用户名: 密码: 验证码:
地表净辐射的卫星遥感研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地表净辐射作为环境预测中的一个非常重要的参数,控制着蒸散、光合作用、地表和大气温度,在地气系统的相互作用中起着关键作用。高精度的地表净辐射数据对整个人类生态环境的研究具有极其重要的意义,也为使用地理信息系统作出生态环境相关的决策提供支持。毫无疑问,地表辐射观测站点可以提供最准确的地表净辐射通量的测量值,但是由于站点分布始终有限且维护费用昂贵,从而不能满足气候研究、天气预报和其他相关领域的研究需要,所以关于地表净辐射估算方法的研究仍具有巨大的现实意义,特别是卫星遥感手段的出现,其能够提供具有良好时间连续性和空间均一性的地球辐射收支资料的特点,使卫星遥感成为目前研究地表辐射收支的一个重要而有效的手段。
     目前使用卫星数据估算地表净辐射及其分量的成熟数据集产品普遍存在低分辨率和低精度的缺陷,而使用中高分辨率卫星数据的估算方法又普偏依赖地面观测资料,且大部分算法只适用于晴天条件,使用卫星数据估算阴天条件下的地表净辐射通量是目前存在的一个难题,在这种情况下,本文从现有的地表净辐射卫星数据集产品和算法出发,对已有的地表净辐射卫星数据集产品和算法进行了广泛综合的质量评价和误差分析,并以此为基础,进行了利用MODIS数据估算地表净辐射的相关研究,主要内容如下:
     1.使用全球分布的36个站点对三种主要的使用卫星数据估算的地表辐射数据集产品(GEWEX-SRB, ISCCP-FD和CERES-FSW)的短波分量(下行短波辐射和上行短波辐射)进行质量评价和误差分析。结果说明,上述产品的在某些地区存在系统性的偏差,其精度并不能完全满足相关研究机构的要求。
     2.使用全球分布的15个站点对三种主要的使用卫星数据估算的地表辐射数据集产品(GEWEX-SRB, ISCCP-FD和CERES-FSW)的长波分量(下行长波辐射和上行长波辐射)进行质量评价和误差分析。结果说明,上述产品的精度基本可以满足相关研究机构的要求,在部分地区发现的较大误差可以部分由高程差异和输入数据误差来解释。3.对三个利用MODIS数据估算地表净辐射分量的算法进行质量评价,包括估算全天气下行短波辐射的查找表方法、晴天下行长波辐射混合方法和晴天上行长波辐射混合方法。对短波算法,选取了全球分布的26个站点进行验证,对长波算法,选取了全球分布的15个站点进行验证。结果说明,这三种利用MODIS数据估算地表净辐射分量的算法均具有较高精度,已达到相关研究机构的精度要求,而且与GEWEX-SRB, ISCCP-FD和CERES-FSW验证结果的统计数据相比,MODIS算法在很多统计指标上都占有优势,与地表实测数据具有更高的吻合程度。
     4.提出了一种利用MODIS数据估算全天气条件下瞬时地表净辐射通量的算法框架。目前已有很多利用MODIS数据估算地表净辐射及各分量的算法,各有其优势和劣势,通过分析比较,在合理利用现有的理论和算法基础上,本文结合自身的具体研究情况和需求,提出了一种完全独立于地表观测数据,仅利用MODIS数据估算全天气条件下瞬时地表净辐射通量的算法框架,该框架分为两部分,晴天算法部分和阴天算法部分,完全摆脱了对地表观测数据的依赖,为本文接下来的具体算法的研究奠定了基础。
     5.系统总结了本文提出的利用MODIS数据估算全天气条件下瞬时地表净辐射通量算法框架所涉及到的所有算法,除此以外,针对目前缺乏阴天净辐射算法的情况,提出了一种在阴天条件下估算地表净辐射的算法,并将结果与已有的三种数据集产品进行了对比。结果显示,使用本文提出的框架和具体算法估算的结果,不仅在估算精度上高于其他的三种数据集(GEWEX-SRB, ISCCP-FD和CERES-FSW),而且拥有更高的空间分辨率。
     6.提出了全天气条件下估算日间总地表净辐射的具体算法并进行验证。本文将可调节正弦插值法引入日间总地表净辐射的研究中,并使用MODIS数据进行验证分析。结果说明,虽然在部分站点有着轻微的高估,但使用上述方法估算的日间总地表净辐射值与使用地表实测数据集成计算的日间总地表净辐射值具有较高的吻合程度。
Net radiation at the Earth's surface drives the process of evaporation, photosynthesis, and heating of soil and air. Net radiation and the overall surface energy budget are important for the development of the planetary boundary-layer. Its quantification over heterogenous land surfaces is crucial to study land-atmosphere interactions. Quantifying net radiation with high accuracy is significant for the whole physical environment and decision-making based on GIS. Undoubtedly, worldwide ground based measurements can provide the most accurate observations of net radiation, but given that direct measurements are expensive and limited, it is desirable to obtain global measurements of surface radiation fluxes using data provided by satellites.
     At present, the major satellite-estimate datasets of surface net radiation or its components are generally with low spatial resolution and low accuracy. While most of the methodologies to estimate surface net radiation using moderate/high spatial resolution satellite data are relying on meteorology data and only suitable for clear-sky conditions. Application of existing methodologies to estimate net radiation for cloudy-sky conditions from remote sensing sensors remains a significant challenge. Therefore, in this dissertation, we comprehensively evaluate the major satellite-estimate net radiation datasets and algorithms using ground measurements, present a framework to estimate instantaneous and daytime total net radiation under all sky conditions using MODIS data. Below are the major work conducted in this dissertation:
     Firstly, three satellite-estimated surface shortwave radiation data sets:1) GEWEX-SRB; 2) ISCCP-FD; and 3) CERES-FSW from 2000-2002, were evaluated using ground measurements at 36 sites around the world. Though the statistical errors are quite variable for the individual sites, systematic biases and tendencies may be identified. Results show that significant biases for some sites exceed the acceptable values of research community.
