用户名: 密码: 验证码:
中国西北地区沙尘气溶胶辐射强迫效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙尘气溶胶对太阳辐射能量强烈的吸收作用,不仅会改变地表能量平衡,而且还会通过改变大气的辐射加热结构,加速大气低层水汽和云的蒸发,从而抑制和减弱局域降水。因此研究西北地区气溶胶的辐射强迫作用,对了解沙尘气溶胶对这一区域大气能量平衡和水份循环的影响,特别是对西北地区干旱的影响,有着重要意义。本论文利用CERES、MODIS和CALIPSO等卫星遥感资料及地面观测资料,借助于辐射传输模式,着重详细研究了沙尘气溶胶的直接辐射强迫效应,定量计算了沙尘的直接辐射强迫值及其对大气辐射加热率的影响;初步揭示了沙尘与云的相互作用对辐射能量平衡的影响,并在此基础上提出了分离沙尘气溶胶直接辐射强迫效应与间接/半直接综合辐射强迫效应的方法。
     西北沙尘气溶胶一直缺乏详细可靠的光学性质数据库,区域辐射强迫的计算存在着很大的不确定性。本论文首次利用2008年中美联合观测的张掖站数据反演得到的沙尘粒子的光学特性,特别是单次散射反照率,计算了西北地区的辐射强迫。利用辐射闭合试验验证了反演的沙尘粒子参数的可靠性,在试验成功的基础上计算了沙尘气溶胶在大气层顶和地表的日平均辐射强迫值。结果表明虽然沙尘气溶胶在大气层顶的辐射强迫值都接近于零,但是在地表却表现出很大的负的辐射强迫值,这种地表与大气层顶很大的差值说明,大气中的沙尘气溶胶有效阻挡了太阳光到达地表,增加了大气中太阳短波的吸收,这势必会影响大气的垂直温度分布,对大气层结的稳定和水分循环产生影响。
     气溶胶的垂直廓线对大气加热率和辐射强迫的的计算至关重要,但由于观测手段的限制,区域和全球尺度上的气溶胶垂直廓线的问题一直没有解决。本论文利用最新发射的CAPLISO卫星数据得到了塔克拉玛干地区沙尘气溶胶的垂直廓线,并输入Fu-liou模式,计算了沙尘辐射强迫值及加热率的垂直分布。结果表明由于沙尘的强吸收性,使得很大一部分太阳辐射被吸收留在了大气中,从而进一步加热大气。在强沙尘出现时,伴随着沙尘过程的加强发展,沙尘层大气的加热率可以从1K day-1,2Kday-1增加到3K day-1,甚至沙尘最强时可以达到5.5Kday-1。这项工作首次定量评估了在塔克拉玛干沙漠中强沙尘暴发生时,沙尘层对大气的加热作用。
     本文还通过分析4年的CERES卫星资料比较了纯云区(CLD)和被沙尘污染过的云区(COD)云微物理特性和辐射强迫的变化,再次证实了当云下有沙尘出现时,沙尘粒子对云光学特性有显著的改变;并发现沙尘的存在会明显减弱云在大气层顶的冷却效应,云冷却效应的减弱可认为是由于沙尘增暖作用抵消的结果。而沙尘在TOA处的这种增暖效应,不仅包括直接效应也包含了由云物理特性改变所引起的间接和半直接效应,但是无法只利用卫星资料将直接效应和其他两种效应分开。本文首次提出了一种将卫星资料分析结果与模式模拟结果相结合来分离直接与间接效应的新方法,来达到这一目的。利用此种方法估算的在TOA处沙尘短波瞬时直接辐射强迫值为22.7 Wm-2,间接与半直接辐射强迫和为82.2Wm-2,分别占总辐射效应的21.6%和78.4%。该方法的提出为定量研究云与气溶胶的相互作用提供了一个新的思路。
Dust aerosols hava strong absorption of solar radiation. They not only modulate the surface energy, but also affect the heating rate of atmosphere which would enhence cloud evaporation, and weaken and suppress regional precipitation. The investigation of the dust aerosol radiative forcing is therefore important to understand the dust aerosol effects on the regional energy balance and hydrological cycle, over Northwestern China with the arid climate. In this study, we quantify the dust direct radiative forcing, and its influence on atmospheric radiative heating rate by using the CERES, MODIS and CALIPSO satellite data, ground-based observation and radiative transfer model. We also examine the radiation energy budget change due to the interaction of dust and cloud, where we propose a comprehensive approach to separate the dust aerosol direct radiative effect and indirect/semi-direct radiative effect.
     There are large uncertainties in estimation of regional radiative forcing of dust over northwestern China because of lacking detailed and reliable observations of dust optical properties. Herein we use the dust aerosol optical properties, retrieved from ground-based observations at Zhangye site during the 2008 China-US Joint Field Experiment, to calculate the dust aerosol radiative forcing. After verifying the reliability of the retrieved dust aeosol optical and microphysical properties though the radiation closure experiment, we calculate the daily mean radiative forcing of dust aerosol at both the top of atmosphere and surface. It is shown that dust aerosol has a strong negative forcing at the surface, but the magnitude of dust ARF at the TOA is very small. The large ARF difference between TOA and surface means that solar radiation is kept within the atmosphere. This would reduce the vertical temperature gradient, enhace the stability of the atmosphere of the atmosphere, and thus slow down hydrological-cycle.
