用户名: 密码: 验证码:
若干新型材料中光学空间孤子的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目前人们比较感兴趣的几种新型光学材料中的光学空间孤子,包括光致异构有机聚合物中非自发的空间孤子;强非局域非线性介质中的贝塞尔孤立波及管理系统Gross-Pitaevskii方程的椭圆函数孤立波解。主要研究内容和取得的成果如下:
     1.研究在背景光环境中光致异构空间孤子的形成及特性,提出了光控光的新方案。发现外加背景光能影响暗孤子和灰孤子的传播,特别重要而有趣的发现是外加背景光能实现光致异构暗-亮孤子的转换。理论预言可以用背景光控制信号光的传播。这一方案对单光子异构化和双光子异构化都适用。
     2.研究光致异构有机聚合物中的非相干耦合亮-暗孤子对,提出另一个光控光的方案。研究结果表明,虽然单光束只能自发形成光致异构灰孤子和光致异构暗孤子,但是如果通过耦合一个暗孤子来形成亮-暗矢量孤子的形式可以得到亮孤子成分。于是预言可用暗光束来控制亮光束的传播。
     3.研究管理系统强非局域非线性介质中高维贝塞尔孤立波的传播。这是继我们小组获得强非局域非线性薛定谔方程的厄米-高斯孤立波解,拉盖尔-高斯孤立波解和库玛-高斯孤立波解之后所得到的另一解析形式的孤立波解,即贝塞尔孤立波解。把这种孤立波的特性和其他孤立波的特性进行了详细的对比研究。
     4.利用椭圆函数展开法研究三维广义非线性薛定谔方程(或G-P方程),得到该方程的精确解析解,即雅克比椭圆函数解。该解析解包含单函数解和混合函数解。标准的双曲正割亮孤子解和双曲正切暗孤子解正是单一椭圆函数解的特例,单一椭圆函数还包含了三角函数解等周期函数解。混合椭圆函数解则是与以前所获得的解完全不同的解,一般也表现为周期函数。
     第3条和第4条中涉及到管理系统(或参数可变系统)中的空间孤子研究,这是我们首次在管理系统中研究空间孤子,有望促进对管理系统中光学空间孤子的研究。
     5.研究了基本空间孤子的形成条件,首次得到类暗亮孤子不能在单调非线性介质中形成的结论,有望加深人们对孤子基本概念的理解。
Optical spatial solitons supported by some presently new optical materials are investigated, which include non-spontaneous optical solitons in organic polymers that experience photoisomerization, Bessel solitary wave in strongly nonlocal nonlinear media and Jacobian elliptical function solution to Gross-Pitaevskii (G-P) equation governing the evolution of matter wave in management system. The research contents and the obtained results are as follows:
     1. The formation and characters of spatial solitons associated with photoisomerization are studied, and a new method of light-controlling-light is put forward. It is found that a background light can greatly effect the propagation of dark solitons and gray solitons. The most important and interesting find is the presentation of background light can realize the dark soliton-bright soliton transformation. And then it is predicted that the propagation of a signal light can be controlled by adding a background light. This idea is applicable to both the cases of single-photon-isomerization and two-photon-isomerization.
     2. Incoherently-coupled bright-dark soliton pairs in organic polymer that experience photoisomerization are investigated, and another idea of light-controlling-light is proposed. Research results show that a bright soliton can be obtained by coupling a dark soliton and forming a bright-dark vector soliton although a single beam can only spontaneously form a gray soliton or a dark soliton through photoisomerization. Therefore it is predicted that the propagation of a bright light beam can be controlled using a dark light beam.
     3. The propagation of Bessel solitary wave in strongly nonlocal nonlinear media with distributed parameters is researched. This is a new analytical solution to the strongly nonlocal nonlinear Schrodinger equation, prior to which Hermite-Gaussian solitary wave solution; Laguerre-Gaussian solitary wave solution and Kummar-Gaussian solitary wave solution were obtained by our group. The characters of this solitary wave are compared with that of the other solitary waves.
     4. The general nonlinear Schrodinger equation (or G-P equation) is investigated using the method of Jacobian elliptic function expandation, and the analytical solutions of such equations, namely elliptical function solutions are obtained. These precise solutions include single-function solutions and hybrid-function solutions. The standard hyperbolic secant bright soliton solution and the hyperbolic tangent dark soliton solution are just the special cases of single-elliptic function solutions. Some periodic functions such as trigonometric functions are also included in single-elliptic function solutions. Hybrid elliptic function solutions, which are always periodic functions, are totally different from the previously obtained solutions.
     5. Issues 3 and 4 involve with the research of spatial solitons in a management system or a system with varying coefficients. It is for the first time for us to study spatial solitons in a management system, which is expected to stimulate the investigation on optical spatial solitons in management systems.
     6. The necessary conditions for elementary solitons to be formed are studied, and the conclusion is derived for the first time to our knowledge that dark-like bright solitons cannot be formed in media with monotonic nonlinearities, which is expected to help comprehending the notion of elementary solitons.
引文
[1]J. S. Russell, Report of wave,14th meeting of the British association for advancement of science, London:John Murray,1844:311-390.
    [2]D. J. Korteweg and G. DeVires, On the change of form long waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag.1895,39: 422-443.
    [3]N. J. Zabusky and M. D. Kruskal, Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States, Phys. Rev. Lett.1965,15:240-243.
    [4]M. Segev, Soliton:A Universal phenomenon of Self-Trapped Wave Packets, Optics& Photonics News,2002,2:27.
    [5]A. Hasegawa, F. Tappert, Appl. Phys. Lett.1973; 23 (4):171-172.
    [6]L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Experimental observation of picosecond pulse narrowing and solitons in optical fibers, Phys. Rev. Lett.1980,45(13): 1095-1098
    [7]A. Hasegawa and F. D. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fiber (I) Anomalous dispersion, Appl. Phys. Lett.,1973, 23:142-144.
    [8]L. F. Mollenauer, R. H. Stolen and J. P. Gordon, Experimental observation of picosecond pulse narrowing and solitons in optical fibers, Phys. Rev. Lett.,1980, 45:1095-1098.
