用户名: 密码: 验证码:
蝇视觉系统在红外成像制导中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红外成像制导已成为当今精确制导武器的重要技术手段。但目前的目标图像探测技术,无论是光机扫描成像还是凝视焦平面成像,探测的角度都有限,难以用一个探测器实现360°范围内的探测,因此难以实现导弹全方位发射和攻击。在此背景下,蝇的复眼给了我们一个极好的启迪。本文针对蝇视觉在成像制导应用中需要解决的问题,如蝇复眼运动检测器阵列的算法及实现、图像的仿复眼镶嵌整合、蝇复眼目标检测机理、蝇仿生复眼的结构及在导弹上的配置等,集中研究了以下几方面内容:
     1.蝇复眼运动检测器及图像运动速度估计
     研究了初级运动检测器和运动检测器阵列的算法、特征及空间整合。推导出基于图像频谱密度的响应公式。研究表明:运动检测器可以精确检测多频谱自然图像速度,在运动检测器前增加生理学预滤波环节可以改善图像运动速度的估计。此结论极大地丰富了Reichardt初级运动检测器理论。探讨了运动检测器的工程实现电路,其实验结果与理论、蝇视觉实验结果非常吻合。
     2.图像的仿复眼镶嵌整合技术
     推导了基于空间坐标投影的图像配准算法,针对多幅静态图像提出了仿复眼的基于小波多分辨分析的图像镶嵌整合算法,建立了一种新的图像整合规则;针对具有运动目标的序列图像,提出了基于特征的仿复眼图像镶嵌整合算法。两种方法克服了现存的图像拼合算法只能得到局部最优解的缺点,对图像样本的要求大大降低,而且可以得到全优解。
     3.仿蝇视觉的红外图像处理方法
     研究了蝇视觉图形—背景分辨系统及其相应的算法,探讨了基于复眼侧抑制网络的图像预处理方法。提出一种仿蝇视觉目标检测的工程实现方法—基于模糊熵的图像分割方法,它分割速度快,简化了运算量,提高了运算速度。
     4.仿蝇复眼的红外图像目标识别
     提出一种基于红外目标特性和边缘不变矩的特征向量提取方法,提出了仿蝇视觉基于支持向量机的目标识别方法,该方法识别率比传统K近邻法高,且识别速度快。
     5,蝇视觉系统在成像制导中的综合应用
     提出了一种仿复眼,具有全方位视场的红外成像导引头物理模型,该导引头
    
    中文摘要
    模拟了整只复眼对环境和目标的成像,可以实现36了搜索视场。提出了相应图像
    简化配准算法,给出了蝇视觉系统在成像制导上的综合应用流程,为后续蝇复眼
    在成像制导上的具体应用打开了思路。
Today, infrared imaging guidance has been one of the most precise guidance techniques. But today's target imaging detecting techniques, including scanning imaging and gazing-array imaging, is difficult to detect 360?range using one detector, and it is difficult to launch and attack with full of orientation. Under this background, fly's compound eyes give us a good edification. Aiming at some problems about fly vision applying to imaging guidance, such as, algorithm and realization of motion-detectors array, image mosaic technique of imitating compound eyes, target detection of compound eyes, realization of compound eyes in missile, and so on, the main contents of this paper are as follows:
    1 . Motion-detector of fly's compound eyes and determination of velocity of moving image.
    This paper describes the algorithm of elementary motion-detector and motion-detector arrays, including the characteristic and space conformity. The formula based on spectrum density is given. It discusses motion-detector response to narrow-band image motion and to broadband images. Studies show that the motion-detector can provide velocity estimates in organism's natural visual environment, and physiological prefilters can improve determination of velocity of moving image. This conclusion is affluent in the theory of Reichardt EMD, and it is the complementarity of HMD theory. This paper also discusses the realization of motion-detector, the circuit is given, and experiment result accords with theory and fly vision.