     The vertical profile of dust aerosols is important to estimate the atmospheric heating rate, and is also important to calculate the dust ARF. However, it is difficult to obtain the aerosol vertical profiles on the regional and globle spatial scales untile the active lidar observation become available from CALIPSO satellite. In this study, the CALIPSO lidar measurements are used to derive the vertical distribution of dust aerosols. We use the Fu-Liou radiation model along with the input of dust aerosol vertical profile to estimate the dust radiative forcing and atmospheric radiative heating rate. It is found that dust aerosols can maintain a large portion of solar energy in the atmosphere because of the strong absorption, thereby heating the atmosphere. During an evolution of a dust storm case, the dust aerosols heat the atmosphere (daily mean) by up to 1,2, and 3Kday-1, respectively. The maximum daily mean radiative heating rate reaches 5.5Kday-1.This work quantitatively estimates the warm effect of dust layer during a dust storm in the Taklimakan desert for the first time.
     In our study, four years of CERES data are also used to quantify the differences of cloud microphysical properties and radiative forcing between CLD (pure cloud) and COD (cloud over dust). We shown that the analysis of satellite observations, dust aerosols do change cloud microphysical properties. It is shown that when dust exists under a cloud it has a warming effect at TOA, which combines direct, indirect and semi-direct effect. However, it is difficult, using only satellite observations, to separate the dust aerosol direct effect from those caused by altered cloud properties. We propose a new simple method that uses the satellite observations along with the radiation model calculations to separate these effects. It is shown that the averaged direct, and the combined indirect and semi-direct instantaneous shortwave radiative forcing are 22.7 and 82.2Wm-2, respectively, which correspond to 21.6 and 78.4% of the total RF value. This method provides a new way to quantitatively study the interaction between clouds and aerosols.
引文
Atwater, M. A., (1970), Planetary albedo changes due to aerosols, Science,170(3953),64-66.
    Albrecht, B. A., (1989), Aerosols, cloud microphysics, and fractional cloudiness, Science,245, 1227-1230.
    Charlson, R. J. and Pilat, M. J., (1969), Climate:The influence of aerosols, J. Appl. Meteorol.,8, 1001-1002.
    Charlson, R. J., Schwartz, S.E., Hales, J.M., Cess, R.D., Coakley J.A., Hansen, Jr., J.E., Hofmann, D.J., (1992), Climate forcing by anthropogenic aerosols, Science,255(5043),423-430.
    Chylek, P. and Wong, J., (1995), Effect of absorbing aerosol on global radiation budget, Geophys. Res. Lett.,22,929-931,1995.
    Coakley Jr., J. A., Cess, R. D., and Yurevich, F. B., (1983), The effect of tropospheric aerosols on the earth's radiation budget:A parameterization for climate models, J. Atmos. Sci.,40, 116-138
    Coakley, J. A., Jr., R. L. Bernstein, and P. A. Durkee, (1987), Effect ofship-stack effluents on cloud reflectivity, Science,237,1020-1022.
    Durkee P., (1988), Symposium on the role of clouds in atmospheric chemistry and global climate, American Meteorological Society, pp.157-169.
    Fouquart, Y., B. Bonnel, M. Chaoui Raquai, R. Santer, and A. Cerf, (1987), Observations of Saharan aerosols:Results of ECLATS field experiment, I, Optical properties and aerosols size distributions, J. Clini. Appl. Mereorol.,26,28-37,1987.
    Ge J.M., J. Su, T.P. Ackerman, Q. Fu, J.P. Huang, and J.S. Shi, (2010), Dust Aerosol Optical Properties Retrieval and Radiative Forcing over Northwestern China during the 2008 China-US Joint Field Experiment. J. Geophy. Res., (in press).
    Guiltepe I., G. A. Issac, W. R. Leaitch, C. M. Banic, (1996), Parameterizations of marine stratus microphysics based on in situ observations J. Clim.9,345.
    Haywood, J. M., V. Ramaswamy, and B. J. Soden, (1999), Tropospheric aerosol climate forcing in clear-sky satellite observations over the oceans, Science,283,1299-1305.
    Haywood, J.M., Oliviler Boucher, (2000), Estimates of the direct and Indirect radiative forcing due to tropospheric aerosol:A Review, Reviews of Geophysics,38,513-543
    Haywood, J. M. and Shine, K. P., (1997), Multi-spectral calculations of the radiative forcing of tropospheric sulfate and soot aerosols using a column model, Q. J. R. Meteorol. Soc,123, 1907-1930.
    Haywood, J., Francis, P., Osborne, S., Glew, M., Loeb, N., Highwood, E., Tanr'e, D., Myhre, E., Formenti, P., and Hirst, E., (2003), Radiative properties and direct radiative effect of Saharan dust measured by the C-130 aircraft during SHADE:1.Solar spectrum, J. Geophys. Res., 108(D18),8577, doi:10.1029/2002JD002687.
    Hansen J., M. Sato, R. Ruedy, A. Lacis, V. Oinas, (2000), Global warming in the twenty-first century:An alternative scenario, PNAS,97 (18) 9875-9880.
    Higurashi, A., and T. Nakajima, (2002), Detection of aerosol types over the East China Sea near Japan from four-channel satellite data, Geophys. Res. Lett.,29,1836, doi:10. 1029/2002GL015357.
    Houghton, J.T., L.G. Meira Filho, J.P. Bruce, Hoesung Lee, B.T. Callander, E.F. Haites, N. Harris, and K. Maskell, (1994), Climate Change 1994:Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios, Cambridge University Press, Cambridge and New York,339 pp
    Houghton, J.J., L.G. Meiro Filho, B.A. Callander, N. Harris, A. Kattenberg and K.Maskell, (1996), Climate Change 1995:The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge and New York,584 pp
    Huang, J., P. Minnis, B. Lin, Y. Yi, S. Sun-Mack, T.-F. Fan, and J. R. Ayers, (2006), Determination of ice water path in ice-over-water cloud systems using combined MODIS and AMSR-E measurements, Geophys. Res. Lett.,33, L21801, doi:10.1029/2006GL027038.