     Secondly, three satellite-estimated surface longwave radiation data sets:1) GEWEX-SRB; 2) ISCCP-FD; and 3) CERES-FSW of 2003, were evaluated using ground measurements at 15 sites around the world. Results show that, in general, the accuracy of these three datasets can meet the accuracy requirement of research community, and some uncertainties found in this evaluation can be explained by the elevation differences and input data accuracy.
     Thirdly, three algorithms of estimating surface radiation using MODIS data:1) Look-up table method of all-sky downwelling shortwave radiation; 2) Hybrid method of clear-sky downwelling longwave radiation; 3) Hybrid method of clear-sky upwelling longwave radiation, were evaluated using ground measurements. Results show that, these three methods have high accuracy and can meet the accuracy requirement of research community. Comparing with GEWEX-SRB, ISCCP-FD and CERES-FSW, these three MODIS algorithms outperform at most statistical indexes and agree better with the ground measurements.
     Fourthly, this dissertation presents a framework to estimate instantaneous net radiation under all sky conditions using only MODIS data. This framework consists of two parts:clear-sky algorithm and cloudy-sky algorithm, which establish a steady foundation for future research.
     Fifthly, this dissertation presents specific methods to estimate instantaneous net radiation using MODIS data, especially developed a new method to estimate instantaneous net radiation under cloudy-sky condition. Through validation, we found using the framework and specific algorithms proposed here can obtain better net radiation results than GEWEX-SRB, ISCCP-FD and CERES-FSW, besides, MODIS has higher spatial resolution.
     At last, this dissertation presents a method to estimate daytime total net radiation under all sky conditions using MODIS data. We applied'adjusted sinusoid interpolation'to the estimation of daytime total net radiation and validated using MODIS. Results show that, daytime total net radiation estimated by using this method agree well with the ground-measurements.
引文
[1]Albrecht B and Cox S K. Procedures for improving pyrgeometer performance[J]. Journal of Applied Meteorology,1977,16(2):188-197.
    [2]Allen R, Pereira L, Raes D and Smith M. Crop evapotranspiration-Guidelines for computing crop water requirements[J]. FAO Irrigation and Drainage Paper,1998,56.
    [3]Allen R, Trezza R and Tasumi M. Analytical integrated functions for daily solar radiation on slopes[J]. Agricultural and Forest Meteorology,2006,139(1-2):55-73.
    [4]Augustine J A, DeLuisi J J and Long C N. SURFRAD-A national surface radiation budget network for atmospheric research[J]. Bulletin of the American Meteorological Society,2000,81(10):2341-2357.
    [5]Baldocchi D, Krebs T and Leclerc M."Wet/dry Daisyworld":a conceptual tool for quantifying the spatial scaling of heterogeneous landscapes and its impact on the subgrid variability of energy fluxes[J]. Tellus B,2005,57(3):175-188.
    [6]Bastiaanssen W. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey[J]. Journal of Hydrology,2000,229(1-2):87-100.
    [7]Bastiaanssen W, Menenti M, Feddes R and Holtslag A. A remote sensing surface energy balance algorithm for land (SEBAL).1. Formulation[J]. Journal of Hydrology, 1998,212:198-212.
    [8]Batra N, Islam S, Venturini V, Bisht G and Jiang L. Estimation and comparison of evapotranspiration from MODIS and AVHRR sensors for clear sky days over the Southern Great Plains[J]. Remote Sensing of Environment,2006,103(1):1-15.
    [9]Berg A, et al. Development of a hydrometeorological forcing data set for global soil moisture estimation[J]. International Journal of Climatology,2005,25(13):1697-1714.
    [10]Bergman J and Salby M. Diurnal variations of cloud cover and their relationship to climatological conditions[J]. Journal of Climate,1996,9(11):2802-2820.
    [11]Berk A, et al. MODTRAN cloud and multiple scattering upgrades with application to AVIRIS[J]. Remote Sensing of Environment,1998,65(3):367-375.
    [12]Bilbao J and Miguel A H d. Estimation of Daylight Downward Longwave Atmospheric Irradiance under Clear-Sky and All-Sky Conditions[J]. Journal of Climate and Applied Meteorology,2007,46(6):878-889.
    [13]Bisht G and Bras R L. Estimation of net radiation from the MODIS data under all sky conditions:Southern Great Plains case study[J]. Remote Sensing of Environment, 2010,114(7):1522-1534.
    [14]Bisht G, Venturini V, Islam S and Jiang L. Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for clear sky days[J]. Remote Sensing of Environment,2005,97(1):52-67.
    [15]Bloom S, et al. Documentation and Validation of the Goddard Earth Observing System (GEOS) Data Assimilation System-Version 4[J]. Technical Report Series on Global Modeling and Data Assimilation,104606,2005,26.
    [16]Boegh E, Soegaard H and Thomsen A. Evaluating evapotranspiration rates and surface conditions using Landsat TM to estimate atmospheric resistance and surface resistance[J]. Remote Sensing of Environment,2002,79(2-3):329-343.
    [17]Box J E and Steffen K. Greenland Climate Network (GC-NET) Data Reference,Version:November 10,2000[J]. GC-NET AWS Reference Document, 2000.
    [18]Brutsaert W. On a derivable formula for long-wave radiation from clear skies[J]. Water Resources Research,1975,11(5):742-744.
    [19]Brutsaert W and Sugita M. Application of self-preservation in the diurnal evolution of the surface energy budget to determine daily evaporation[J]. Journal of Geophysical Research,1992,97(D17):18377.
    [20]Cess R, et al. Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models[J]. Journal of Geophysical Research,1990, 95(D10):601-615.