    2. Image mosaic technique of imitating compound eyes
    This paper puts forward a registration method based on space coordinate. Aiming at multiple frames static scenes, a new image mosaic method imitating compound eyes is presented based on wavelet multi-scale analysis. A new ruler of image mosaic is founded. Aiming at multiple frames video sequences with moving objects, a new image mosaic method imitating compound eyes is presented based on image's characteristic. Now. some mosaic algorithms are local optimizing. These two methods overcome those
    
    
    
    disadvantages, and are global optimizing.
    3. Method of infrared image processing imitating fly vision
    The Figure-Ground Discrimination System is discussed; the formulas of output response are given about Large-Scene system and Small-Scene system. This paper discusses the method about fly lateral inhibitory networks applying to image preprocessing. Aiming at target detecting mechanism of fly vision, we propose a new method for infrared image segmentation using the fuzzy entropy. Its segmentation velocity is fast, and can be satisfied with the feature of real time.
    4. Infrared target recognition imitating fly vision
    This paper proposes a new method based on edge moment invariants and the infrared target feature for feature extraction. A new target recognition method based on support vector machine is proposed. Studies show it is faster than the others, and it is proved to be effective.
    5. Applying fly vision system to imaging guidance
    A new physical model of imaging seeker is proposed, this seeker imitates fly's compound eyes, can realize 360?searching range. According to this model, we simplify the registration method of image. At last, a synthetical application flow is given about fly vision applying to imaging guidance. It expands the thought for latter research.
引文
【1】 蒋耀庭,潘丽娜等.军用红外探测器及制导武器的发展现状.航空兵器,1999(2)
    【2】 M. Egelhaaf. On the neuronal basis of figure-ground discrimination by relative motion in the visual system of fly Ⅰ behavioral constraints imposed on the neuronal network and role of the optophone system. BioL. Cybern 52: 123~140, 1985
    【3】 M. Egelhaaf. On the neuronal basis of figure-ground discrimination by relative motion in the visual system of fly Ⅱ figure detection cells, a new class visual inter-neurons. Biol. Cybern 52: 195~209, 1985
    【4】 M. Egelhaaf. On the neuronal basis of figure-ground discrimination by relative motion in the visual system of fly Ⅲ possible input circuitries and behavioral of the FD-cells. BioL. Cybern 52: 267~280, 1985
    【5】 Egelhaaf. M, W. Reichardt. Dynamic response properties of movement detectors: theoretical analysis and electrophysiological investigation in the visual system of the fly. Biol. Cybern. 56, 69~87, 1987
    【6】 Egelhaaf. M, K. Hausen, W. Reichardt and C. Wehrhahn. Visual course control in flies relies on neuronal computation of object and background motion. TINS 11, 351~358, 1988
    【7】 Reichardt. W. Visual control of flight in the fly. In: Photoreceptors. NATO ASI Series, Series A: Life Sciences Vol. 75, Eds. A. Borsellino, L. Cervetto. Plenum Press, New York, London, 351-365, 1984