    Huang, J., B. Lin, P. Minnis, T. Wang, X. Wang, Y. Hu, Y. Yi, and J. R. Ayers, (2006), Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia, Geophys. Res. Lett.,33, doi:10.1029/2006GL026561.
    Huang, J., Y. Wang, T. Wang, and Y. Yi, (2006), Dusty cloud radiative forcing derived from satellite data for middle latitude regions of East Asia, Progress in Natural Science.16(10), 1084-1089.
    Huang, J., P. Minnis, B. Chen, Z. Huang, Z. Liu, Q. Zhao, Y. Yi, and J. K. Ayers, (2008), Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX, J. Geophys. Res.,113, D23212, doi:10.1029/2008JD010620
    Kaufman Y. J., R. S. Fraser, (1997), The effect of smoke particles on clouds and climate forcing, Science,277,1636.
    Levi, Y., and D. Rosenfeld, (1996), Ice nuclei, rainwater chemical composition, and static cloud seeding effects in Israel, J. Appl. Meteorol.,35,1494-1501.
    Le Treut, H., R. Somerville, U. Cubasch, Y. Ding, C. Mauritzen, A. Mokssit, T. Peterson and M. Prather, (2007), Historical Overview of Climate Change. In:Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    Martin, G. M., D. W. Johnson, and A. Spice, (1994), The measurement and parameterization of effective radius of droplets in warm stratiform clouds, J. Atmos. Sci.,51,1823-1842.
    McCormick, R. A. and Ludwig, J. H., (1967), Climate modification by atmospheric aerosols, Science,156(3780),1358-1359.
    McFarlane, S. A., E. I. Kassianov, J. Barnard, C. Flynn, T. P. Ackerman, (2009), Surface shortwave aerosol radiative forcing during the Atmospheric Radiation Measurement Mobile Facility deployment in Niamey, Niger, J. Geophys. Res.,114, D00E06, doi:10.1029/2008JD010491.
    Mitchell Jr., J. M., (1971), The effect of atmospheric aerosols on climate with special reference to temperature near the Earth's surface, J. Appl. Meteorol.,10,703-714.
    Nakajima, T., A. Higurashi, K. Kawamoto, and J.E. Penner, (2001), A possible correlation between satellite-derived cloud and aerosol microphysical parameters, Geophys. Res. Lett.,28, 1171-1174
    Pandithurai, G., S. Dipu, K. K. Dani, S. Tiwari, D. S. Bisht, P. C. S. Devara, and R. T. Pinker, (2008), Aerosol radiative forcing during dust events over New Delhi, India. J. Geophys. Res.,113, D13209, doi:10.1029/2008JD009804.
    Pawlowska H., J.-L. Brenguier, (2000), Microphysical properties of stratocumulus clouds during ACE-2 Tellus 52B,868.
    Penner, J. E., R. J. Charlson, J. M. Hales, N. S. Laulainen, R. Leifer, T. Novakov, J. Ogren, L. F. Radke, S.E.Schwartz, L. Travis, (1994), Quantifying and Minimizing Uncertainty of Climate Forcing by Anthropogenic Aerosols, Bulletin of the American Meteorological Society,3(75), 375-400.
    Penner J. E. et al.,(2001), in Climate Change 2001:The Scientipc Basis [Working Group I to the Third Assess-ment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge Univ. Press, Cambridge,2001], pp.289D348.
    Pincus, R., and M. Baker, (1994), Precipitation, solar absorption, and albedo susceptibility in marine boundary layer clouds, Nature,372,250-252,1994.
    Rosenfeld, D., and R. Nirel, (1996), Seeding effectiveness-The interaction of desert dust and the southern margins of rain cloud systems in Israel, J. Appl. Meteorol.,35,1502-1510.
    Rosenfeld, D., Y. Rudich, and R. Lahav, (2001), Desert dust suppressing precipitation:a possible desertification feedback loop, Proceedings of the National Academy of Sciences,98(11),59 75-5980.
    Sokolik, I. N., and O. B. Toon, (1996), Direct radiative forcing by anthropogenic airborne mineral aerosols, Nature,381,681-683.
    Taylor J. P., and McHaffie, A., (1994), Measurements of cloud susceptibility. J. Atmos. Sci.,51, 1298-1306.
    Twomey S., (1974), Pollution and the planetary albedo, Atmos. Environ.,8,1251-1256.
    Twomey S., The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci.,34, 1149-1152,1977.
    Twomey S., M. Piepgrass and T.L. Wolfe, (1984), An assessment of the impact of pollution on global cloud albedo, Tellus 36B, pp.356-366.
    Charlock, T. P., and T. L. Alberta, (1996), The CERES/ARM/GEWEX Experiment (CAGEX) for the retrieval of radiative fluxes with satellite data. Bull. Amer. Meteor. Soc.,77,2673-2683
    Clough, S.A., F.X. Kneizys, and R.W.Davies, (1989), Line shape and the water vapor continuum. Atmos. Res., Vol.23,229-241.
    D'Almeida, G. A., P. Koepke, and E. P. Shettle, (1991), Atmospheric aerosols-global climatology and radiative characteristics. A. Deepak Publishing, Hampton, Va,561 pp.
    Fu, Q., and K.-N. Liou, (1993), Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci.,50,2008-2025.
    Fu, Q., and K.-N. Liou, (1992), On the correlated k-distribution method for radiative transfer in nonhomogenous atmospheres. J. Atmos. Sci.,49,2139-2156.
    Fu, Q., G. Lesins, J. Higgins, T. Charlock, P. Chylek, and J. Michalsky, (1998), Broadband water vapor absorption of solar radiation tested using ARM data. Geophys. Res. Lett.,25, 1169-1172.