    [21]Charlock T and Alberta T. The CERES/ARM/GEWEX Experiment (CAGEX) for the retrieval of radiative fluxes with satellite data[J]. Bulletin of the American Meteorological Society,1996,77(11):2673-2683.
    [22]Cleugh H, Leuning R, Mu Q and Running S. Regional evaporation estimates from flux tower and MODIS satellite data[J]. Remote Sensing of Environment,2007, 106(3):285-304.
    [23]Collins W, et al. Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals:Methodology for INDOEX[J]. Journal of Geophysical Research,2001,106(D7):7313-7336.
    [24]Cox S J, et al. The NASA/GEWEX surface radiation budget project:Overview and analysis[J]. paper presented at 12th Conference on Atmospheric Radiation, American Meteorological Society, Madison, Wis,2006.
    [25]Crago R. Conservation and variability of the evaporative fraction during the daytime[J]. Journal of Hydrology,1996,180(1-4):173-194.
    [26]Curry J, Rossow W, Randall D and Schramm J. Overview of Arctic cloud and radiation characteristics[J]. Journal of Climate,1996,9(8):1731-1764.
    [27]Diak G and Gautier C. Improvements to a simple physical model for estimating insolation from GOES data[J]. Journal of Climate and Applied Meteorology,1983, 22:505-508.
    [28]Diak G, Masse S and Gautier C. Simple Physical Model to Estimate Incident Solar Radiation at the Surface From GOES Satellite Data[J]. Applied Meteorology,1980, 19(8):1005-1012.
    [29]Diak G, et al. Estimating land surface energy budgets from space[J]. Bulletin of the American Meteorological Society,2004,85:65-78.
    [30]Dickinson R E, Henderson-Sellers A and Kennedy P J. Biosphere Atmosphere Transfer Scheme(BATS)Version 1 as coupled to the NCAR Community Climate Model[J]. NCAR Technical Note, NCAR,1993:72.
    [31]Dilley A and O'brien D. Estimating downward clear sky long-wave irradiance at the surface from screen temperature and precipitable water[J]. Quarterly Journal of the Royal Meteorological Society,1998,124(549):1391-1401.
    [32]Dubayah R. Estimating net solar radiation using Landsat Thematic Mapper and digital elevation data[J]. Water Resources Research,1992,28(9):2469-2484.
    [33]Dubovik O, et al. Variability of absorption and optical properties of key aerosol types observed in worldwide locations[J]. Journal of the Atmospheric Sciences,2002,59: 590-608.
    [34]Duguay C. An approach to the estimation of surface net radiation in mountain areas using remote sensing and digital terrain data[J]. Theoretical and Applied Climatology, 1995,52(1):55-68.
    [35]Dutton E G, et al. Measurement of broadband diffuse solar irradiance using current commercial instrumentation with a correction for thermal offset errors[J]. Journal of Atmospheric and Oceanic Technology,2001,18(3):297-314.
    [36]Ellingson R G. Surface longwave fluxes from satellite-observations-A critical review[J]. Remote Sensing of Environment,1995,51(1):89-97.
    [37]Foley J, et al. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics[J]. Global Biogeochemical Cycles, 1996,10(4):603-628.
    [38]Forsythe W and Rykiel E. A model comparison for daylength as a function of latitude and day of year[J]. Ecological Modelling,1995,80(1):87-95.
    [39]Fortin J, Anctil F, Parent L and Bolinder M. Comparison of empirical daily surface incoming solar radiation models[J]. Agricultural and Forest Meteorology,2008, 148(8-9):1332-1340.
    [40]Fu Q and Liou K N. Parameterization of the radiative properties of cirrus clouds[J]. Journal of the Atmospheric Sciences,1993,50(13):2008-2025.
    [41]Fu Q, Liou K N, Cribb M C, Charlock T P and Grossman A. Multiple Scattering Parameterization in Thermal Infrared Radiative Transfer[J]. Journal of the Atmospheric Sciences,1997,54(24):2799-2812
    [42]Gao Y, Long D and Li Z. Estimation of daily actual evapotranspiration from remotely sensed data under complex terrain over the upper Chao river basin in North China[J]. International Journal of Remote Sensing,2008,29(11):3295-3315.
    [43]Gao Y C and Long D. Intercomparison of remote sensing-based models for estimation of evapotranspiration and accuracy assessment based on SWAT[J]. Hydrological Processes,2008,22(25):4850-4869.
    [44]Garcia O E, et al. Validation of AERONET estimates of atmospheric solar fluxes and aerosol radiative forcing by ground-based broadband measurements[J]. Journal of Geophysical Research,2008,113(D21):16.
    [45]George R, et al. Estimating land surface energy budgets from space:Review and Current Efforts at the University of Wisconsin--Madison and USDA-ARS[J]. Bulletin of the American Meteorological Society,2004,85(1):65-78.
    [46]Goodchild M and Dubuc O. A model of error for choropleth maps, with applications to geographic information systems, Auto Carto 8:proceedings of the Eighth International Symposium on Computer-Assisted Cartography, Baltimore, Maryland, March 29-April 3,1987[C]. Asprs Pubns.
    [47]Gratton D, Howarth P and Marceau D. Using Landsat-5 Thematic Mapper and digital elevation data to determine the net radiation field of a mountain glacier[J]. Remote Sensing of Environment,1993,43(3):315-331.
    [48]Gupta S, Whitlock C, Ritchey N and Wilber A. Clouds and the Earth's Radiant Energy System (CERES) Algorithm Theoretical Basis Document, An Algorithm for Longwave Surface Radiation Budget for Total Skies (Subsystem 4.6.3), Release 2.2 [M]. June.1997.