    [9]M. Shih, P. Leach, M. Segev, et al., Two-dimensional steady-state photorefractive screening solitons, Opt. Lett.1996,21:324-326.
    [10]R. Y. Chiao, E. Garmire, C. H. Towness, Self-Trapping of Optical Beams, Phys. Rev. Lett.,1964,13:479-482.
    [11]J. E. Bjorkholm and A. Ashkin, cw Self-Focusing and Self-Trapping of Light in Sodium Vapor, Phys. Rev. Lett.,1974,32:129-132.
    [12]J. S. Aitchison, A. M. Weiner, Y. Silberberg, et al., Observation of spatial optical solitons in a nonlinear glass waveguide, Opt. Lett.1990,15:471-473.
    [13]V. I. Bespalov and V. I.Talanov, Solitons in Kerr media, Sov. Phys. JETP. Lett.1966, 3:307-310.
    [14]M. Segev et al., Spatial solitons in photorefractive media, Phys. Rev. lett.1992,68: 923-926.
    [15]B. Crosignani, M. Segev, D. Engin, et al., Self-trapping of optical beams in photorefractive media. J. Opt. Soc. Am. B,1993,10:446-450.
    [16]G Duree et al., Observation of self-trapping of an optical beam due to the photorefractive effect, Phys. Rev. Lett.,1993,71:533-536.
    [17]M. Shih et at., Observation of photorefractive vortex solitons, Electron Lett.,1995,31:826-829.
    [18]M. K. Itube-Castillo et al. Appl. Phys. Lett.1994,64:408
    [19]G Duree, Morin M, Salama G, et al., Dark photorefractive spatial solitons and photorefractive vortex solitons. Phys. Rev. Lett.1995,74:1978-1981.
    [20]C.Weilnau, et al., Composite spatial solitons in a saturable nonlinear bulk medium, Appl. Phys. B,2001,72:723-727.
    [21]D. N. Christodoulides and M. I.Carvalho, Compression, self-bending, and collapse of Gaussian beams in photorefractive crystals, Opt. Lett.1994,19:1714-1716.
    [22]M. Segev, B. Crosignani, Di Porto P, et al. Stability of photorefractive spatial solitons. Opt. Lett.1994,19:1296-1298.
    [23]D. Mihalache, D. Mazilu, B.A. Malomed and F. Lederer, Stable vortex solitons supported by competing quadratic and cubic nonlinearities, Phys. Rev. E 2004,69: 066614.
    [24]M. Morin, G Duree, G. Salamo, et al., Waveguides formed by quasi-steady-state photorefractive spatial solitons. Opt. Lett.1995,20:2066-2068.
    [25]N. Fressengeas, J. Maufoy, G. Kugel, et al.. Temporal behavior of bidimensional photorefractive bright spatial solitons, Phys. Rev. E,1996,54:6866-6875.
    [26]N. Fressengeas, D. Wolferberger, J. Maufoy, et al., Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons, Opt. Commun.1998,145:393-400.
    [27]J. Maufoy, N. Fressengeas, D. Wolfersberger, et al., Simulation of the temporal behavior of soliton propagation in photorefractive media. Phys. Rev. E 1999,59: 6116-6121.
    [28]佘卫龙,李荣基,全光双准稳态空间孤子,物理学报,2001,50:886-891.
    [29]M. Chauvet, Temporal analysis of open-circuit dark photovoltaic spatial solitons, J. Opt. Soc. Am. B,2003,20:2515-2522.
    [30]E. DelRe and E. Palange, Optical nonlinearity and existence conditions for quasi-steady-state photorefractive solitons, J. Opt. Soc. Am. B 2006,23:2323-2327.
    [31]M. D. Iturbe-Castillo, P. A. Marquez, J. J. Sanchez-mondragon, et al. Spatial soliton in photorefractive Bi12TiO20 with drift mechanism of nonlinearity, Appl. Phys. Lett. 1994,64:408-410.
    [32]M. Segev, G. C. Valley, B. Crosignani, et al., Steady-state spatial soliton in photorefractive material with external applied field, Phys. Rev. Lett.1994,73: 3211-3214.
    [33]D. N. Christostoulides and M. I. Carvalho, Bright, dark, and gray spatial soliton states in photorefractive media, J. Opt. Soc. Am. B 1995,12:1628-1633.
    [32]M. Shih, M. Segev, et al., Observation of two-dimensional steady-state photorefractive screening solitons, Electron. Lett.1995,31:826-829.
    [34]M. Shih, P. Leach, M. Segev, et al., Two-dimensional steady-state photorefractive screening solitons, Opt. Lett.1996,21:324-326.
    [35]M. Segev, M. Shih, G. C. Valley, Photorefractive screening solitons of high and low intensity, J. Opt. Soc. Am. B 1996,13:706-718.
    [35]S. R. Singh and D. N. Christidoulides, Evolution of spatial optical solitons in biased photorefractive media under steady state condition, Opt. Commun.1995,118: 569-576.
    [36]S. R. Singh, M. I. Carvalho, D. N.Christodoulides, Higher-order space charge field effects on the evolution of spatial solitons in biased photorefractive crystals, Opt. Commun.1996,130:288-293.
    [37]M. I. Carvalho, S. R. Singh, D. N. Christodoulides Self-deflection of steady-state bright spatial solitons in biased photorefractive crystals, Opt. Commun.1995,120: 311-315.
    [38]Z. Chen, M. Segev, T. H. Coskun, et al., Observation of incoherently coupled photorefractive spatial soliton pairs. Opt. Lett.1996,21:1436-1438.
    [39]Z. Chen, M. Segev, T. H. Coskun, et al., Incoherently coupled dark-bright photorefractive solitons. Opt. Lett.1996,21:1821-1823.
    [40]D. N. Christodoulides, T. H. Coskun, M. Mitchell, et al., Theory of incoherent self-focusing in biased photorefractive media, Phys. Rev. Lett.1997,78:646-649.
    [41]M. Mitchell, M.Segev, self-trapping of incoherent white light, Nature(London).1997, 387:880-883.
    [42]Z. Chen, M. Mitchell, M. Segev, et al., Self-trapping of dark incoherent light beams. Science,1998,280:889-892.