    【8】 Reichardt. W. The visual system of insects. Processing of optical information. Rivista di Biologia 78, 9~42, 1985
    【9】 Reichardt. W, T. Poggio and K, Hausen. Figure-ground discrimination by relative movement in the visuaI system of the fly. Part Ⅱ: Towards the neural circuitry. Biol. Cybern. Suppl. 46, 1~30, 1983
    【10】 Reichardt. W. Relative movement and figure-ground discrimination by the
    
    visual system of the fly (towards a neuronal circuitry). In: Comparative Physiology of Sensory Systems, Eds. L. Bolis, R. D. Keynes, S. H. P. Maddressl. Cambridge University Press, Cambridge, 1984, 357~370
    【11】 Reichardt. W. Figure-ground discrimination by relative movement. In: ATTI Ⅵ Congressi SIBPA-Ⅶ Congresso GNCB Camogli, 6~8 Ottobre 1983, Ed. F. Conti. 1983
    【12】 Poggio. T and W. Reichardt. A theory of the pattern induced flight orientation of the fly Musca domestica. Kybernetik 12, 185~203, 1973
    【13】 Reichardt, W. Autocorrelation, a principle for evaluation of sensory information by the central nervous system. In: Principles of Sensory Communications, Ed. W. A. Rosenblith. John Wiley, New York 1961, 303~317
    【14】 Reichardt, W. Functional characterization of neural interactions through an analysis of behavior. In: The Neurosciences, Fourth Study Program, Eds. F. O. Schmitt, F. G. Worden. The MIT Press, Cambridge, Mass. USA, 1979, 81~103
    【15】 Kirschfeld, K, R. Feiler and B. Minke. The kinetics of formation of metarhodopsin in intact photoreceptors of the fly. Z. Naturforschung 33c, 1009~1010, 1978
    【16】 Riehle A, Franceschini N. Motion detection in flies Prametric control over on-off pathways, Exp. Brain Res. 54(2), 390~394, 1984
    【17】 Ogmen, H. and S. Gagne. Neural network architectures for motion perception and elementary motion detection in the fly visual system, pp. 487~506, Neural Networks, volume 3, 1990
    【18】 Arnett D W. Receptive field organization of units in the first optic ganglion of dipterans. Science 173:929~931, 1971
    【19】 Hassenstein, B. and W. Reichardt. Systemtheoretische Analyse der Zeit-, Reihenfolgen-und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkfers Chlorophanus. Z. Naturforsch. 11b, 513~524, 1956
    【20】 Hassenstein, B. and W. Reichardt. Functional structure of a mechanism of perception of optical movement. In: Proceedings of the First International Congress on Cybernetics, Namur, 797~801, 1956
    
    
    【21】 M. Egelhaaf, A. Borst, and W. Reichardt. Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly's nervous system. J. Opt. Soc. Am. A6: 1070~1087, 1989
    【22】 G. A. Horridge and L. Marcelja. On the existence of fast and slow directionally sensitive motion detector neurons in insects. Proc. Roy. Soc. Lon. B 248, 47~54, 1992
    【23】 M. V. Srinivasan, S. W. Zhang, M. Lehrer, and T. S. Collett. Honeybee navigation en route to the goal: visual flight control and odometry. J. Exp. Biol. 199, 237~244, 1996
    【24】 Van doorn A J, Koenderink JJ (1982a) Temporal properties of the visual detectability of moving spatial white noise. Exp Brain Res 45:179~188
    【25】 Van doorn A J, Koenderink JJ (1982b) Spatial properties of the visual detectability of moving white noise. Exp Brain Res 45: 189~195