    [49]Gupta S K, Kratz D P, Wilber A C and Nguyen L C. Validation of Parameterized Algorithms Used to Derive TRMM-CERES Surface Radiative Fluxes[J]. Journal of Atmospheric and Oceanic Technology,2004,21(5):742-752.
    [50]Gupta S K, et al. A climatology of surface radiation budget derived from satellite data[J]. Journal of Climate,1999,12(8):691-2710.
    [51]Harries J, et al. The Geostationary Earth Radiation Budget (GERB) project[J]. Bulletin of the American Meteorological Society,2005,86:945-960.
    [52]Hess M, Koepke P and Schult I. Optical properties of aerosols and clouds:The software package OPAC[J]. Bulletin of the American Meteorological Society,1998, 79(5):831-844.
    [53]Holben B, et al. AERONET--A federated instrument network and data archive for aerosol characterization [J]. Remote Sensing of Environment,1998,66(1):1-16.
    [54]Hong J and Kim J. Simulation of surface radiation balance on the Tibetan Plateau[J]. Geophysical Research Letters,2008,35(8):L08814.
    [55]Huete A, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment,2002,83(1-2):195-213.
    [56]Hurtado E and Sobrino J A. Daily net radiation estimated from air temperature and NOAA-AVHRR data:a case study for the Iberian Peninsula[J]. International Journal of Remote Sensing,2001,22(8):1521-1533.
    [57]Idso S. A set of equations for full spectrum and 8 mm to 14 mm and 10.5 mm to 12.5 mm thermal radiation from cloudless skies[J]. Water Resources Research,1981,17: 295-304.
    [58]Inamdar A K and Ramanathan V. On monitoring the atmospheric greenhouse effect from space[J]. Tellus Series B-Chemical and Physical Meteorology,1997,49(2): 216-230.
    [59]Iqbal M. An introduction to solar radiation [M]. Academic Press New York,1983.
    [60]Irmak A, Jones J, Jacobs J and Hoogenboom G. Predicting daily net radiation using minimum climatological data[J]. Journal of Irrigation and Drainage Engineering, 2003,129:256.
    [61]Jacobs J, Myers D, Anderson M and Diak G. GOES surface insolation to estimate wetlands evapotranspiration[J]. Journal of Hydrology,2002,266 (1-2):53-65.
    [62]Jegede O. Daily averages of net radiation measured at Osu, Nigeria in 1995[J]. International Journal of Climatology,1997,17(12):1357-1367.
    [63]Jegede O. Diurnal variations of net radiation at a tropical station-Osu; Nigeria[J]. Theoretical and Applied Climatology,1997,58(3):161-168.
    [64]Jin M and Liang S. An improved land surface emissivity parameter for land surface models using global remote sensing observations[J]. Journal of Climate,2006,19(12): 2867-2881.
    [65]Jin Z, Charlock T and Rutledge K. Analysis of broadband solar radiation and albedo over the ocean surface at COVE[J]. Journal of Atmospheric and Oceanic Technology, 2002,19:1585-1601.
    [66]Kato S, et al. Uncertainties in modeled and measured clear-sky surface shortwave irradiances[J]. Journal of Geophysical Research,1997,102(D22):25881-25898.
    [67]Kim H-Y. Estimation of land surface shortwave radiation budget from MODIS Data[D]. College Park:University of Maryland,2008.
    [68]Kjaersgaard J, Cuenca R, Plauborg F and Hansen S. Long-term comparisons of net radiation calculation schemes[J]. Boundary-Layer Meteorology,2007,123(3):417-431.
    [69]Koike T, Yasunari, T., Wang, J., Yao, T. GAME-Tibet IOP summary report[J]. Proc of the 1st Int'l Workshop on GAME-Tibet, January 11-13,1999, Xi'an, China,1-2, 1999.
    [70]Kustas W and Norman J. Evaluating the effects of subpixel heterogeneity on pixel average fluxes[J]. Remote Sensing of Environment,2000,74(3):327-342.
    [71]Kustas W, Perry E, Doraiswamy P and Moran M. Using satellite remote sensing to extrapolate evapotranspiration estimates in time and space over a semiarid rangeland basin[J]. Remote Sensing of Environment,1994,49(3):275-286.
    [72]Kyle T. Atmospheric transmission, emission, and scattering[M]. Pergamon,1991.
    [73]Lacis A A and V.Oinas. A description of the correlate k-distribution method for modelling non-grey gaseous absorption, thermal emission, and multiple scattering in vertically inhomogenous atmospherea[J]. Journal of Geophysical Research,1991,96: 9027-9063.
    [74]Law B E. Loescher H W, Boden T A, Hargrove W W and Hoffman F M. Ameriflux site evaluation and recommendations for network enhancement[J]. Oak Ridge National Laboratory Environmental Sciences Division And the AmeriFlux Steering Committee,2005.
    [75]Le Jiang S. Estimation of surface evaporation map over southern Great Plains using remote sensing data[J]. Water Resources Research,2001,37(2):329-340.
    [76]Lee H and Ellingson R. Development of a nonlinear statistical method for estimating the downward longwave radiation at the surface from satellite observations[J]. Journal of Atmospheric and Oceanic Technology,2002,19(10):1500-1515.
    [77]Lhomme J, Vacher J and Rocheteau A. Estimating downward long-wave radiation on the Andean Altiplano[J]. Agricultural and Forest Meteorology,2007,145(3-4):139-148.
    [78]Li B and Avissar R. The Impact of Spatial Variability of Land-Surface Characteristics on Land-Surface Heat Fluxes[J]. Journal of Climate,1994,7:527-537.
    [79]Li Z, Cribb M C, Chang F-L, Trishchenko A and Luo Y. Natural variability and sampling errors in solar radiation measurements for model validation over the Atmospheric Radiation Measurement Southern Great Plains region[J]. Journal of Geophysical Research,2005,110(D15S19):11.