    [43]D. N. Christodoulides, T. H. Coskun, M. Mitchell, et al., Theory of incoherent dark solitons. Phys. Rev. Lett.1998,80:5113-5116.
    [44]M. R. Belie, A. Stepken, et al., Spatial Screening Solitons as Particles, Phys. Rev. Lett.2000,84:83-86.
    [45]A. Stepken, F. Kaiser, M. R. Belie, Anisotropic interaction of three-dimensional spatial screening solitons, J. Opt. Soc. Am. B,2000,17(1):68-77.
    [46]G. C. Valley, M. Segev, B. Crosignani, et al., Dark and bright photovoltaic spatial solitons, Phys. Rev. A 1994,50:R4457-4460.
    [47]M. Taya, M. C. Bashaw, M. M. Fejer, et al., Observation of dark photovoltaic spatial solitons, Phys Rev A 1995,52:3095-3100.
    [48]Z. Chen, M. Segev, D. W. Wilson, et al, Self-trapping of an optical vortex by use of the bulk photovoltaic effect, Phys. Rev. Lett.1997,78:2948-2951.
    [49]M. Segev, G. C. Valley, M. C. Bashaw, et al., Photovoltaic spatial solitons, J. opt. Soc. Am. B,1997,14:1772-1781.
    [50]W. L. She, K. K. Lee, W. K. Lee, Observation of two-dimensional bright photovoltaic spatial solitons, Phys. Rev. Lett.1999,83:3182-3185.
    [51]佘卫龙,王晓生,何国岗等,折射率改变为正的光折变晶体中形成一维光伏暗孤子,物理学报,2001,50:2166-2071.
    [52]王晓生,何国岗,佘卫龙等.复色光光伏空间孤子.物理学报,2001,50:496-500.
    [53]王晓生,佘卫龙,双色光光伏空间孤子的形成条件及其应用,物理学报,2003,52(3):595-599.
    [54]刘劲松,卢克清.加外电场的光伏光折变晶体中的空间孤子波,物理学报,1998,47:1509-1514.
    [55]J. Liu, K. Lu, Screening-photovoltaic spatial solitons in biased photovoltaic photorefractive crystals and their self-deflection, J. Opt. Soc. Am. B.1999,16(4): 550-555.
    [56]J. S. Liu, D. Y. Zhang, C. H. Liang, Stability of bright screening-photovoltaic solitons, Chin. Phys.2000,9(9):667-671.
    [57]卢克清,唐天同,有偏压的光伏光折变晶体中的空间孤子,物理学报,1999,48(11):2070-2075.
    [58]K. Q. Lu, Y. P. Zhang, T. T. Tang, et al., Steady-State Screening-Photovoltaic Spatial Solitons in the Biased Photorefractive-Photovoltaic Crystals, Chin. Phys. Lett.2001, 18(2):233-235.
    [59]K. Lu, T. Tang, Y. Zhang, One-dimensional steady-state spatial solitons in photovoltaic photorefractive materials with an external applied field, Phys. Rev. A, 2000,61(5):053822.
    [60]C. Hou, Y. Li, X. Zhang, et al., Grey screening-photovoltaic spatial soliton in biased photovoltaic photorefractive crystals, Opt. Commun.2000,181(1/3):141-144.
    [61]C. F. Hou, Y. Li, B. H. Yuan, et al., Low-amplitude Screening-photovoltaic Spatial Solitons in Biased Photovoltaic Photorefractive Crystals, Chinese Journal of Laser B. 2000,9(6):551-557.
    [62]C. Hou, Z. Zhou, X. Sun, et al., Incoherently coupled grey-grey screening-photovoltaic soliton pairs in biased photovoltaic-photorefractive crystals, Optik.2001,112(1):17-20.
    [63]C. Hou, Z. Zhou, B. Yuan, et al., Incoherently coupled bright-dark hybrid soliton families in biased photovoltaic-photorefractive crystals, Appl. Phys. B,2001,72(2): 191-194.
    [64]C. F. Hou, B. Li, X. D. Sun, et al., Incoherently coupled screening-photovoltaic soliton families in biased photovoltaic photorefractive crystals, Chin. Phys.2001,
    10(4):310-313.
    [65]M. Segev and A. J. Agranat, Spatial solitons in centrosymmetric photorefractive media, Opt. Lett.1997,22:1299.
    [66]E. DelRe, B. Crosignani, M. Tamburrini, M. Segev, M. Mitchell, E. Refaeli, and A. J. Agranat, One-dimensional steady-state photorefractive spatial solitons in centrosymmetric paraelectric potassium lithium tantalate niobate, Opt. Lett.1998,23: 421-423.
    [67]A. Ciattoni, C. Rizza, E. DelRe, and E. Palange, Photorefractive solitons embedded in gratings in centrosymmetric crystals, Opt. Lett.2006,31(11):1690-1692.
    [68]B. Crosignani, E. DelRe, P. D. Porto, and A. Degasperis, Self-focusing and self-trapping in unbiased centrosymmetric photorefractive media, Opt. Lett.1998,23: 912-914.
    [69]G. I. Stegeman and M. Segev, "Optical spatial solitons and their interactions: universality and diversity,"Scienc,1999,286:1518-1523.
    [70]M. Shih, M. Segev, and G. Salamo, Three-dimensional spiraling of interacting spatial solitons, Phys. Rev. Lett.1997,78:2551-2551;
    [71]T. Carmon, R. Uzdin, C. Pigier, Z. H. Musslimani, M. Segev, and A. Nepomnyashchy, Rotating optical soliton clusters, Phys. Rev. Lett.2001,87,143901.
    [72]M. Mitchell, M. Segev, and D. N. Christodoulides, Observation of multihump multimode solitons, Phys. Rev. Lett.1998,80:4657-4660.
    [73]Z. Chen, H. Martin, E. D. Eugenieva, J. Xu, and J. Yang, Formation of discrete solitons in light-induced photonic lattices, Opt. Express 2005,13:1816-1821.
    [74]D. N. Christodoulides and R. I. Joseph, Discrete self-focusing in nonlinear arrays of coupled waveguides. Opt. Lett.13,794-796 (1988).