    【26】 W. Reichardt, Ai-Ke Guo Elementary pattern discrimination (Behavioral Experiments with the Fly Musca Domestic), Biol. Cybern 53: 285~306, 1986
    【27】 Adelson, E. H, and Bergen, J. R. Spatial temporal Energy Models for the Perception of Motion, Journal Optical Society of America A, 2(2): 284~299, 1985
    【28】 Cornsweet. T. N. and Crane. H. Automatic Optometer for Measuring the Refractive Power of the Eye, 1970
    【29】 Borst A, Egelhaaf M. Temporal modulation of luminance adapts time constant of fly movement detectors. Biol. Cybern. 56, 209~215, 1987
    【30】 R.R. de Ruyter van Steveninck, W. H. Zaagman, and H. A. K. Mastebroek. Adaptation of transient responses of a movement-sensitive neuron in the visual system of the blowfly Calliphora erythrocephala. Biol. Cybern. 54: 223~236, 1986
    【31】 Reichardt W, Egelhaaf M., Guo A. Processing of figure and background motion in the visual system of the fly. Biol. Cybern. 61, 327~345, 1989
    【32】 G. J. Burton and I. R. Moorhead. Color and spatial structure in natural scenes. Applied Optics 26, 157~170, 1987
    【33】 D. J. Field. Relations between the statistics of natural images and the response
    
    properties of cortical cells. J. Opt. Soc. Am. A4, 2379~2394, 1987
    【34】 D. J. Tolhurst, Y. Tadmor, and T. Chao. Amplitude spectra of natural images. Ophthalmology and Physiological Optics 12, 229~232, 1992
    【35】 D. L. Ruderman. The statistics of natural images. Network: Comput. Neural Syst. 5, 517~548, 1994
    【36】 Craig M. Advanced infrared missile counter counter-measure. Journal of Electronic defense, 1994(1)
    【37】 Bernard Blake. JANE'S WEAPON SYSTEMS 1990~1991
    【38】 张云龙.成像导引头及其制导武器述评.电光与控制,1999(4)
    【39】 Michael J Cantella. Staring-Sensorsystems. The infrared and Electro-optical system Handbook, Vol. 5, 1993
    【40】 付伟,李莉.红外制导武器发展综述.光电对抗与无源干扰.1998(3)
    【41】 中国航天工业总公司编.世界导弹大全.军事科学出版社,1998
    【42】 Martin MM. An antitank missile seeker employing an infrared Schottky barrier focal plane arry. SPIE. 1981(302). 158~170
    【43】 Kemneth J.Stain. IR Scanner i Sized to fit small Missies. Aviation Week & space Technology, Augustb, 1984
    【44】 Lavallec. P. D, Griner. Comparison of the Calibration of advanced Staring FPA Seckers to radiometric imaging IR Sensors. SPIE Vol. 2740, 1995
    【45】 邓仁亮编著.光学制导技术.国防工业出版社,1992
    【46】 何启予.红外成像制导技术现状及发展趋势.红外与激光技术,1990(2)
    【47】 李群章.光学复合制导在国外面空导弹武器系统中的应用.红外与激光技术,1985(1)
    【48】 刘永昌.精确制导红外成像导引头技术.红外与激光工程,1996(3)
    【49】 刘隆和.多模复合寻的制导技术.北京:国防工业出版社,1998
    【50】 殷兴良.精确制导技术的发展.电子学报,1995(10)
    【51】 王谷岩.视觉与仿生学.上海:上海知识出版社,1985
    【52】 Franceschini, N, Pichon, J. M. and Blanes, C. From insect vision to robot vision. Phil. Trans. R. Soc. Lond. B. 337: 283~293, 1992
    【53】 吴卫国,吴梅英.昆虫视觉的研究及其应用.昆虫知识,1997(3)
    【54】 Egelhaaf, M. and Borst, A. Motion computation and visual orientation in flies. Comp. Biochem. Physiol. 104A: 659~473, 1993
    
    
    【55】 Hartmann W. M. A search for central lateral inhibition. J. Acoust Soc. Amer, 75, 528~535, 1984
    【56】 Bouzerdown A, Pinter R B. Nonliner lateral inhibition applied to motion detection in the fly visual system. In: Nonlinear vision: determination of neural receptive fields, function, and networks. eds. R B Pinter and Bah ram Nabet, 423~450, 1991