    [80]Li Z, H. C, Whitlock and Charlock T P. Assessment of the global monthly mean surface insolation estimated from satellite measurements using global energy balance archive data[J]. Journal of Climate,1995,8:315-328.
    [81]Li Z, Leighton H, Masuda K and Takashima T. Estimation of SW flux absorbed at the surface from TOA reflected flux[J]. Journal of Climate,1993,6(2):317-330.
    [82]Li Z, et al. A review of current methodologies for regional evapotranspiration estimation from remotely sensed data[J]. Sensors,2009,9(5):3801-3853.
    [83]Li Z L, et al. A Review of Current Methodologies for Regional Evapotranspiration Estimation from Remotely Sensed Data[J]. Sensors,2009,9(5):3801-3853.
    [84]Liang S. Narrowband to broadband conversions of land surface albedo I:: Algorithms[J]. Remote Sensing of Environment,2001,76(2):213-238.
    [85]Liang S. Quantitative remote sensing of land surfaces[M]. Wiley-IEEE,2004.
    [86]Liang S, et al. Mapping High-Resolution Land Surface Radiative Fluxes from MODIS:Algorithms and Preliminary Validation Results[J]. Geospatial Technology for Earth Observation,2010:141-176.
    [87]Liang S, et al. Estimation of incident photosynthetically active radiation from Moderate Resolution Imaging Spectrometer data[J]. Journal of Geophysical Research, 2006,111(D15):13.
    [88]Liang S, et al. Estimation of incident Photosynthetically Active Radiation from MODIS Data[J]. Journal of Geophysical Research,2006,111(D15):13.
    [89]Liu H and Huete A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise[J]. Geoscience and Remote Sensing, IEEE Transactions on,2002,33(2):457-465.
    [90]Liu J, Curry J A, Rossow W B, Key J R and Wang X. Comparison of surface radiative flux data sets over the Arctic Ocean[J]. Journal of Geophysical Research, 2005,110(C02015).
    [91]Liu R, Liu J and Liang S. Estimation of systematic errors of MODIS thermal infrared bands[J]. Geoscience and Remote Sensing Letters, IEEE,2006,3(4):541-545.
    [92]Long D, Gao Y and Singh V. Estimation of daily average net radiation from MODIS data and DEM over the Baiyangdian watershed in North China for clear sky days[J]. Journal of Hydrology.
    [93]Ma Y. Remote sensing parameterization of regional net radiation over heterogeneous land surface of Tibetan Plateau and arid area[J]. International Journal of Remote Sensing,2003,24(15):3137-3148.
    [94]Ma Y, et al. Diurnal and inter-monthly variation of land surface heat fluxes over the central Tibetan Plateau area[J]. Theoretical and Applied Climatology,2005,80:259-273.
    [95]Ma Y M, Su Z B, Li Z L, Koike T and Menenti M. Determination of regional net radiation and soil heat flux over a heterogeneous landscape of the Tibetan Plateau[J]. Hydrological Processes,2002,16(15):2963-2971.
    [96]Malek E. Evaluation of effective atmospheric emissivity and parameterization of cloud at local scale[J]. Atmospheric Research,1997,45(1):41-54.
    [97]Marty C, Philipona R, Frohlich C and Ohmura A. Altitude dependence of surface radiation fluxes and cloud forcing in the alps:results from the alpine surface radiation budget network[J]. Theoretical and Applied Climatology,2002,72(3-4):137-155.
    [98]Masuoka E, Fleig A, Wolfe R and Patt F. Key characteristics of MODIS data products[J]. IEEE Transactions on Geoscience and Remote Sensing,1998,36(4): 1313-1323.
    [99]Menzel W and Gumley L. MODIS atmospheric profile retrieval algorithm theoretical basis document[J]. Earth Observing System Project Science Office, NASA Goddard Space Flight Center, Greenbelt, MD,1998.
    [100]Monteith J and Unsworth M. Principles of environmental physics[M]. Academic Press,2008.
    [101]Mu Q, Heinsch F, Zhao M and Running S. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data[J]. Remote Sensing of Environment,2007,111(4):519-536.
    [102]Niemel S, R is nen P and Savij rvi H. Comparison of surface radiative flux parameterizations:Part I:Longwave radiation[J]. Atmospheric Research,2001,58(1): 1-18.
    [103]Niemel S, R is nen P and Savij rvi H. Comparison of surface radiative flux parameterizations:Part Ⅱ. Shortwave radiation[J]. Atmospheric Research,2001, 58(1):141-154.
    [104]Nishida K, Nemani R, Running S and Glassy J. An operational remote sensing algorithm of land surface evaporation[J]. Journal of Geophysical Research,2003, 108(D9):4270.
    [105]Norman J, et al. Remote sensing of surface energy fluxes at 101-m pixel resolutions[J]. Water Resources Research,2003,39(8):1221.
    [106]NREL. Broadband Outdoor Radiometer Calibration,2000-01. NREL Metrology Report. Available from Solar Radiation Research Laboratory, National Renewable Energy Laboratory,1617 Cole Blvd., Golden, CO 80401-3393.[J].2000.
    [107]Office ASDCUaDS. GEWEX Shortwave 3-hourly README file. http://eosweb.larc.nasa.gov/PRODOCS/srb/readme/readme_srb_rel3.0_shortwave_3 hrly.txt. [visited by] 09/10/2010.
    [108]Ohmura A, et al. Baseline surface radiation network (BSRN/WCRP):New precision radiometry for climate research[J]. Bulletin of the American Meteorological Society, 1998,79(10):2115-2136.
    [109]Philipona R, et al. The Baseline Surface Radiation Network Pyrgeometer Round-Robin Calibration Experiment[J]. Journal of Atmospheric and Oceanic Technology, 1998,15(3):687-696.