    [75]H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, Discrete Spatial Optical Solitons in Waveguide Arrays, Phys. Rev. Lett.1998,81: 3383-3386.
    [76]R. Morandotti, Peschel U, Aitchison J S, Eisenberg H S, and Silberberg Y. Dynamics of Discrete Solitons in Optical Waveguide Arrays. Phys. Rev. Lett.1999,83: 2726-2729.
    [77]M. J. Ablowitz and Z. H. Musslimani, Discrete Diffraction Managed Spatial Solitons, Phys. Rev. Lett.1998,87:254102.
    [78]R. Morandotti, H. S. Eisenberg, Y. Silberberg, et al., Self-focusing and defocusing in waveguide arrays, Phys. Rev. Lett.2001,86:3296-3299.
    [79]D. N. Christodoulides, F. Lederer, Y. Silberberg, Discretizing light behaviour in linear and nonlinear waveguide lattices, Nature,2003,424:817-823.
    [80]N. K. Efremidis, S. Sears, D. N. Christodoulides, et al., Discrete solitons in photorefractive optically induced photonic lattices, Phys. Rev. E.2002,66:046602.
    [81]J. W. Fleischer, T. Carmon, M. Segev, et al., Observation of discrete solitons in optically induced real time waveguide arrays, Phys. Rev. Lett.2003,90:023902.
    [82]J. W. Fleischer, M. Segev, N. K. Efremidis, et al., Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices, Nature,2003,422: 147-150.
    [83]N. K. Efremidis, J. Hudock, D. N. Christodoulides, et al., Two dimensional optical lattice solitons, Phys. Rev. Lett.2003,91:213906.
    [84]A. S. Desyatnikov, E. A. Ostrovskaya, Y. S. Kivshar, et al, Composite Band-Gap Solitons in Nonlinear Optically Induced Lattices, Phys. Rev. Lett.2003,91:153902.
    [85]J. Yang and Z. H. Musslimani,Fundamental and vortex solitons in a two-dimensional optical lattice, Opt. Lett.2003,28:2094-2096.
    [86]H. Martin, E. D. Eugenieva, Z. Chen, et al., Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices, Phys. Rev. Lett.2004,92: 123902.
    [87]J. Yang, I. Makasyuk, A. Bezryadina, et al., Dipole and quadrupole solitons in optically induced two-dimensional photonic lattices:theory and experiment, Stud. App. Math.2004,113:389-412.
    [88]J. W. Fleischer, G. Bartal, O. Cohen, et al., Observation of vortex-ring "discrete" solitons in 2D photonic lattices, Phys. Rev. Lett.2004,92:123904.
    [89]M. Soljai and M. Segev, Self-trapping of "necklace-ring" beams in self-focusing Kerr media, Phys. Rev. E 2000,62:2810-2820.
    [90]Z. Chen, A. Bezryadina, Makasyuk I, et al., Observation of two-dimensional lattice vector solitons, Opt. Lett.2004,29:1656-1658.
    [91]O. Manela, O. Cohen, G Bartal, et al., Two-dimensional higher-band vortex lattice solitons, Opt. Lett.2004,29:2049-2051.
    [92]T. J. Alexander, A. A. Sukhorukov, Y. S. Kivshar, Asymmetric vortex solitons in nonlinear periodic lattices, Phys. Rev. Lett.2004,93:063901.
    [93]陈志刚,许京军,楼慈波,光诱导光子晶格结构中新型的离散空间光孤子,物理, 2005,34:12-17.
    [94]D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Krolikowski, Spatial solitons in optically induced gratings, Opt. Lett.2003,28:710-712.
    [95]Z. Chen, H. Martin, E. D. Eugenieva et al., Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains, Phys. Rev. Lett. 2004,92:143902.
    [96]B. A. Malomed, P. G Kevrekidis, Discrete vortex solitons, Phys. Rev. E,2001,64: 026601.
    [97]J. W. Fleischer, M. Segev, N. K. Efremidis and D. N. Christodoulides, Nature(Lodon), 2003,422:147-424.
    [98]X. S. Wang, A. Bezryadina, Z. Chen, K. G. Makris, D. N. Christodoulides and G I. Stegeman, Observation of two-dimensional surface solitons, Phys. Rev. Lett.2007, 98:123903.
    [99]R. Iwanow, R. Schiek, G I. Stegeman, T. Pertsch, F. Lederer, Y. Min and W. Sohler, Observation of Discrete Quadratic Solitons, Phys. Rev. Lett.2004,93:113902.
    [100]X. S. Wang, Z. G Chen and P. G Kevrekidis, Observation of Discrete Solitons and Soliton Rotation in Optically Induced Periodic Ring Lattices, Phys. Rev. Lett.2006, 96:083904.
    [101]X. S. Wang, Z. Chen and J. Yang, Guiding light in optically induced ring lattices with a low-refractive-index core, Opt. Lett.2006,31:1887-1889.
    [102]Y. V. Kartashov, V. A. Vysloukh and L. Torner, Observation of Discrete Solitons and Soliton Rotation in Optically Induced Periodic Ring Lattices, Phys. Rev. Lett.2005, 94:043902.
    [103]Y. V. Kartashov, R. Carretero-Gonzalez, B. A. Malomed, V. A. Vysloukh and L. Torner, Multipole-mode solitons in Bessel optical lattices, Opt. Express 2005,13: 10703-10710.
    [104]Y. V. Kartashov, A. A. Egorov, V. A. Vysoukh and L.Torner, J. Opt. B:Quantum
    Semiclass. Opt.2004,6:444-448.
    [105]Y. V. Kartashov, A. A. Egorov, V. A. Vysoukh and L. Torner, Stable soliton complexes and azimuthal switching in modulated Bessel optical lattices, Phys. Rev. E 2004,70:065602(R).
    [106]G Bartal, O. Cohen, H. Buljan, J. W. Fleischer, O. Manela and M. Segev, Brillouin Zone Spectroscopy of Nonlinear Photonic Lattices, Phys. Rev. Lett.,2005,94: 163902.
    [107]Y. V. Kartashov, A. Ferrando and M. G. March, Dipole soliton-vortices, Opt. Lett., 2007,32:2155-2157.