    【57】 王爱群,郑南宁,袁立行.并行分层二维多速度运动检测模型.自动化学报,Vol.25,No.1,1999
    【58】 王爱群,郑南宁等.基于侧抑制机制的一维多速度运动检测神经网络.电子学报,Vol.25,No.11,1997
    【59】 沙步蛟等,运动检测中的侧抑制机制及实现.西安公路交通大学学报,Vol.18,No.2,1998
    【60】 陈卉,欧阳楷.用于图像增强的侧抑制网络模型的仿真比较.系统仿真学报,Vol.15,No.1,2003
    【61】 王蜂,李言俊,陈鹰.基于侧抑制竞争原理提取图像边缘的方法.西北工业大学学报,Vol.16,No.4,1998
    【62】 Lukas Lichtensteiger and Peter Eggenberger. Evolving the Morphology of a Compound Eye on a Robot. Proceedings of the Third European Workshop on Advanced Mobile Robots (Eurobot'99), IEEE, Piscataway, NJ, p: 127~134, 1999
    【63】 Huber S. A, Franz M. O, Bülthoff H. H. On robots and flies: Modeling the visual orientation behavior of flies. Robotics and Autonomous Systems 29, Elsevier, pp: 227~242, 1999
    【64】 Duchon AP, Warren WH (1994) Robot navigation from a Gibsonian viewpoint. In: Proceedings of the IEEE Internationat Conference on Systems, Man and Cybernetics. IEEE, Piscataway, NJ, pp 2272~2277
    【65】 Franz MO, Schlkopf B, Mallot MA, Bülthoff HH (1998) Learning view graphs for robot navigation, Autonomous Robots 5: 111~125
    【66】 Missler JM, Kamangar FA (1995) A neural network for pursuit tracking inspired by the fly visual system, Neural Networks 8: 463~480
    【67】 McFarland D, Bsser T (1993) Intelligent behavior in animals and robots. The MIT Press/Bradford Books, Cambridge, MA
    
    
    【68】 Richard T. in: G. T. Andrew ed. Application of digital image processing Ⅸ. San Diega: SPIE-The Internatinal Society for Engineering Publ. 316~326, 1986
    【69】 Pichon J. M, Blanes C, Famceschini N. in: W. J. Wolf, W. H. Chun eds. Mobile Robots Ⅳ. Philadelphia: SPIE-The International Society for optical Engineering Publ, 44~55, 1989
    【70】 Jay Fromkin. Eyes on the prize. UWYO: Vol. 3, No. 4, 2002
    【71】 光学复眼式双红外末制导导引装置.长春理工大学科技展览,1996
    【72】 李言俊,马洪忠.视觉仿生技术在飞行器导航技术中的应用.航空科学技术,1994(4)
    【73】 李言俊,李青湘.侧抑制网络在红外成像制导中的应用.航空科学技术,1996(1)
    【74】 李言俊,张科.蝇复眼仿生技术在全方位成像制导中应用的探索研究.航空兵器,1999(2)
    【75】 芦丽明,王国锋,张科,李言俊.蝇复眼在导弹上的应用研究.红外技术,Vol.24,No.5,2001
    【76】 王国锋,张科,李言俊.蝇复眼在导弹上的应用.弹箭与制导学报,Vol.22,No.4,2002
    【77】 A. W. Snyder. The Physics of Vision in Compound Eyes. In Comparative Physiology and EVolution of Vision in Invertebrates: Invertebrate Photoreceptors, No. 6A in Handbook of Sensory Physiology, H. Autrum, ed, Springer-Verlag, Berlin, 225~313, 1979
    【78】 郭爱克,杨先一.蝇视觉运动信息的神经计算原理.生物化学与生物物理进展,Vol.18,No.4,1991
    【79】 郭爱克,杨先一.视觉运动感知的神经网络研究.中国科学B辑,Vol.23,No.4,1993
    【80】 M. V. Srinivasan, S. W. Zhang, M. Lehrer, and T. S. Collett. Honeybee navigation enroute to the goal: visual flight control and odometry. J. Exp. Biol. 237~244, 1996
    【81】 S. P. McKee, G. H. Silverman, and K. Nakayama. Precise velocity discrimination despite random variations in temporal frequency and contrast. Vision Research 26: 609~619, 1986
    
    
    【82】 R. A, Harris, D. C. O'Carroll, and S. B. Laughlin. Adaptation and the temporal delay filter of fly motion detectors. Vision Research 39, 2603~2613, 1999
    【83】 M. Egelhaaf and A. Borst. Movement detection in arthropods. In Visual motion and its role in the stabilization of gaze, J. Wallman and F. A. Miles, eds., (Elsevier, Amsterdam, London, New York, pp: 53~77, 1993
    【84】 R. C. Hardie. Functional organization of the y retina. in Progress in Sensory Physioiogy, D. Ottoson, ed., (Springer-Verlag, Berlin, 1985), Vol. 5, pp: 1~80