    [110]Pinker R and Corio L. Surface radiation budget from satellites[J]. Mon Wea Rev, 1984,122:209-215.
    [111]Pinker R and Ewing J. The relationship between the planetary and surface net radiation[J]. Journal of Climate and Applied Meteorology,1984,2 4(1):262-268.
    [112]Pinker R, Frouin R and Li Z. A review of satellite methods to derive surface shortwave irradiance[J]. Remote Sensing of Environment,1995,51(1):108-124.
    [113]Pinker R, et al. Surface radiation budgets in support of the GEWEX Continental-Scale International Project (GCIP) and the GEWEX Americas Prediction Project (GAPP), including the North American Land Data Assimilation System (NLDAS) project[J]. Journal of Geophysical Research,2003,108:8844.
    [114]Pinker R T and Laszlo I. Modeling surface solar irradiance for satellite applications on a global scale [J]. Journal of Applied Meteorology,1992,31(2):194-211.
    [115]Prata A. A new long-wave formula for estimating downward clear-sky radiation at the surface[J]. Quarterly Journal of the Royal Meteorological Society,1996, 122(533):1127-1151.
    [116]Prince S and Goward S. Global primary production:a remote sensing approach[J]. Journal of Biogeography,1995,22(5):2829-2849.
    [117]Raschke E, Bakan S and Kinne S. An assessment of radiation budget data provided by the ISCCP and GEWEX-SRB[J]. Geophysical Research Letters,2006, 33(L07812):5.
    [118]Rossow W B and Schiffer R A. Advances in understanding clouds from ISCCP[J]. Bulletin of the American Meteorological Society,1999,80(11):2261-2287.
    [119]Running S and Gower S. FOREST-BGC, a general model of forest ecosystem processes for regional applications.Ⅱ. Dynamic carbon allocation and nitrogen budgets[J]. Tree Physiology,1991,9(1):147-160.
    [120]Rutan D A and Charlock T P. Validation of CERES/SARB data product using ARM surface flux observations[J]. paper presented at 14th ARM Science Team Meeting Proceedings, Albuquerque, New Mexico, March 22-26,2004,2004.
    [121]Ryu Y, Kang S, Moon S K and Kim J. Evaluation of land surface radiation balance derived from moderate resolution imaging spectroradiometer (MODIS) over complex terrain and heterogeneous landscape on clear sky days[J]. Agricultural and Forest Meteorology,2008,148(10):1538-1552.
    [122]Samani Z, Bawazir A, Bleiweiss M, Skaggs R and Tran V. Estimating daily net radiation over vegetation canopy through remote sensing and climatic data[J]. Journal of Irrigation and Drainage Engineering,2007,133:291.
    [123]Schaaf C, et al. First operational BRDF, albedo nadir reflectance products from MODIS[J]. Remote Sensing of Environment,2002,83(1-2):135-148.
    [124]Schafer J, Holben B, Eck T, Yamasoe M and Artaxo P. Atmospheric effects on insolation in the Brazilian Amazon:Observed modification of solar radiation by clouds and smoke and derived single scattering albedo of fire aerosols[J]. Journal of Geophysical Research,2002,107(D20):8074-8089.
    [125]Schafer J S, Eck T F, Holben B N, Artaxo P and Duarte A F. Characterization of the optical properties of atmospheric aerosols in Amazonia from long-term AERONET monitoring (1993-1995 and 1999-2006) [J]. Journal of Geophysical Research,2008, 113(D04204).
    [126]Schmetz J. Towards a surface radiation climatology:Retrieval of downward irradiances from satellites[J]. Atmospheric Research,1989,23(3-4):287-321.
    [127]Seemann S, Li J, Menzel W and Gumley L. Operational retrieval of atmospheric temperature, moisture, and ozone from MODIS infrared radiances[J]. Journal of Applied Meteorology,2003,42:1072-1091.
    [128]Sellers P, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I:Model formulation[J]. Journal of Climate,1996,9(4):676-705.
    [129]Shuttleworth W, Gurney R, Hsu A and Ormsby J. FIFE:the variation in energy partition at surface flux sites[J]. IAHS Publication,1989,186:67-74.
    [130]Sicart J, et al. A sensitivity study of daytime net radiation during snowmelt to forest canopy and atmospheric conditions[J]. Journal of Hydrometeorology,2004,5(5): 774-784.
    [131]Smith W and Woolf H. Geostationary satellite sounder (VAS) observations of longwave radiation flux[J]. Satellite Systems to Measure Radiation Budget Parameters and Climate Change Signals, Iglis, Austria, International Radiation Commission,1983.
    [132]Steffen K and Box J. Surface climatology of the Greenland ice sheet:Greenland climate network 1995-1999[J]. Journal of Geophysical Research,2001,106(D24): 33951-33964.
    [133]Stokes G. The Atmospheric Radiation Measurement (ARM) Program:Programmatic background and design of the cloud and radiation test bed[J].1994.
    [134]Su H, McCabe M, Wood E, Su Z and Prueger J. Modeling evapotranspiration during SMACEX:Comparing two approaches for local-and regional-scale prediction[J]. Journal of Hydrometeorology,2005,6:910-922.
    [135]Su Z. The Surface Energy Balance System(SEBS) for estimation of turbulent heat fluxes[J]. Hydrology and Earth System Sciences,2002,6(1):85-99.
    [136]Sugita M, et al. GAME Asian Automatic Weather Station Network (AAN) Data Set Ver.3.0. http://aan.suiri.tsukuba.ac.jp/document2.htm.[visited by] 09/18/2010.
    [137]Suttles J and Ohring G. Report of the Workshop on Surface Radiation Budget for Climate Applications[J].1986.
    [138]Tang B and Li Z. Estimation of instantaneous net surface longwave radiation from MODIS cloud-free data[J]. Remote Sensing of Environment,2008,112(9):3482-3492.