    [108]J. G Gardenes, B. A. Malomed, L. M. Floria, A. R. Bishop, Discrete solitons and vortices in the two-dimensional Salerno model with competing nonlinearities, Phys. Rev. E,2006,74:036607.
    [109]T. T. Shi, S. Chi, Nonlinear photonic switching by using the spatial soliton collision, Opt. Lett.1990,15(20):1123-1125.
    [110]M. Shalaby, A. Barthelemy, Experimental spatial soliton trapping and switching, Opt. Lett.1991,16(19):1472-1474.
    [111]S. Blair, and K. Wagne,r Cascadable spatial-soliton logic gates, Appl. Opt.2000, 39(32):6006-6018.
    [112]Y. D. Wu, New all-optical switch based on the spatial soliton repulsion, Opt. Express, 2006,14(9):4005-4012.
    [113]M. Taya, M. C. Bashaw, M. M. Fejer, et al., Y junction arising from dark-soliton propagation in photovoltaic media, Opt. Lett.1996,21(13):943-945.
    [114]M. F. Shih, Z. Chen, M. Mitchell, and M. Segev, Waveguides induced by photorefractive screening solitons, J. Opt. Soc. Am. B,1997,14(11):3091-3101.
    [115]C. T. Law, X. Zhang, G A. Swartzlander, et al., Waveguiding properties of optical vortex solitons, Opt. Lett.2000,25(1):55-57.
    [116]K. Q. Lu, W. Zhao, Y. L. Yang, M. Z. Zhang, J. P. Li, H. J. Liu, and Y. P. Zhang,
    Waveguides induced by grey screening solitons, Chin. Phys.2006,15(2): 1009-1963.
    [117]M, Wesner, C, Herden, et al., Temporal development of photorefractive solitons up to telecommunication wavelengths in strontium-barium niobate waveguides, Phys. Rev. E.2001,64:036613.
    [118]D. Kip, C. Amastassiou, et al., Transmission of image through highly nonlinear media by gradient-index lenses formed by incoherent solitons, Opt. Lett.2001,26: 524-526.
    [119]M. Shih and F. Sheu, Photorefractive polymeric optical solitons, Opt. Lett.,1999,24: 1853-1855.
    [120]F. Sheu and M. Shih, Photorefractive polymeric soliton supported by orientationally enhanced birefringent and electro-optic effects, J. Opt. Soc. Am. B,2001,18: 785-789.
    [121]Z. Chen, M. Asaro, O. Ostroverkhova, W. E. Moerner, M. He, and R. J. Twieg, Self-trapping of light in an organic photorefractive glass, Opt. Lett.2003,28, 2509-2511.
    [122]M. Asaro, M. Sheldon, Z. Chen, O. Ostroverkhova, and W. E. Moerner, Soliton-induced waveguides in an organic photorefractive glass, Opt. Lett.2005,30: 519-521
    [123]T. M. Monro, C. Martijn de Sterke, and L. Poladian, Self writing a waveguide in glass using photosensitivity, Opt. Commun.1995,119:523-527.
    [124]A. S. Kewitsch and A. Yariv, Self-focusing and selftrapping of optical beams upon photopolymerization, Opt. Lett.1996,21:24-26.
    [125]A. S. Kewitsch and A. Yariv, Nonlinear optical properties of photoresists for projection lithography, Appl. Phys. Lett.1996,68:455-457.
    [126]S. Shoji, S. Kawata, A. A. Sukhorukov, and Y. S. Kivshar, Self-written waveguides in photopolymerizable resins, Opt. Lett.2002,27:185-187.
    [127]K. Dorkenoo,O. Cregut, L. Mager, F. Gillot, C. Carre, and A. Fort, Quasi-solitonic behavior of self-written waveguides created by photopolymerization, Opt. Lett. 2002,27:1782-1784.
    [128]K. D. Dorkenoo, F.Gillot,O. Cregut, Y. Sonnefraud, A. Fort, and H. Leblond, Control of the refractive index in photopolymerizable materials for (2+1) D solitary wave guide formation, Phys. Rev. Lett.2004,93:143905.
    [129]M. Nakanishi, O. Sugihara, N. Okamoto, and K. Hirota, Ultraviolet photobleaching process of azo dye doped polymer and silica films for fabrication of nonlinear optical waveguides, Appl. Opt.1998,37:1068-1072.
    [130]S. Sarkisov, M. J. Curley, D. E. Diggs, A. Wilkosz, V. V. Grimalsky, and G Adamovsky, Dark spatial solitons in photopolymer films for optical interconnections, Opt. Eng. (Bellingham) 2000,39:616-620.
    [131]S. Sarkisov, M. Curley, A. Wilkosz, and V. Grymalsky, Optical channel waveguides formed by upconverted photobleaching of dye-doped polymer film in regime of dark spatial soliton, Opt. Commun.1999,161:132-137.
    [132]Z. Sekkat, D. Morichere and M. Dumont, J. Appl. Phys.1991,71:1543-1548.
    [133]M. C. Victor et al., One-and two-photon induced molecular conformation change and reorientation and related third-order nonlinearities in phenylamine azo-dye polymer thin films, Opt. Commun.2002,209:451-460.
    [134]M. C. Victor and C. C. Hsu, Dynamics of photoinduced second order nonlinearity in dimethylamino-nitrostilbene polymer thin films, Opt. Commun.2001,190:367-371.
    [135]Z. Sekkat and M. Dumont, J. Syn. Metal 1993,54:373-377.
    [136]A. Natansohn and P. Rochon, Photoinduced Motions in Azo-containing polymers. Chem.Rev.2002,102:4139-4193.
    [137]M. Dumont et al., Nonlin. Opt.1995,9:327-332.
    [138]M. Dumont and A. E. Osman, On spontaneous and photoinduced orientational mobility of dye molecules in polymers, Chem.Phys.1999,245:437-446.
    [139]Z. Sekkat, M. Dumont, Polarization effects in photoisomerization of azo dyes in polymeric films. Appl. Phys. B.,1991,53:121-124.
    [140]S. Monika and M. Michael, Mechanism of photoreorientation of azobenzene dyes in molecular films, J. Phys. Chem.1996,100:7558-7564.