    【85】 R. Payne and J. Howard. Response of an insect photoreceptor: a simple log-normal model. Nature 290, 415~416, 1981
    【86】 B. Tatler, D. C. O'Carroll, and S. B. Laughlin, Temperature, phototransduction dynamics, and temporal coding by y photoreceptors. J. Comp. Physiol. A 186, 399~407, 2000
    【87】 M. Egelhaaf and A. Borst (1993) A look into the cockpit of the fly: Visual orientation, algorithms, and identified neurons. J. Neurosci. 13:4563~4574
    【88】 A. Borst and S. Bahde (1988) Visual information processing in the fly's landing system. J.Comp. Physiol. A 163:167~173
    【89】 C. Mead (1989) Analog VLSI and Neural Systems. Reading, Mass: Addison-Wesley
    【90】 Harrison RR, Koch C (1998) An analog VLSI model of the fly elementary motion detector. In: Advances in neural information processing systems, Vol. 10. Morgan Kaufmann, San Mateo, CA, pp: 392~401
    【91】 T. Delbruck and C. Mead (1996) Analog VLSI phototransduction by continuous-time, adaptive, logarithmic photoreceptor circuits. CNS Memo No. 30, Caltech
    【92】 N. Franceschini, A. Riehle, and A. le Nestour (1989) Directionally selective motion detection by insect neurons. In Stavenga/Hardie (eds.), Facets of Vision, Berlin: Springer-Verlag
    【93】 D.C. O'Carroll, N.J. Bidwell, S. B. Laughlin, and E. J. Warrant(1996) Insect motion detectors matched to visual ecology. Nature 382: 63~66
    【94】 R. R. de Ruyter van Steveninck, W. H. Zaagman, and H. A. K. Mastebroek
    
    (1986) Adaptation of transient responses of a movement-sensitive neuron in the visual system of the blowfly Calliphora erythrocephala. Biol. Cybern. 54: 223~236
    【95】 K. G. Gotz (1965) Die optischen. Ubertragungseigenschaften der Komplexaugen von Drosophila. Kybernetik 2:215~221
    【96】 J. H. van Hateren (1990) Directional tuning curves, elementary movement detectors, and the estimation of the direction of visual movement. Vision Res. 30:603~614
    【97】 J. M. Zanker (1990) On the directional sensitivity of motion detectors. Biol. Cybern. 62:177~183
    【98】 M. Egelhaaf and A. Borst (1989) Transient and steady-state response properties of movement detectors. J. Opt. Soc. Am. A6:116~127
    【99】 忻介六等。昆虫形态分类学.上海:复旦大学出版社,1985
    【100】 王音等.观赏昆虫大全.北京:中国农业出版社,1986
    【101】 Michal P Anandan, Steve Hsu. Mosaic based representation of video sequences and their applications. In: Proc ICCV, MIT, USA, 1995
    【102】 Irani, M. P. Mossic based Representations of Vidio Sequences and Their Applications. In ICCV'95. Pages 605~611, Cambridge, Massachusctts, 1995
    【103】 Szeliski R. Video Mosaic for virtual Environments. In IEEE Computer Graphics and Applications. Pages: 22~30. March, 1996
    【104】 王立峰,潘志庚,石教英.全景图象的拼合及优化算法.计算机应用研究,1999(6)
    【105】 Ram Srinivasan. Semi-Automated Registation of Multi-Sensor Data. Electronic Imaging. Oct. 29-Nov. 1, Boston, MA, 1990
    【106】 A. Rosenfeld, Digital Picture Processing. Vol. 2, Academic Press, Inc, 1982
    【107】 Christian H, et al. Overview of image matching techni que. WWW-DGR-PHOT, 1998
    【108】 Chen Liang-Chien, Lee Liang-Hwei. Progressive generation of control frameworks for image registration. Photo Grammetric Engineering & Remote Sensing, 58: 9, 1992