    Fu, Q., K. Liou, M. Cribb, T. Charlock, and A Grossman, (1997), On multiple scattering in thermal infrared radiative transfer. J. Atmos. Sci.,54,2799-2812.
    Fu, Q., W.B. Sun, and P. Yang, (1999), Modeling of scattering and absorption by nonspherical cirrus ice particles at thermal infrared wavelengths. J.Atmos. Sci.,56,2937-2947.
    Hess, M., P. Koepke, and I. Schult, (1998), Optical Properties of Aerosols and Clouds:The software package OPAC. Bull. Amer. Meteor. Soc.,79,831-844.
    Kato, S., and F. G. Rose, and T. P. Charlock, (2005), Computation of Domain-averaged Irradiance Using Satellite-derived Cloud Properties. J. Atmos. Oceanic Technol.,22,146-164.
    Kato, S., T. P. Ackerman, J. H. Mather, and E. E. Clothiaux, (1999), The k-distribution method and correlated-k approximation for a Shortwave Radiative Transfer Model, J. Quant. Spectrosc. Radiat. Transfer,62,109-121.
    Kratz, D. P., and F. G. Rose, (1999), Accounting for molecular absorption within the spectral range of the CERES window channel. J. Quant. Spectrosc. Radiat. Transfer,48,83-95.
    Rose, F. G., and T. P. Charlock, (2002) New Fu-Liou Code Tested with ARM Raman Lidar and CERES in pre-CALIPSO Exercise. Extended abstract for 11th Conference on Atmospheric Radiation (AMS),3-7 June 2002 in Ogden, Utah.
    Tegen, I., and A. A. Lacis, (1996), Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J.Geophy. Res.,101,19237-19244.
    Berk, A., L. W. Bernstein, and D. C. Robertson, (1983), MODTRAN:A moderate resolution model for LOWTRAN7. Rep. AFGL-TR-83-0187,261 pp. [Available from Air Force Geophysical Laboratory, Hanscom Air Force Base, MA 01731-5000.]
    Bernstein, L. S., A. Berk, D. C. Robertson, P. K. Acharya, G. P. Anderson, and J. H. Chetwynd, (1996), Addition of a correlated k capability to MODTRAN. Proc.19th Annual Conf. on Atmospheric Transmission Models. Hanscom AFB, MA,261 pp. [Available from Air Force Geophysical Laboratory, Hanscom Air Force Base, MA 01731-5000.]
    Clough, S. A., M. J. Iacono, and J.-L. Moncet, (1992), Line-byline calculations of atmospheric fluxes and cooling rates:Application to water vapor. J. Geophys. Res.,97,761-785.
    Dahlback, A., and K. Stamnes, (1991), A new spherical model for computing the radiation field available for photolysis and heating at twilight. Planet. Space Sci.,39,671-683.
    Ellingson, R. G., and W. J. Wiscombe, (1996), The Spectral Radiance Experiment (SPECTRE)-Project description and sample results. Bull. Amer. Meteor. Soc.,77,1967-1985.
    Hansen, J. E., (1969), Exact and approximate solutions for multiple scattering by cloudy and hazy planetary atmospheres. J. Atmos.Sci.,26,478-487.
    Harrison, L. C., and J. Michalsky, (1994), Objective algorithms for the retreival of optical depths from ground-based measurements. Appl. Opt.,33,5126-5132.
    Kato, S., T. P. Ackerman, E. E. Clothiaux, J. H. Mather, G. G. Mace, M. L. Wesely, F. Murcray, and J. Michalsky, (1997), Uncertainties in modeled and measured clear-sky surface shortwave irradiances. J. Geophys. Res.,102,25881-25898.
    Kneizys, F. X., E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, and R. W. Fenn, (1983), Atmospheric transmittance/radiance:Computer code LOWTRAN 6, Rep. AFGL-TR-83-0187,200 pp. [Available from Air Force Geophysical Laboratory, Hanscom Air Force Base, MA 01731-5000.]
    Kondratyev, K. Y., (1969), Radiation in the Atmosphere. Academic Press,912 pp.
    Koskela, T., A. Heikkila, J. Damski, P. Taalas, and A. Kylling, (1996), UV-B radiation at common optical air masses:Geographical comparison and model performance tests. Proc. Int.Radiation Symp., IRS'96:Current Problems in AtmosphericRadiation, Fairbanks, Alaska, 925-929.
    Liou, K.-N., (1980), An Introduction to Atmospheric Radiation. Harcourt Brace Jovanovich,392 pp.
    Lubin, D., P. Ricchiazzi, C. Gautier, and R. H. Whritner, (1994), A method for mapping Antarctic surface UV radiation using multispectral satellite imagery. Ultraviolet Radiation in Antarctica:Measurements and Biological Effects, C. S. Weiler and P. A.
    Penhale, Eds., American Geophysical Union Antarctic Research Series, American Geophysical Union,53-81.
    Luther, F., R. Ellingson, Y. Fouquart, S. Fels, N. Scott, and W. Wiscombe, (1988), Intercomparison of radiation codes in climate models (ICRCCM):Longwave clear-sky results. Bull. Amer. Meteor. Soc,69,40-48.
    McClatchey, R. A., R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Garing, (1972), Optical properties of the atmosphere.3rd ed. AFCRL Environ. Res.,411,108 pp.
    Neckel, H., and D. Labs,1984:The solar radiation between 3300 and 12500 A. Sol. Phys.,90, 205-258. O'Hirok, W., and C. Gautier, (1998), A three-dimensional radiative transfer model to investigate the solar radiation within a cloudy atmosphere. Part Ⅰ:Spatial effects. J. Atmos. Sci.,55,2162-2179.
    Pierluissi, J. H., and G.-S. Peng, (1985), New molecular transmission band models for LOWTRAN. Opt. Eng.,24 (3),541-549.