    [141]J. A. Delaire and K. Nakatani, Linear and Nonlinear Optical Properties of Photochromic Molecules and Materials, Chem. Rev.2000,100:1817-1845.
    [142]O. K. Song, C. H. Wang and M. A. Pauley, Dynamic Processes of Optically Induced Birefringence of Azo Compounds in Amorphous Polymers below Tg, Macromolecules 1997,30:6913-6919.
    [143]J. Xia and C. H. Wang, Holographic Grating Relaxation Studies of Probe Diffusion in a Polymer Blend, Macromolecules,1999,32:5655-5659.
    [144]J. C. Liang, X. S. Wang, D. B. Luo, W. L. She, S. Z. Wu, F. Zeng, T. Tian, S. L. Yao, "Z-scan measurements on photoisomerization of azobenzene polymer and their theoretical interpretation," Acta Phys. Sin.53,3596 (2004).
    [145]J. C. Liang and X. Q. Zhou, Application of continuous-wave laser Z-scan technique to photoisomerization, J. Opt. Soc. Am. B,2005,22:2468-2471.
    [146]J. C. Liang, H. Zhao, X. Zhou, and H. C. Wang, Polarization-dependent effects of refractive index change associated with photoisomerization investegated with Z-scan technique, J. Appl. Phys.2007,101:013106.
    [147]X. S. Wang, W. L. She, and W. K. Lee, Optical spatial solitons supported by photoisomerization nonlinearity in a polymer, Opt. Lett.2004,29:277-279.
    [148]X. S. Wang, and W. L. She, Spontaneous one-and two-dimensional optical spatial solitons supported by photoisomerization nonlinearity in a bulk polymer, Phys. Rev. E2005,71:026601.
    [149]X. S. Wang, W. L. She, W. K. Lee, Optical spatial soliton supported by photoisomerization nonlinearity in a polymer with a background beam, J. Opt. Soc. Am. B,2006,23(10):2127-2133.
    [150]S. P. Bian, andM. G. Kuzyk, Dark spatial solitons in bulk azo-dye-doped polymer using photo induced molecular reorientation, Appl. Phys. Lett.2004,85:1104-1106.
    [151]X. S. Wang, W. L. She, S. Z. Wu, and F. Zeng, Circularly polarized optical spatial solitons, Opt. Lett.2005,30:863-865.
    [152]B. Z. Zhang, H. C. Wang, and W. L. She, Influence of molecular reorientation on photoisomerization optical spatial solitons, J. Opt. A:Pure Appl. Opt.2007,9: 395-399.
    [153]M. Soljai, S. Sears, and M. Segev, Self-Trapping of "Necklace" Beams in Self-Focusing Kerr Media, Phys. Rev. Lett.1998,81:4851-4854.
    [154]M. Segev, G.C.Valley, S. R. Singh, M. I. Carvalho, D. N. Christodoulides, Vector photorefractive spatial solitons, Opt. Lett.1995,20(17):1764-1766.
    [155]M. I. Carvalho, S. R. Singh, D. N. Christodoulides, R. I. Joseph, Dark and bright vector solitonsin biased photorefractive media. Phys. Rev. E 1996,53(1):R53-57.
    [156]J. N. Malmberg, A. H. Carlsson, D. Anderson, M. Lisak, E. A. Ostrovskaya, and Y. S. Kivshar, Vector solitons in (2+1) dimensions, Opt. Lett.,2000,25(9):643-645.
    [157]K. G Makris, S. Suntsov, D. N. Christodoulides, et al., Discrete surface solitons, Opt. Lett.2005,30:2466-2468.
    [158]S. Suntsov, K. G Makris, D. N. Christodoulides, et al. Observation of Discrete Surface Solitons, Phys. Rev. Lett.2006,96:063901.
    [159]Y. V. Kartashov, V. A. Vysloukh, L. Torner, Surface Gap Solitons, Phys. Rev. Lett. 2006,96:073901.
    [160]M. I. Molina, I. L. Garanovich, A. A. Sukhorukov, et al., Discrete surface solitons in semi-infinite binary waveguide arrays, Opt. Lett.2006,31:2332-2334.
    [161]M. I. Molina, R. A. Vicencio, Y. S. Kivshar, Discrete solitons and nonlinear surface modes in semi-infinite waveguide arrays, Opt. Lett.2006,31:1693-1695.
    [162]K. Motzek, A. A. Sukhorukov, Y. S. Kivshar, Polychromatic interface solitons in nonlinear photonic lattices, Opt. Lett.2006,31:3125-3127.
    [163]K. G Makris, J. Hudock, D. N. Christodoulides, et al., Surface lattice solitons, Opt. Lett.2006,31:2774-2776.
    [164]C. Ruslim and K. Ichimura, Conformational Effect on Macroscopic Chirality Modification of Cholesteric Mesophases by Photochromic Azobenzene Dopants, J. Phys. Chem. B.2000,104:6529-6536.
    [165]L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, P. S. Ramanujam, Photoinduced circular anisotropy in side-chain azobenzene polyesters, Opt. Mater. 1997,8:255-260.
    [166]D. Y. Kim, S. K. Tripathy, L. Li, Kumar, J. Appl. Phys. Lett.1995,66:1166.
    [167]C. J. Barrett, A. L. Natansohn, P. L. Rochon, Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films, J. Phys. Chem.1996,100: 8836-8841.
    [168]钱士雄,王恭明,非线性光学——原理与进展,复旦大学出版社,2002,10:570
    [169]D. Fernando, et al, Temperature dependence of photoinduced birefringence in polystyrence doped with disperse red-1, Macromol. Rapid Commun.2002, 23:948-954.
    [170]Z. Sekkat and W. knoll, Creation of second-order nonlinear optical effects by photoisomerization of polar azo dyes in polymeric films:theoretical study of steady-state and transient properties, J. Opt. Soc. Am. B,1995,12(10):1855-1867.
    [171]T. Buffeteau, F. L. Labarthet, M. Pezolet, and C. Sourisseau, Dynamics of photoinduced orientation of nonpolar azobenzene groups in polymer films: Characterization of the cis isomers by visible and FTIR spectroscopies, Macromolecules,2001,34:7514-7521.