    【109】 Kurt Novak. Rectification of digital imagery. Photo Grammetric Engineering &
    
    Remote Sensing, 58: 3, 1992
    【110】 Eric JM Rignot, Ronald Kowk, et al. Automated Multisensor Registration: Requirements and Techniques. Photo grammetric Engineering & Remote Sensing, 57: 8, 1991
    【111】 罗述谦,医学图像配准技术,国外医学生物医学工程分册,Vol.22,No.1,1999
    【112】 王忆锋,张海联,李灿文等.多传感器数据融合中的匹配技术.红外与激光工程,Vol.27,No.1,1998
    【113】 Q. Zheng et al. A comutational vision approach to image registration. J. IEEE Trans. Image Processing, Vol. 2, 311~326, 1993
    【114】 Stockman G. Matching images to models for registration and object detection via clustering [J] IEEE Trans. On PAMI, 1982, 4(3)
    【115】 Jezching Ton, Anil K. Jain. Registering. land sat images by point matching [J] IEEE Trans. on GRS, 1989, 27(5)
    【116】 Hui L i, Manjunath B S. A contour- based approach to multisensor image registration [J] IEEE Trans. on Image Processing, 1995, 4(3)
    【117】 Wen-Hao Wang, Yung- Chang Chen. Image registration by control points pairing using the invariant properties of line segments [J] pattern recognition letters, 1997, 18(3)
    【118】 Dhond U R, Aggarwal J K, Structure from stereo-a review. IEEE Trans on systems, Man, and Cybern, 1989, 19(6), 1489~1510
    【119】 Goshtasby. A Template matching in rotated images. IEEE Trans. Patt. Anal. Mach. Intell, 7: 338~344, 1985
    【120】 De Castro, E, Morandi. C, Registration of translated and rotated images using finite Fourier transforms. IEEE Trans, Patt. Anal. Mach. Intell. 9: 700~703, 1987
    【121】 郑南宁.计算机视觉与模式识别.国防工业出版社,1998
    【122】 高文,陈熙霖.计算机视觉—算法与系统原理.清华大学出版社,1999
    【123】 秦前清,杨宗凯.实用小波分析.西安电子科技大学出版社,西安,1994
    【124】 杨福生.小波变换的工程分析与应用.北京,科学出版社,1999
    【125】 刘贵忠,邸双亮.小波分析及其应用.西安电子科技大学出版社,1997
    【126】 Mallat SG. Multifrequency channel decomposition of images and wavelet
    
    models. J. IEEE Trans. Speech, Signal Processing, 37: 12, 2091~2110, 1989
    【127】 Mallat S. G. A theory for multiresolution signal decomposion: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11: 674~693, 1989
    【128】 Yocky D A. Image merging and data fusion by means of the discrete twodimensional wavelet transform. Journal of Optical Sciety of America, A, 12: 9, 1834~1841, 1995
    【129】 Nunez J, Otazu X, Fors O, et al. Multiresolution-based image fusion with additive wavelet decomposition. IEEE Transactions on Geoscience and Remote Sensing, 37: 3, 1204~1211, 1999
    【130】 Mallat S G. A Wavelet Tour of Signal Processing. San Diego: Academic Press, 302~310, 1998
    【131】 王国锋,刘保赋等.旋转序列图像的整合.计算机工程与应用.Vol.38,No.16,2002
    【132】 L. G. Brown. A Survey of Image Registration Techniques. ACM Computing Surveys, Vol. 24, No. 4, pp: 325~376, December 1992
    【133】 H. S. Sawhney and R. Kumar. True Multi-Image Alignment and its Application to Mosaicing and Lens Distortion Correction. IEEE Transactions on Pattern Analysis and MachineIntelligence, Vol. 21, No. 3, pp: 235~243, March 1999
    【134】 Ao Smolic, T. Sikora and J. R. Ohra. Long-Term Global Motion Estimation and Its Application for Sprite Coding Content Description, and Segmentation. IEEE Transactions on Circuit and Systems for Video Technology, Vol. 9, No. 8, pp: 1227~1241, December 1999
