. Fluids, 2009
    [23] V. Palero, J. Lobera, M. P. Arroyo, Digital Image Plane Holography (DIPH) for Two-Phase Flow Diagnostics in Multiple Planes, Exp. Fluids, 2005, 39(2): 397-406
    [24] Y. Zama, M. Kawahashi, H. Hirahara, Simultaneous Measurement of Droplet Size and Three Components of Velocity in Spray, Opt. Rev., 2004, 11(6): 358-364
    [25] S. Dehaeck, J. van Beeck, M. Riethmuller, Extended Glare Point Velocimetry and Sizing for Bubbly Flows, Exp. Fluids, 2005, 39(2): 407-419
    [26] C. Hess, D. L Esperance, Droplet Imaging Velocimeter and Sizer: A Two Dimensional Technique to Measure Droplet Size, Exp. Fluids, 2009, 47(1): 171-182
    [27] N. Semidetnov, C. Tropea, Conversion Relationships for Multidimensional Particle Sizing Techniques, Meas. Sci. Technol., 2004, 15(1): 112
    [28]浦世亮,卢志民,浦兴国等,激光干涉成像两相流粒径空间分布测量,浙江大学学报(工学版),2006,40(10):1801-1804
    [29]浦世亮,浦兴国,袁镇福等,激光干涉气液两相流测量图像自动辨读方法的研究,中国电机工程学报,2004,24(02):201-205
    [30]浦兴国,浦世亮,袁镇福等,激光干涉气液两相流颗粒速度矢量测量的研究,中国电机工程学报,2004,24(11):237-240
    [31]浦兴国,浦世亮,袁镇福等,气液两相流速度及粒径分布激光干涉测量方法的研究,光学学报,2005,25(10):1334-1338
    [32]赵晨,激光干涉粒子成像测量中的散射光分析,[硕士学位论文],天津大学,2009
    [33] H. Albrecht, N. Damaschke, C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques, Berlin: Springer, 2003
    [34]浦世亮,基于激光干涉原理的颗粒场测量技术研究,[博士学位论文],浙江大学,2007
    [35] T. Kobayashi, T. Kawaguchi, M. Maeda, Measurements of Spray Flow by an Improved Interferometer Laser Imaging Droplet Sizing (ILIDS) System, Laser Techniques for Fluid Mechanics, Berlin, 2002: 209-220
    [36] S. Dehaeck, J. van Beeck, Designing a Maximum Precision Interferometric Particle Imaging Set-Up, Exp. Fluids, 2007, 42(5): 767-781
    [37] G. Pan, J. Shakal, W. Lai, Simultaneous Global Size and Velocity Measurement of Droplets and Sprays, 20th Liquid Atomization and Spray Systems, Orleans, 2005
    [38] S. L. Min, A. Gomez, High-Resolution Size Measurement of Single Spherical Particles with a Fast Fourier Transform of the Angular Scattering Intensity, Appl. Opt., 1996, 35(24): 4919-4926
    [39] A. Grabmann, F. Peters, Size Measurement of Very Small Spherical Particles by Mie Scattering Imaging (MSI), Part. Part. Syst. Char., 2004, 21(5): 379-389
    [40]宋菲君,近代光学信息处理,北京:北京大学出版社,1998
    [41]夏召红,基于小波变换的图像配准,[硕士学位论文],辽宁科技大学,2008
    [42]袁红梅,基于小波变换的图像去噪算法与实现,[硕士学位论文],上海交通大学,2008
    [43] D. Mendlovic, I. Ouzieli, I. Kiryuschev, et.al., Two-Dimensional Wavelet Transform Achieved by Computer-Generated Multireference Matched Filter and Dammann Grating, Appl. Opt., 1995, 34(35): 8213-8219
    [44]齐国清,几种基于FFT的频率估计方法精度分析,振动工程学报,2006,19(01):86-92
    [45]邓振淼,刘渝,王志忠,正弦波频率估计的修正Rife算法,数据采集与处理,2006,21(04):473-477
    [46] V. Palero, M. Arroyo, J. Soria, Digital Holography for Micro-Droplet Diagnostics, Exp. Fluids, 2007, 43(2): 185-195
    [47] A. Ungut, G. Grehan, G. Gouesbet, Comparisons Between Geometrical Optics and Lorenz-Mie Theory, Appl. Opt., 1981, 20(17): 2911-2918
    [48] H. Yu, J. Shen, Y. Wei, Geometrical Optics Approximation of Light Scattering by Large Air Bubbles, Particuology, 2008, 6(5): 340-346
    [49] H. C. van de Hulst, Light Scattering by Small Particles, New York : Dover, 1981
    [50] S. Dehaeck, J. P. A. J. Van Beeck, Multifrequency Interferometric Particle Imaging for Gas Bubble Sizing, Exp. Fluids, 2008, 45(5): 823-831
    [51] D. Roberge, Y. Sheng, Optical Wavelet Matched Filter, Appl. Opt., 1994, 33(23): 5287-5293
    [52] L. Wu, H. Yang, X. Li, et.al., Scattering by Large Bubbles: Comparisons Between Geometrical-Optics Theory and Debye Series, Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 108(1): 54-64
    [53] Y. Zama, M. Kawahashi, H. Hirahara, Simultaneous Measurement Method of Size and 3D Velocity Components of Droplets in a Spray Field Illuminated with a Thin Laser-Light Sheet, Meas. Sci. Technol., 2005, 16(10): 1977-1986
    [54] Y. Li, H. H. Szu, Y. Sheng, Wavelet Processing and Optics, Proc of IEEE, 1996, 84(5): 720-732
    [55]齐国清,贾欣乐,插值FFT估计正弦信号频率的精度分析,电子学报,2004,32(04):625-629
    [56]谢嘉宁,陈伟成,赵建林等,光学小波变换在图像边缘特征提取中的应用,佛山科学技术学院学报(自然科学版),2004,22(01):31-34
    [57]马志彬,激光干涉成像粒子尺寸测量实验研究,[硕士学位论文],天津大学,2009
    [58]冈萨雷斯,数字图像处理(阮秋琦,阮宇智),北京:电子工业出版社,2003
    [59]飞思科技产品研发中心,小波分析理论与Matlab7实现,北京:电子工业出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700