    Reeves, R. G., A. Anson, and D. Landen, Eds., (1975), Manual of Remote Sensing. First ed. Amer. Soc. Photogrammetry,2144 pp.
    Ricchiazzi, P., and C. Gautier, (1998), Investigation of the effect of surface heterogeneity and topography on the radiation environment of Palmer Station, Antarctica, with a hybrid 3D radiative transfer model. J. Geophys. Res.,103,6161-6176
    ——,——, and D. Lubin, (1995), Cloud scattering optical depth and local surface albedo in the Antarctic:Simultaneous retrieval using ground-based radiometry, J. Geophys. Res.,100,21 091-21 104.
    Schwartz, S. E., (1996), The whitehouse effect—Shortwave radiative forcing of climate by anthropogenic aerosols:An overview. J. Aeros. Sci.,27,359-382.
    Shettle, E. P., and R. W. Fenn, (1975), Models of the atmospheric aerosols and their optical properties. AGARD Conf. Proc.,Optical Propagation in the Atmosphere, Lyngby, Denmark, NATO Advisory Group for Aerospace Research,2.1-2.16.
    ——, F. X. Kneizys, and W. O. Gallery, (1980), Suggested modification to the total volume molecular scattering coefficient in LOWTRAN. Appl. Opt.,19,2873-2874.
    Staetter, R., and M. Schroeder, (1978), Spectral characteristics of natural surfaces. Proc. Int. Conf. on Earth Observation from Space and Management of Planetary Resources, Toulouse,France, Council of Europe, Commission of the European Communities,and European Association of Remote Sensing Laboratories,661 pp.
    Stamnes, K., S. Tsay, W. Wiscombe, and K. Jayaweera, (1988), Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt.,27,2502-2509.
    Stokes, G. M., and S. E. Schwartz, (1994), The atmospheric radiation measurement (ARM) program:Programmatic background and design of the cloud and radiation test bed. Bull. Amer.Meteor. Soc.,75,1201-1221.
    Tanre, D., C. Deroo, P. Duhaut, M. Herman, J. J. Morcrette, J. Perbos, and P. Y. Deschamps,1990, Description of a computer code to simulate the satellite signal in the solar spectrum:The 5S code. Int. J. Remote Sens.,11 (4),659-668.
    Valero, F. P. J., P. J., Warren, J. Y. Gore, and L. P. M. Giver, (1982), Radiative flux measurements in the troposphere. Appl. Opt.,21,831-838.
    ——, and Coauthors, (1997), Absorption of solar radiation by the Cloudy atmosphere: Interpretations of collocated aircraft measurements. J. Geophys. Res. Atmos.,102,29917-29 927.
    Van de Hulst, H. C., (1968), Asymptotic fitting, a method for solving anisotropic transfer problems in thick layers. J. Comput. Phys.,3,291-306. Wiscombe, W. J.,1980:Improved Mie scattering algorithms. Appl. Opt.,19,1505-1509.
    ——, and J. W. Evans, (1977), Exponential-sum fitting of radiative transmission functions. J. Comput. Phys.,24,416-444.
    ——, and S. G. Warren, (1980), A model for the spectral albedo of snow. Part I:Pure snow. J. Atmos. Sci.,37,2712-2733.
    Zhang, M. H., R. D. Cess, and X. D. Jing, (1997), Concerning the interpretation of enhanced cloud
    shortwave absorption using monthly-mean earth radiation budget experiment/global energy
    balance archive measurements. J. Geophys. Res. Atmos.,102,25899-25905.
    Angstrom, A, (1929), On the atmospheric transmission of sun radiation and on dust in the air, Geogr. Ann. H.,11,156-166.
    Angstrom, A., (1930), On the atmospheric transmission of Sun radiation, Ⅱ, Geogr. Ann.,2, 156-165.
    Atwater M. A., (1970), Planetary albedo changes due to aerosols, Science,170 (3953),64-66.
    Bhartia, P. K., J. R. Herman, R. D. McPeters and O. Torres, (1993), Effect of Mount Pinatubo Aerosols on Total Ozone Measurements From Backscatter Ultraviolet (BUV) Experiments, J. Geophys. Res.,98,18547-18554.
    Bohren, C. F. and Huffman, D. R., (1983), Absorption and Scattering of Light by Small Particles, Wiley, New York.
    Coakley Jr., J. A., Cess, R. D., and Yurevich, F. B., (1983), The effect of tropospheric aerosols on the earth's radiation budget:A parameterization for climate models, J. Atmos. Sci.,40, 116-138.
    Ge J.M., J. Su, T.P. Ackerman, Q. Fu, J.P. Huang, and J.S. Shi, (2010), Dust Aerosol Optical Properties Retrieval and Radiative Forcing over Northwestern China during the 2008 China-US Joint Field Experiment. J. Geophy. Res., (in press).
    Henyey, L. G. and Greenstein, T. L., (1941), Diffuse radiation in the galaxy, Astrophys J.,93, 70-83.
    Le Treut, H., R. Somerville, U. Cubasch, Y. Ding, C. Mauritzen, A. Mokssit, T. Peterson and M. Prather, (2007), Historical Overview of Climate Change. In:Climate Change 2007:The Physical Science Basis. Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    Lewis P., and M. J. Barnsley, (1994), Inuence of the sky radiance distribution on various formulations of the earth surface albedo, in Proc. Conf. Phys. Meas. Sign. Remote Sens., Val d'Isere, France,707-715.
    McFarlane, S. A., E. I. Kassianov, J. Barnard, C. Flynn, T. P. Ackerman, (2009), Surface shortwave aerosol radiative forcing during the Atmospheric Radiation Measurement Mobile Facility deployment in Niamey, Niger, J. Geophys. Res.,114, D00E06, doi:10.1029/2008JD010491.