    [172]L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, and N. Mateva, Optically-controlled Photo-induced Birefringence in Photo-anisotropic Materials, Journal of Modern Optics,1988,35(11):1789-1799.
    [173]A. W. Snyder and D. J.Mitchell, Accessible solitons, Science,1997,276(6): 1538-154.
    [174]A. W. Snyder and Y. Kivshar, Bright spatial solitons in non-Kerr media:stationary beams and dynamical evolution, J. Opt. Soc. Am. B,1997,11 (11):3025-3031.
    [175]郭旗,许超彬,偏离束腰入射对非局域非线性介质中高斯光束演化的影响.物理学报,2004,53(9):3025-3029.
    [176]M. Warenghem, J. F. Henninot, and G Abbate, Nonlinearly induced self-waveguiding structure in dye doped nematic liquid crystals confined in capillaries, Opt. Express,1998,2(4):483-490.
    [177]F. Derrien, J. F. Henninot, M. Warenghem, and G Abbate, A thermal (2+1)-D spatial optical soliton in a dye doped liquid crystal, J. Opt. A, Pure Appl. Opt.,2000, 2 (3):332-337.
    [178]M. Peccianti, A. de Rossi, G Assanto, A. de Luca, C. Umeton, and I. C. Khoo, Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells, Appl. Phys. Lett.2000,77(1):7-9.
    [179]M. Peccianti and G Assanto, Nematic liquid crystals:A suitable medium for self-confinement of coherent and incoherent light, Phys. Rev. E,2002,65(3): 035603.
    [180]M. Peccianti, K. A. Brzdakiewicz, and G Assanto, Nonlocal spatial soliton interactions in nematic liquid crystals, Opt.Lett.2002,27(9):1460-1462.
    [181]M. Peccianti, C. Conti, and G Assanto, All-optical switching and logic gating with spatial solitons in liquid crystals, Appl. Phys. Lett.2002,81, (13):3335-3337.
    [182]C. Conti, M. Peccianti, and G Assanto, Observation of Optical Spatial Solitons in a Highly Nonlocal Medium, Phys. Rev. Lett.,2004,92 (11):113902.
    [183]O. Bang, W. Krolikowski, J. Wyller and J. J. Rasmussen, Collapse arrest and soliton stabilization in nonlocal nonlinear media, Phys. Rev. E,2002,66:046619.
    [184]W. P. Zhong and L. Yi, Two-dimensional Laguerre-Gaussian soliton family in
    strongly nonlocal nonlinear media, Phys. Rev. A,2007.75:061801(R).
    [185]徐四六,刘会平,易林,强非局域非线性介质中的二维库墨-高斯孤子簇,物理学报,2010,59,1069-1074.
    [186]H. Ishitobi, Z. Sekkat, S. Kawata, Photo-orientation by multiphoton Photoselection, J. Opt. Soc. Am. B,2006,23:868-873.
    [187]S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, Finer features for functional microdevices---Micromachines can be created with higher resolution using two-photon absorption, Nature,2001,412:697-698.
    [188]Z. Sekkat, M. Maeda, H. Ishitobi, and S. Kawata, Molecular Orientation by Two-Photon Isomerization:Towards 3 Dimentional Orientation Storage, Nonlin. Opt. Quant. Opt.2005,34:161-168.
    [189]M. Maeda, H. Ishitobi, Z. Sekkat, S. Kawata, Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films, Appl. Phys. Lett. 2004,85(3):351-353.
    [190]D. A. Parthenopoulos, P. M. Rentzepis, Three-Dimensional Optical Storage Memory, Science,1989,245:843-848.
    [191]Z. Sekkat, Isomeric orientation by two-photon excitation:a theoretical study, Opt. Commun.2004,229:291-298.
    [192]H. Ishitobi, Z. Sekkat, S. Kawata, Ordering of azobenzenes by two-photon isomerization, J. Chem. Phys.2005,125:164718.
    [193]S. Maruo, O. Nakamura, S. Kawata, Three-dimensional microfabrication with two-photon-absorbed photopolymerization, Opt. Lett.1997,22:132-134.
    [194]S. W. Magennis, F. S. Mackay, A. C. Jones, K. M. Tait, and P. J. Sadler, Chem. Mater,2005,17:2059-2062.
    [195]R. Loucif-Saibi, K. Nakatani, J. A. Delaire, M. Dumont, and Z. Sekkat, Photoisomerization and second harmonic generation in disperse red one-doped and functionalized poly(methyl methacrylate) films, Chem. Mater.1993,5:229-236.
    [196]H. C. Wang, B. Z. Zhang, L. Yan, Y. Li, G. Zheng, and W. L. She, Gray and dark spatial solitons supported by two-photon isomerization, Opt. Commun.2007, 275(1):234-239.
    [197]B. V. Gisin, R. Driben, and B. A. Malomed, Bistable guided solitons in the cubic-quintic medium, J. Opt. B:Quuantum Semiclass. Opt.2004,6:S259-S264.
    [198]I. V. Barashenkov, Stability Criterion for Dark Solitons, Phys. Rev. Lett.1996,77: 1193-1196.
    [199]D. J. Mitchell and A. W. Snyder, J. Opt. Soc. Am. B 1993,10,1572-1578.
    [200]X. P. Zhang and Guo Q, Analytical solution in the Hermite-Gaussian form of the beam propagating in the strong nonlocal media, Acta Phys. Sin.2004,54: 3178-3182.
    [201]W. P. Zhong, M. Belic, R. Xie, G Chen, and L. Yi, Two-dimensional Whittaker solitons in nonlocal nonlinear media, Phys. Rev. A,2008,78:013826.
    [202]W. P. Zhong, L. Yi, R. Xie, M. Belic, and G. Chen, Robust three-dimensional spatial soliton clusters in strongly nonlocal media, J. Phys. B:At. Mol. Opt. Phys.2008,41: 025402.
    [203]G I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics (Cambridge University Press, Cambridge,1996).
    [204]N. N. Akhmediev and A. B. Shabat, Slitons:Nonlinear pulses and wavepackets, 1997, Chapman and Hall, London.