    [139]Tang B, Li Z and Zhang R. A direct method for estimating net surface shortwave radiation from MODIS data[J]. Remote Sensing of Environment,2006,103(1):115-126.
    [140]Tani M, Yamamoto S, Leclerc M Y and Leuning R. Special issue on Asiaflux-Foreword[J]. Agricultural and Forest Meteorology,2008,148(5):697-699.
    [141]Tegen I and Lacis A. Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol[J]. Journal of Geophysical Research, 1996,101(D14):19237.
    [142]Tucker C, Townshend J and Goff T. African land-cover classification using satellite data[J]. Science,1985,227(4685):369.
    [143]Van Laake P and Sanchez-Azofeifa G. Mapping PAR using MODIS atmosphere products[J]. Remote Sensing of Environment,2005,94(4):554-563.
    [144]van Leeuwen W, Huete A and Laing T. MODIS Vegetation Index Compositing Approach::A Prototype with AVHRR Data[J]. Remote Sensing of Environment, 1999,69(3):264-280.
    [145]Venturini V, Islam S and Rodriguez L. Estimation of evaporative fraction and evapotranspiration from MODIS products using a complementary based model[J]. Remote Sensing of Environment,2008,112(1):132-141.
    [146]Wan Z. MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (LST ATBD), Version 3.3, NASA5-31370[J].1999.
    [147]Wan Z and Dozier J. A generalized split-window algorithm for retrieving land-surface temperature from space[J]. IEEE Transactions on Geoscience and Remote Sensing,1996,34(4):892-905.
    [148]Wan Z, et al. Preliminary estimate of calibration of the moderate resolution imaging spectroradiometer thermal infrared data using Lake Titicaca[J]. Remote Sensing of Environment,2002,80(3):497-515.
    [149]Wang D, Liang S, Liu R and Zheng T. Estimation of daily-integrated PAR from sparse satellite observations:comparison of temporal scaling methods[J]. International Journal of Remote Sensing,2010,31(6):1661-1677.
    [150]Wang K and Liang S. Estimation of daytime net radiation from shortwave radiation measurements and meteorological observations [J]. JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY,2008,48(3):634-643.
    [151]Wang K and Liang S. Evaluation of ASTER and MODIS land surface temperature and emissivity products using long-term surface longwave radiation observations at SURFRAD sites[J]. Remote Sensing of Environment,2009,113(7):1556-1565.
    [152]Wang K, Wang P, Li Z, Cribb M and Sparrow M. A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature[J]. Journal of Geophysical Research,2007,112(D15107):14.
    [153]Wang K C and Liang S L. An improved method for estimating global evapotranspiration based on satellite determination of surface net radiation, vegetation index, temperature, and soil moisture[J]. Journal of Hydrometeorology, 2008,9(4):712-727.
    [154]Wang K C, et al. Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products[J]. Journal of Geophysical Research,2005, 110(D11):13.
    [155]Wang W, Liang S and Augustine J A. Estimating high spatial resolution clearsky land surface upwelling longwave radiation from MODIS Data[J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(5):1559-1570.
    [156]Wang W, Liang S and Meyers T. Validating MODIS land surface temperature products using long-term nighttime ground measurements[J]. Remote Sensing of Environment,2008,112(3):623-635.
    [157]Wang W H. Estimating High Spatial Resolution Clear-Sky Land Surface Longwave Radiation Budget from MODIS and GOES Data[J]. PhD Dissertation Department of Geography, University of Maryland,2008.
    [158]Wang W H and Liang S L. Estimation of high-spatial resolution clear-sky longwave downward and net radiation over land surfaces from MODIS data[J]. Remote Sensing of Environment,2009,113(4):745-754.
    [159]Wielicki B, et al. Clouds and the Earth's Radiant Energy System(CERES):algorithm overview[J]. IEEE Transactions on Geoscience and Remote Sensing,1998,36(4): 1127-1141.
    [160]Wilber A C, Kratz D P and Gupta S K. Surface Emissivity Maps for Use in Satellite Retrievals of Longwave Radiation[J]. NASA/TP-1999-209362,1999.
    [161]Wild M. Short-wave and long-wave surface radiation budgets in GCMs:a review based on the IPCC-AR4/CMIP3 models[J]. Tellus A,2008,60(5):932-945.
    [162]Wild M, Ohmura A, Gilgen H, Morcrette J J and Slingo A. Evaluation of downward longwave radiation in general circulation models[J]. Journal of Climate,2001,14(15): 3227-3239.
    [163]WMO. WMO On-line databases and questionnaires:Observational requirements,http://192.91.247.60/sat2/aspscripts/SelectUserBT.asp [visited Mar.7, 2009].[J].2000.
    [164]Xia X A, Wang P C, Chen H B and Liang F. Analysis of downwelling surface solar radiation in China from National Centers for Environmental Prediction reanalysis, satellite estimates, and surface observations [J]. Journal of Geophysical Research, 2006,111 (D09103).
    [165]Yang K, Koike T, Stackhouse P, Mikovitz C and Cox S J. An assessment of satellite surface radiation products for highlands with Tibet instrumental data[J]. Geophysical Research Letters,2006,33(L22403):4.
    [166]Yang K, et al. Evaluation of satellite estimates of downward shortwave radiation over the Tibetan Plateau[J]. Journal of Geophysical Research,2008,113(D17204):11.
    [167]Yasunari T, Nakamura A, Higuchi A and Asanuma J. GAME (GEWEX Asain Monsoon Experiment) Phase I Summary Report[J]. GAME Publication, No 37,133 pp,2003.
    [168]Zhang Y, Rossow W B and Lacis A A. Calculation of surface and top of atmosphere radiative fluxes, from physical quantities based on ISCCP data sets:1. Method and sensitivity to input data uncertainties[J]. Journal of Geophysical Research,1995, 100(D1):1149-1165.