    Mitchell Jr., J. M.,(1971), The effect of atmospheric aerosols on climate with special reference to temperature near the Earth's surface, J. Appl. Meteorol.,10,703-714.
    Ramanathan, V., Crutzen, P. J. Kiehl, J. L. and D. Rosenfeld, (2001), aerosols, climate, and the hydrological cycle. Science,294,2119-2124.
    Van de Hulst, H. C.:Light scattering by small particles, John Wiley (1957), reprinted by Dover, New York.
    Ackerman A. S., et al. (2000), Reduction of tropical cloudiness by soot, Science,288,1042-1047.
    Albrecht, B.A. (1989), Aerosols, cloud microphysics, and fractional cloudiness, Science,245, 1227-1230.
    Carlson, T. N., and S. G. Benjamin (1980), Radiative heating rates for Saharan dust. J. Atmos. Sci., 37,193-213.
    Claquin, T., M. Schulz, Y. J. Balkanski, and O. Boucher (1998), Uncertainties in assessing radiative forcing by mineral dust, Tellus, Ser. B,50,491-505.13.
    Claquin, T., M. Schulz, and Y. Balkanski (1999), Modeling the mineralogy of atmospheric dust. J. Geophys. Res.,104(D18),22243-22256.
    Dubovik, O., et al. (2002), Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci.,59,590-608.
    Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn,G. Raga, M. Schulz and R. Van Dorland (2007), Changes in Atmospheric Constituents and in Radiative Forcing. In:Climate Change 2007: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    Fu, Q., and K.-N. Liou (1992), On the correlated k-distribution method for radiative transfer in nonhomogenous atmospheres, J. Atmos. Sci.,49,2139-2156.
    Fu, Q., and K. N. Liou (1993), Parameterization of the radiative properties pf cirrus clouds, J.
    Atmos. Sci.,50,2008-2025
    Hess, MP, P Koepke, and I Schultz (1998), Optical properties of aerosol and clouds:The software package OPAC, Bull. Amer. Meteor. Soc.,79,831-844.
    Huang, J., B. Lin, P. Minnis, T. Wang, X. Wang, Y. Hu, Y. Yi, and J. K. Ayers (2006), Satellite-based assessment of possible dust aerosols semidirect effect on cloud water path over East Asia, Geophys. Res. Lett,33,L19802, doi:10.1029/2006GL026561.
    Huang, J., P. Minnis, Y. Yi, Q. Tang, X. Wang, Y. Hu, Z. Liu, K. Ayers, C. Trepte, and D. Winker (2007), Summer dust aerosols detected from CALIPSO over the Tibetan Plateau, Geophys. Res. Lett.,34, L18805, doi:10.1029/2007GL029938.
    Huang, J., P. Minnis, B. Chen, Z. Huang, Z. Liu, Q. Zhao, Y. Yi, and J. Ayers (2008), Long-range transport and vertical structure of Asian dust from CALIPSO an surface measurements during PACDEX, J. Geophys. Res., doi:10.1029/2008JD010620.
    Hu, Y., Z. Liu, D. Winker, M. Vaughan, V. Noel, L. Bissonnette, G. Roy, and M. McGill (2006), A simple relation between depolarization and multiple scattering of water clouds and its application for lidar calibration", Optics Letters,31,1809-1811.
    Hu, Y., et al. (2007), The depolarization-attenuated backscatter relation:CALIPSO lidar measurements vs. theory, Optics Express,15,5327-5332.
    Iwasaka, Y., H. Minoura, and K. Nagaya (1983), The transport and spatial scale of Asian dust-storm clouds:A case study of the dust-storm event of April 1979, Tellus, Ser. B,35,189-196.
    Kato, S, TP Charlock, and FG Rose (2005), "Paper Computation of Domain-Averaged Irradiance Using Satellite-Derived Cloud Properties." Journal of Atmospheric and Oceanic Technology, 22b,146-164.
    Koren I., et al. (2004), Measurement of the Effect of amazon smoke on inhibition of cloud formation. Science,303,1342-1345.
    Kratz, D. P., and F. G. Rose (1999), Accounting for molecular absorption within the spectral range of the CERES window channel. J. Quant. Spectrosc. Radiat. Transfer,48,83
    Kruger, O., and H. Graβ1 (2004), Albedo reduction by absorbing aerosols over China, Geophys. Res. Lett.,30, doi:0.029/2003GL01911.
    Liao, H. and J.H. Seinfeild (1998), Radiative forcing by mineral dust aerosols:Sensitivity to key variables, J. Geophys. Res.,103(D24),31,637-31,645.15.
    Liu, Z., M. A. Vaughan, D. M. Winker, C. A. Hostetler, L. R. Poole,D. Hlavka, W. Hart, and M. McGill (2004), Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data, J. Geophys. Res.,109, D15202, doi:10.1029/2004JD004732.
    Liu, Z., D. Liu, J. Huang, M. Vaughan, I. Uno, N. Sugimoto, C. Kittaka, C. Trepte, Z. Wang, C. Hostetler, and D. Winker (2008), Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations, Atmos. Chem. Phys.,8,5045-5060.
    Meloni, D., A. D. Sarra, T. D. Iotio, and G. Fiocco (2005), Influence of the vertical profile of Saharan dust on the visible direct radiative forcing, Journal of Quantitative Spectroscopy Radiative Transfer,93,497-413.21.
    Mikami, M., et al. (2006), Aeolian dust experiment on climate impact:an overview of Japan-China Joint Project ADEC. Global Planet Change,52,142-172, doi:10.1016/j.gloplacha.2006.03.001.