    【135】 T. Meier and K. N. Ngan. Video Segmentation for Content-Based Coding. IEEE Transactions on Circuit and Systems for Video Technology, Vol. 9, No. 8, pp: 1190~1201, December 1999
    【136】 S. Liu, Z. Yan, J. W. Kim and C. C. Jay Kuo, Global/Local Motion-Compensated Frame Interpolation for Low Bitrate Video. Image and Video Communications and Processing, pp: 223~234, 2000
    【137】 H. S. W. and R. M. Mersereau. Fast Algorithms for the Estimation of Motion
    
    Vectors. IEEE Transactions on Image Processing, Vol. 8, No. 3, pp: 435~438, Mar 1999
    【138】 R. C. Gonzales and R. E. Woods. Digital Image Processing, Addison-Wisley, 1992
    【139】 W. H. Press et al, Numerical Recipes in C: the Art of Scientific Computing, Cambridge University Press, Cambridge, 1992
    【140】 赵荣椿.数字图像处理导论.西北工业大学出版社,1995
    【141】 章毓晋.图像分割.科学出版社,2001
    【142】 夏德深等.现代图像处理技术与应用.东南大学出版社,1997
    【143】 容观澳.计算机图像处理.清华大学出版社,1998
    【144】 卢福刚,红外图像目标识别与跟踪方法研究.西北工业大学博士学位论文,1998
    【145】 赵锋.图像分割与分析方法研究.西北工业大学博士学位论文,1998
    【146】 (日)福岛邦彦.视觉生理与仿生学.科学出版社,1980
    【147】 (美)D.S.哈拉西.仿生学.科学出版社,1975
    【148】 沙步蛟等,运动检测中的侧抑制机制及实现.西安公路交通大学学报,Vol.18,No.2,1998
    【149】 陈卉,欧阳楷.用于图像增强的侧抑制网络模型的仿真比较.系统仿真学报,Vol.15,No.1,2003
    【150】 Pun T. A New Method for Gray Level Picture Thresholding Using the Entropy of the Histogram. Signal Processing, 2: 233~237, 1980
    【151】 Pun T. Entropic thresholding: A new approach. Computer Vision, Graphics and Image Processing, 16: 210~239, 1981
    【152】 种劲松等.基于遗传算法的最佳熵阈值图像分割法.北京航空航天大学学报,Vol.25,No.6,1999
    【153】 生克伟等.一种新的模糊熵图像分割方法.信号处理,Vol.14,No.3,1998
    【154】 王国锋,芦丽明,李言俊等.基于模糊熵的红外图象分割方法,弹箭与制导学报,Vol.22,No.3,2002
    【155】 Murthy C A, Pal S K. Fuzzy thresholding: mathematical framework, bound functions and weighted moving average technique. Pattern Recognition Letter, 11: 197~206, 1990
    
    
    【156】 Murthy CA, Pal S K. Histogram thresholding by minimizing graylevel fuzziness. Information Sciences, 60: 107~135, 1992
    【157】 Murthy C A, Pal S K. Bounds for membership functions: A correlation- based approach. Information Sciences, 65: 143~171, 1992
    【158】 李金宗.模式识别导论.高等教育出版社,1994
    【159】 郭欣等.基于多特征的图像目标识别分类.国防科技大学学报,Vol.18,No.3,1996
    【160】 孟庆华等.一种基于目标红外特征的目标分类识别方法.红外技术,Vol.21,No.2,1999
    【161】 张衷诚,孟庆华,沈振康.红外目标特征分析.激光与红外.Vol.29,No.3,1999
    【162】 张学工.关于统计学习理论与支持向量机.自动化学报,2000,26(1):32~42
    【163】 Vapnik V N. Estimation of Dependencies Based on Empirical Data. Berlin: Springer-Verlag, 1982
    【164】 Vapnik V, Levin E, Le Cun Y. Measuring the VC- dimension of a learning machine. Neural Computation, 6: 851~876, 1994
    【165】 Burges C. JC. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998
    【166】 Boser B, Guyon I, Vapnik V. A training algorithm for optimal margin classifiers, Fifth Annual Workshop on Computational Learning Theory. Pittsburgh: ACM Press, 1992
    【167】 Cortes C, Vapnik V. Support vector networks. Machine Learning, 20: 273~297, 1995
    【168】 Scho lkopf B, Burges C, Vapnik V. Extracting support data for a given task. In: Fayyad UM, Uthurusamy R. Proc. of First Intl. Conf. on Knowledge Discovery & Data Mining, AAAI Press, 262~267, 1995
    【169】 杨宜禾等.红外系统.国防工业出版社,1995
    【170】 刘隆和.多模复合寻的制导技术.北京:国防工业出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700