    [169]Zhang Y, Rossow W B, Lacis A A, Oinas V and Mishchenko M I. Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets:Refinements of the radiative transfer model and the input data[J]. Journal of Geophysical Research,2004,109(D19105).
    [170]Zhang Y C, Long C N, Rossow W B and Dutton E G. Exploiting diurnal variations to evaluate the ISCCP-FD flux calculations and radiative-flux-analysis-processed surface observations from BSRN, ARM, and SURFRAD[J]. Journal of Geophysical Research,2010,115:21.
    [171]Zhao M, Running S and Nemani R. Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses[J]. Journal of Geophysical Research,2006,111(G1): G01002.
    [172]Zhou Y P, Kratz D P, Wilber A C, Gupta S K and Cess R D. An improved algorithm for retrieving surface downwelling longwave radiation from satellite measurements[J]. Journal of Geophysical Research,2007,112(D15):13.
    [173]Zillman J. A study of some aspects of the radiation and heat budgets of the southern hemisphere oceans[J]. meteorological study 26 Canberra, Australia:Commonwealth Bureau of Meteorology,1972.
    [174]任鸿瑞,罗毅and谢贤群.几种常用净辐射计算方法在黄淮海平原应用的评价[J].农业工程学报,2006,22(005):140-146.
    [175]刘允芬and李家永.亚热带红壤丘陵区水稻田净全辐射初探[J].生态农业研究,2000,8(1):5-9.
    [176]刘新安,于贵瑞,何洪林,蔡福and祝青林.中国地表净辐射推算方法的研究[J].自然资源学报,2006,21(001):139-145.
    [177]史兵and孙治安.我国东部亚热带地区地面净辐射的分布[J].热带地理,1989,9(003):222-232.
    [178]叶晶,et al利用MODIS数据直接估算晴空区干旱与半干旱地表净辐射通量[J].北京大学学报(自然科学版),2010,(1):40-49.
    [179]吴鹏飞,陈渭民,王建凯and张勇.用卫星资料探讨有云情况下的地面辐射收支[J].南京气象学院学报,2003,26(005):613-621.
    [180]孟宪红,吕世华and文莉娟.黑河中游金塔地区地表净短波辐射及净全辐射卫星遥感研究[J].太阳能学报,2006,27(008):748-753.
    [181]季劲钧and余莉.地表面物理过程与生物地球化学过程耦合反馈机理的模拟研究[J].大气科学,1999,23(004):439-448.
    [182]宋庆利,陈渭民,周学军and宋玉霞.利用卫星资料研究云对地面净辐射的影响[J].气象,2005,31(001):29-32.
    [183]宗雪梅,邱金桓and王普才.宽带消光法反演气溶胶光学厚度与AERONET北京站探测结果的对比研究[J].大气科学,2005,29(004):645-653.
    [184]张杰,杨兴国,杨启国and马胜萍.利用MODIS资料估算西北雨养农业区地表净辐射[J].干旱气象,2004,22(002):32-37.
    [185]承继成,郭华东and史文中.遥感数据的不确定性问题[M].北京:科学出版社,2003.
    [186]朱君and唐伯惠.利用MODIS数据计算中国地表短波净辐射通量的研究[J].遥感信息,2008,3:60-65.
    [187]权维俊.中国大陆地区地表净太阳辐射的卫星遥感研究[D].南京:南京气象学院,2003.
    [188]李丹and郭战峰.直面气候变化行动刻不容缓.http://www.cmaen.cn/nyzx/ShowNews.asp?NewsId=22952.[visited by] 10/10/2010.
    [189]李玉海.地表净辐射[J].气象,1977,25(1):31-32.
    [190]杜建飞.我国东部地区地面净辐射的卫星遥感研究[D].南京:南京气象学院,2004.
    [191]杜建飞,陈渭民,吴鹏飞,张建平and孙凡.由GMS资料估算我国东部地区夏季地表净辐射[J].南京气象学院学报,2004,27(005):674-680.
    [192]杨嘉,郭铌and贾建华.西北地区MODIS/NDVI与MODIS/EVI对比分析[J].干旱气象,2007,25(001):38-43.
    [193]柏延臣and王劲峰.遥感信息的不确定性[M].北京:地质出版社,2003.
    [194]江灏and瞿章.拉萨地表净辐射的年际变化[J].高原气象,199I,10(003):325-331.
    [195]焦子锑.利用MODIS BRDF和反照率产品进行地表特性的研究[D]:北京师范大学,2008.
    [196]王可丽and钟强.青藏高原地区大气顶净辐射与地表净辐射的关系[J].气象学报,1995,53(001):101-107.
    [197]王绍武,罗勇and赵宗慈.关于非政府间国际气候变化专门委员会(NIPCC)报告[J].气候变化研究进展,6(002):89-94.
    [198]翁笃呜,孙治安and史兵.中国地表净辐射的气候学研究[J].南京气象学院学报,1988,11(2):132-143.
    [199]胡秀清and张里阳MODIS近红外大气水汽总量反演算法技术报告[J].国家卫星气象中心,2006,4.
    [200]马耀明and M M.卫星遥感结合地面观测估算非均匀地表区域能量通量[J].气象学报,1999,57(002):180-189.
    [201]马耀明,姚檀栋and王介民.青藏高原能量和水循环试验研究--GAME/Tibet与CAMP/Tibet研究进展[J].高原气象,2006,25(002):344-351.
    [202]马耀明and王介民.黑河实验区地表净辐射区域分布及季节变化[J].大气科学,1997,21(006):743-749.
    [203]黄妙芬,邢旭峰,朱启疆and刘素红.定量遥感地表净辐射通量所需大气下行长波辐射估算模型改进[J].地理研究,2005,24(005):757-766.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700