    [205]Y. S. Kivshar and G P. Agrawal, Optical solitons, From fibers to photonic crystals, 2003, Academic Press, New York.
    [206]D. J. Korteweg and G de Vries, On the change of form of long waves adavancing in a rectangular channel and on a new-type of long stationarywaves, Phil. Mag,1985, 39(5):422-426.
    [207]R. A. Kraenkel and A. Zenchuk, Camassa-Holm equation:transformation to deformed sinh-Gordon equations, cuspon and soliton solutions, J. Phys. A:Math.
    Gen.1999,32(25):4733-4736.
    [208]P. Rosenau, Nonlinear dispersion and compact structures, Phys. Rev. Lett.1993, 73(9):1737-1740.
    [209]V. E. Zaltharov and A. B. Shabat, Exact theory of two-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP,1972,34:62-67.
    [210]R. Hirota, Exact solution of the KDV for multiple collisions of solitons, Phys. Rev. Lett.,1971,27:1192-1195.
    [211]H. D. Wahlquist, F. B. Estabrook, Backlund transformation for solutions of the Korteweg-de Vries equation, Phys. Rev. Lett.1973,31:1386-1389.
    [212]R. Conte and M. Musette, Link between solitary waves and Projective Riccati equation, J. Phys. A:Math. Gen.1992,25:5609-5614.
    [213]L. Yang, J. B. Liu, K. Q. Yang, Exact solutions of nonlinear PDE, nonlinear transformations and reduction of nonlinear PDE to a quadrature, Phys. Lett. A 2001, 278,267-274.
    [214]Z. T. Fu, S. K. Liu, S. D. Liu, Q. Zhao, New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations, Phys. Lett. A 2001,290:72-77.
    [215]E. G Fan, H. Q. Zhang, A note on the homogeneous balance method, Phys. Lett. A 1998,246:403-409.
    [216]E. G Fan, Two new applications of the homogeneous balance method, Phys. Lett. A 2000,265:353-359.
    [217]Y. B. Zhou, M. L. Wang and Y. M. Wang, Period wave solutions to a coupled KDV equations with variable coefficients, Phys. Lett. A 2003,308(2):31-38.
    [218]D. S. Wang and H. Q. Zhang, Further improved F-expansion method and new exact solutions of Konopeich enko-Dubrovsky equation, Chaos, Solitons and Fractals 2005,25(3):601-607.
    [219]V. N. Serkin and A. Hasegawa, Novel Soliton Solutions of the Nonlinear Schrodinger Equation Model, Phys. Rev. Lett.2000,85:4502-4055.
    [220]S. Chen, L. Yi, D. S. Guo and P. Lu, Self-similar evolutions of parabolic, Hermite-Gaussian, and hybrid optical pulses:Universality and diversity, Phys. Rev. E2005,72:016622.
    [221]V. I. Kruglov, A. C. Peacock and J. D. Harvey, Exact solutions of the generalized nonlinear Schrodinger equation with distributed coefficients, Phys. Rev. E 2005,71: 056619.
    [222]I. Towers and B. A. Malomed, Multiconjugate adaptive optics for large telescopes: analytical control of the mirror shapes, J. Opt. Soc. Am.2002,19:537-542.
    [223]I. Berge, V. K. Mezentsev, J. J. Rasmussen, P. L. Christiansen, and Y. B. Gaididei, Self-guiding light in layered nonlinear media, Opt. Lett.2000,25:1037-1039.
    [224]H. Saito and M. Ueda, Dynamically Stabilized Bright Solitons in a Two-Dimensional Bose-Einstein Condensate, Phys. Rev. Lett.2003,90:040403.
    [225]刘式适,傅遵涛,刘式达,赵强,Jacobi椭圆函数展开法及其在求解非线性波动方程中的应用,物理学报,2001,50:2068-2072.
    [226]G.D. Montesinos, V. M. Perez-Garcia, H. Michinel, Stabilized Two-dimensional vector solitons, Phys. Rev. Lett.2004,92:133901.
    [227]K. Lu, Y. Zhang, T. Tang, B. Li, Incoherently coupled steady-state soliton pairs in biased photorefractive-photovoltaic materials, Phys. Rev. E 2001,64:056603.
    [228]S. K. Adhikari, Bright solitons in coupled defocusing NLS equation supported by coupling:Application to Bose-Einstein condensation, Phys. Lett. A 2005,346: 179-184.
    [229]S. Yu, Kivshar, Nonlinear dynamics near the zero-dispersion point in optical fibers, Phys. Rev. A,1991,43:1677-1679.
    [230]H. E. Nistazakis, D. J. Frantzeskakis, P. S. Balourdos, A. Tsigopoulos, B. A. Malomed, Dynamics of anti-dark and dark solitons in (2+1)-dimensional generalized nonlinear Schrodinger equation, Phys. Lett. A 2000,278:68-75.
    [231]W. Chao, Dynamical behaviour of unbounded spatial solitons in self-defocusing media with small x(5) self-focusing nonlinearity,2000, Opt. Commun.175:239-244.
    [232]Li, Malomed, Mihalache and Liu, Exact soliton-on-plane-wave solutions for two-component Bose-Einstein condensates, Phys. Rev. E 2006,73:066610.
    [233]D. N. Christodoulides, S. R. Singh, M. I. Carvalho and M. Segev, Appl. Phys. Lett., 1996,68:1763.
    [234]Z. Chen, et al., Observation of incoherently coupled photorefractive spatial soliton pairs, Opt. Lett.,1996,21:1436-1438.
    [235]C. Hou, Z. Zhou, X. Sun and B. Yuan, Incoherently coupled grey-grey screening-photovoltaic soliton pairs in biased photovoltaic-photorefractive crystals, Optik,2001,112:17-20.
    [236]C. Hou, C. Du, Abdurusul, S. Li, Incoherently coupled bright-dark soliton pairs in biased centrosymmetric photorefractive media, Chin. Phys. Lett.2001,18, 1607-1609.
    [237]H. Wang, W. She, Incoherently coupled gray photovoltaic spatial soliton families, Chin. Phys. Lett.2005,22:128-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700