    Minnis, P., et al. (2008), Cloud detection in non-polar regions for CERES using TRMM VIRS and Terra and Aqua MODIS data, IEEE Trans. Geosci. Remote Sens., in press.
    Murayama, T., et al. (2001), Ground-based network observation of Asian dust events of April 1998 in east Asia, J. Geophys. Res.,106(D16),18,345-18,360.
    Omar, A., D. Winker, and J. Won (2004), Aerosol models for the CALIPSO lidar inversion algorithms. Laser Radar Technology for Remote Sensing, Proc. SPIE,5240, pp.153-164.
    Rose, F. G. and T. P. Charlock (2002), New Fu-Liou Code Tested with ARM Raman Lidar and CERES in pre-CALIPSO Exercise, Extended abstract for 11th Conference on Atmospheric Radiation (AMS), Ogden, Utah,3-7 June 2002.
    Satheesh, S. K., V. Vinoj, and K. K. Moorthy (2006), Vertical distribution of aerosols over an urban continental site in India inferred using a micro pulse lidar, Geophys. Res. Lett.,33, L20816, doi:10.1029/2006GL027729.
    Shi, G.Y., et al. (2005), Sensitivity experiments on the effects of optical properties of dust aerosols on their radiative forcing under clear sky condition. J. Meteorol. Soc. Japan,83A,333-346.
    Slingo, A., et al. (2006), Observations of the impact of a major Saharan dust storm on theatmospheric radiation balance, Geophys. Res. Lett.,33, L24817 doi:10.1029/2006GL027869.
    Sokolik, I. N. and O. B. Toon (1999), Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths, J. Geophys. Res.,104, 9423-9444.
    Stephens, G. L., et al. (2002), The CloudSat Mission and the A-Train:A New Dimension of Space-Based Observations of Clouds and Precipitation, Bull. Amer. Meteor. Soc.,83, 1771-1790.
    Sun, J., M. Zhang, and T. Liu (2001), Spatial and temporal characteristics of dust storms in China and its surrounding regions,1960-1999:Relations to source area and climate, J. Geophys. Res.,106,10,325-10,333.
    Tegen, I., A.A. Lacis, and I. Fung (1996), The infl uence on climate forcing of mineral aerosols from disturbed soils, Nature,380,419-421, doi:10.1038/38041900.
    Tegen, I., M. Werner, S.P. Harrison, and K.E. Kohfeld (2004), Relative importance of climate and land use in determining present and future global soil dust emission. Geophys. Res. Lett., 31,L05105, doi:10.1029/2003GL019216.
    Twomey, S. (1977), The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci., 34,1149-1152.
    Uno, I., K. Yumimoto, A. Shimizu, Y. Hara, N. Sugimoto, Z. Wang, Z. Liu, and D. M. Winker (2008),3D structure of Asian dust transport revealed by CALIPSO lidar and a 4DVAR dust model, Geophys. Res. Lett.,35, L06803, doi:10.1029/2007GL032329.
    Uno, I., H. Amano, S. Emori, K. Kinoshita, I. Matsui, and N. Sugimoto (2001), Trans-Pacific yellow sand transport observed in April 1998:A numerical simulation, J. Geophys. Res., 106(D16),18331-18344,10.1029/2000JD900748.
    Wang, S., J. Wang, Z. Zhou, and K. Shang (2005), Regional characteristics of three kinds of dust storm events in China, Atmospheric Environment,39,509-520.
    Wielicki, B. A., et al. (1996), Clouds and the Earth's Radiant Energy System (CERES):an earthobserving system experiment, Bull. Amer. Meteor. Soc,77,853-868.
    Winker, D. M., et al. (2006), The CALIPSO mission and initial results from CALIOP, Proc. SPIE, 6409,640902, doi:10.1117/12.698003.
    Zhang, X. Y., R. Arimoto, and Z. S. An (1997), Dust emission from Chinese desert sources linked to variations in atmospheric circulation, J. Geophys. Res.,102(D23),28,041-28,044.
    Zhu, A., V. Ramanathan, F. Li, and D. Kim (2007), Dust plumes over the Pacific, Indian, and Atlantic oceans:Climatology and radiative impact, J. Geophys. Res.,112, D16208, doi:10.1029/2007JD008427
    Albrecht, B. A.:Aerosols, cloud microphysics, and fractional cloudiness, Science,245,1227-1230, 1989.
    Cess, R. D. and Potter, G. L.:Exploratory studies of cloud radiative forcing with a general circulation model, Tellus,39A,460-473,1987.
    Charlock, T. P. and Ramanathan, V.:The albedo field and cloud radiative forcing produced by general circulation model with internally generated cloud optics, J. Atmos. Sci.,42, 1408-1429,1985.
    Cook, J. and Highwood, E. J.:Climate response to tropospheric absorbing aerosol in an intermediate general-circulation model, Q. J. R. Meteorol. Soc.,130,175-191, doi: 10.1256/qj.03.64,2003.
    Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn,G. Raga, M. Schulz and R. Van Dorland,2007:Changes in Atmospheric Constituents and in Radiative Forcing. In:Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    Fu, Q. and Liou, K. N.:On the correlated k-distribution method for radiative transfer in nonhomogenous atmospheres, J. Atmos. Sci.,49,2139-2156,1992.
    Fu, Q. and Liou, K. N.:Parameterization of the radiative properties of cirrus clouds, J. Atmos. Sci., 50,2008-2025,1993.
    Geier, E. B., R. N. Green, D. P. Kratz, P. Minnis, W. F. Miller, S. K. Nolan, and C. B. Franklin: Single satellite footprint TOA/surface fluxes and clouds (SSF) collection document, available at:http://asd-www.larc.nasa.gov/ceres/ASDceres.html,2001.
    Grassl, H.:Albedo Reduction and Radiative Heating of Clouds by Absorbing Aerosol Particles, Contrib. Atmos. Physics.,48,199-210,1975.
    Haywood, J. M., Ramaswamy, V., and Soden, B. J.:Tropospheric aerosol climate forcing in clear-sky satellite observations over the oceans, Science,283,1299-1305,1999.
    Hartman, D. L., Ramanathan, V., Berroir, A., and Hunt, G. E.:Earth radiation budget data and climate research, Rev. of Geophy. and Space Physics,24,439-468,1986
    Higurashi, A. and Nakajima, T.:Detection of aerosol types over the East China Sea near Japan from four-channel satellite data, Geophys. Res. Lett.,29,1836, doi:10.1029/2002GL015357, 2002.
    Huang, J. P., Minnis, P., Lin, B., Wang, T., Yi, Y., Hu, Y., Sun-Mack, S., and Ayers, K.:Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES, Geophys. Res. Lett.,30,6824, doi:10.1029/2005GL024724,2006a.
    Huang, J. P., Lin, B., Minnis, P., Wang, T., Wang, X., Hu, Y., Yi, Y., and Ayers, J. K.: Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over east Asia, Geophys. Res. Lett.,33, L19802, doi:10.1029/2006GL026561,2006b.
    McClatchey, R.A., Fenn, R. W., Selby, J. E. A., Volz, F. E., and Garing, J. S.:Optical properties of the atmosphere, Rep. AFCRL-71-0279, Air Force Cambridge Res. Lab., Bedford, Massachusetts,85 pp.,1971.
    Parry, M.L., Canziani, O. F., Palutikof, J.P., P.J. van der Linden and Hanson, C. E., Eds.: Climate Change 2007 (IPCC2007):Impacts, Adaptation and Vulnerability, Cambridge University Press, Cambridge, UK,2007.
    Jiang, H. and Feingold, G.:Effect of aerosol on warm convective clouds:Aerosol-cloud-surface flux feedbacks in a new coupled large eddy model. J. Geophys. Res., 111, D01202, doi:10.1029/2005JD006138,2006.
    Loeb, N. G., Kato, S., Loukachine, K., Manalo-Smith, N.:Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and Earth's Radiant Energy System instrument on the Terra satellite. Part 1 methodogy., J. Atmos. Ocean. Tech.,22, 338-351,2005.
    Minnis, P., S. Sun-Mack, D. F. Young, P. W. Heck, D. P. Garber, Y. Chen, D. A. Spangenberg, B. A. Wielicki, and E. B. Geier, Cloud property retrievals for CERES using TRMM VIRS and Terra and Aqua MODIS data, IEEE Trans. Geosci. Remote Sens., submitted,2007.
    Minnis, P., Young, D. F., Sun-Mack, S., Trepte, Q., Chen, Y., Brown, R. R., Gibson, S. L., and Heck, P. W.:Diurnal, seasonal, and interannual variations of cloud properties derived for CERES from imager data,13th Conference on Satellite Oceanography and Meteorology, Norfolk, VA,20-24 September,2004
    Ramanathan, V.:The role of Earth radiation budget studies in climate and general circulation Research, Journal of the Atmospheric Sciences,37,447-454,1987.
    Ramanathan, V., Cess, R. D., Harrison, E. F., Minnis, P., Barkstrom, B. R., Ahmad, E., and Hartmann, D.:Cloud-radiative forcing and climate:results from the Earth Radiation Budget Experiment, Science,243,57-63,1989.
    Rose, F. G. and Charlock, T. P.:New Fu-Liou Code Tested with ARM Raman Lidar and CERES in pre-CALIPSO Exercise, Extended abstract for 11th Conference on Atmospheric Radiation (AMS), Ogden, Utah,3-7 June 2002,2002.
    Sassen, K., Zhu, J., and Benson, S.:A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing:IV. Optical displays, Appl. Opt.,42,332-341,2003.
    Sokolik, I. N. and Toon, O. B.:Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths, J. Geophys. Res.,104, 9423-9444,1999.
    Takemura, T., Uno, I., Nakajima, T., Higurashi, A., and Sano I.:Modeling study of long-range transport of Asian dust and anthropogenic aerosols from East Asia, Geophys. Res. Lett.,29, 2158, doi:10.1029/2002GL016251,2002. Twomey, S.:Developments in Atmospheric Science, Atmospheric Aerosols:Elsevier,
    Elsevier Scientific Publications, New York, USA,1977.
    Che, H. Z., G. Y. Shi, X. Y. Zhang, R. Arimoto, J. Q. Zhao, L. Xu, B. Wang, and Z. H. Chen(2005), Analysis of 40 years of solar radiation data from China,1961-2000, Geophys. Res.Lett.,32, L06803, doi:10.1029/2004GL022322.
    Huebert, B. N., T. Bates, P. B. Russell, G. Shi, Y. J. Kim, K. Kawamura, G. Carmichael, and T. Nakajima (2003), An overview of ACE-Asia:Strategies for quantifying the relationships between Asian aerosols and their climatic impacts, J. Geophys. Res.,108(D23),8633, doi:10.1029/2003JD003550
    Nakajima, T., et al. (2003), Significance of direct and indirect radiative forcings of aerosols in the East China Sea region, J. Geophys. Res.,108(D23),8658, doi:10.1029/2002JD003261.
    Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld (2001b), Aerosols, climate, and the hydrological cycle, Science,294,2119-2124.
    Ge J.M., J. Su, T.P. Ackerman, Q. Fu, J.P. Huang, and J.S. Shi,2009:Dust Aerosol Optical Properties Retrieval and Radiative Forcing over Northwestern China during the 2008 China-US Joint Field Experiment. J. Geophy. Res., (in press).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700