用户名: 密码: 验证码:
西北沙尘气溶胶光学特性反演与沙尘暴的卫星监测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙尘作为对流层中最主要的气溶胶成分之一,可以调整地气系统辐射能量收支平衡,因此对气候变化产生了较大的强迫作用。强风吹起的沙尘还可以在短时间内对环境和人类造成严重的伤害。因此,研究沙尘气溶胶的光学特性,及时准确的监测沙尘的发生、发展,对深入了解和准确计算沙尘气溶胶的直接辐射强迫作用,以及预警和预防沙尘暴带来的危害有重要意义。本文发展了一套利用地面MFRSR反演气溶胶光学特性的算法,通过该算法对2008年中美首次联合沙尘观测数据进行了细致分析与研究,反演得到了我国西北地区沙尘气溶胶的光学特性。并对地面与卫星观测的气溶胶光学厚度进行了对比,分析了卫星在西北亮地表反演气溶胶的可靠性,同时本文还结合卫星观测与模式分析了星载微波传感器识别沙尘暴的能力,提出一种利用可见、红外、微波多卫星传感器检测沙尘的综合方法。
     2008年中美首次联合沙尘观测,使用了包括有MFRSR和CIMEL等目前大量先进的气溶胶观测仪器,对我国西北沙尘气溶胶进行了观测。本文利用张掖站观测数据反演了沙尘气溶胶的光学特性。通过MFRSR反演得到的沙尘气溶胶光学厚度与AERONET标准观测一致,二者在0.67μm公共波段误差小于0.02。在假定沙尘粒子形状为球形,分布满足双对数正态分布的情况下,通过调整粒子谱分布中粗、细模态的参数,使Mie计算的光学厚度值与MFRSR观测值的误差平方和达到最小,从而得到了沙尘气溶胶的粒子谱分布。结果表明,沙尘气溶胶的粗模态平均中值半径为2.22μm,细模态平均中值半径为0.137μm,大粒子占粒子分布的主要部分,体积浓度约为小粒子的10倍。通过模式与观测的散射辐射与总辐射比值(DDR方法)的比较,反演了沙尘粒子的单次散射反照率与不对称因子。得到的沙尘单次散射率在0.415μm波段的平均值为0.76,随波长增加而逐步增加到0.86,这一数值小于国内、外关于亚洲和非洲沙尘的相关研究,表明我国西北地区沙尘对可见光实际具有较强的吸收性。同时我们对得的沙尘光学特性做了辐射闭合实验,模式与观测二者日平均直接、散射以及总辐射通量的误差分别为-2.07、-2.90、-8.54W/m2,说明反演得到的沙尘光学特性是合理、可靠的,这为准确计算沙尘气溶胶的直接辐射强迫奠定了坚实基础。
     由于考虑到MFRSR观测的是整个半球天空的辐射通量密度,因而假定了沙尘粒子为球形,实际上沙尘粒子是不规则的非球形,为了检验这种假设是否合理,我们用-matrix, IGOM和Mie分别计算了非球形与球形沙尘粒子的光学特性参数,通过比较,发现球形与非球形二者的单次散射反照率、不对称因子、消光效率差别较小,而散射相函数有明显差别,并进一步计算对比了二者对到达地面的太阳辐射通量造成的差异。结果表明球形、非球形沙尘粒子不同的光学特性对到达地表太阳辐射通量的影响不大,从而证明球形粒子的假设对MFRSR反演沙尘光学特征是合理的。同时,利用蒙特卡洛辐射传输方法分析了球形、非球形粒子的前向散射在不同光学厚度、太阳天顶角以及有效粒子半径和复折射指数情况下,对MFRSR反演光学厚度造成的误差。结果表明当光学厚度和气溶胶有效粒子半径小于1时,前向散射造成的误差小于-3%。当光学厚度大于1并且太阳天顶角较大时(>60°),误差能达到-40%。
     卫星观测是提供全球气溶胶光学厚度分布以及监测沙尘发生的有效途径。我们通过利用地面观测检验了MISR、MODIS在我国西北亮地表地区反演气溶胶光学厚度的准确性。结果的比较表明,MODIS暗像元业务算法使用近红外通道(2.1和3.8μm)获取地表反照率,并假定近红外通道(2.1μm)与其他两个通道(0.47和0.66μm)的地表反照率的关系,在我国西北地区上空反演得到的气溶胶光学厚度与地面观测存在较大误差。Deep Blue使用了地表反照率较小的蓝光波段(0.412和0.470μm)来剔除地表反射到达卫星的太阳辐射,从而在亮地表地区上空可以较为合理的反演气溶胶光学厚度。MISR从九个不同角度观测,能有效的剔除了地面反射的太阳辐射,在我国西北干旱、半干旱地区反演的气溶胶光学厚度有较高的准确性。
     沙尘暴发生时,常常伴随有云的出现(特别是在蒙古气旋活动影响下),可见光和红外技术无法观测到云下的沙尘情况,微波受冰云的衰减较小,对冰云有一定的穿透能力,通过AMSR-E星载微波辐射计观测资料结合微波辐射传输模式的模拟计算,发现沙尘暴对高频微波有较为明显的衰减作用,进而提出了利用高、低频微波极化亮温差指数(MPI)监测沙尘的新方法,并通过可见、红外和微波三种技术方法组合,提供了卫星有效识别、监测沙尘的综合方法。
Dust aerosols, as a major component of aerosols in the atmosphere, can modulate the radiative energy balance of earth-atmosphere system and thus has large effect on the climate. The dust aerosols, which are blown up by strong wind, could also cause a severe havoc to environment and human activities. It is therefore important to fully understand dust aerosol radiative forcing effects on climate and monitor the evolution of dust storm. We developed a method to retrieve dust aerosol optical properties using the ground-based MFRSR measurements. We analyzed the data obtained from the 2008 China-U.S. joint field experiment and retrieved the optical properties of dust aerosols by applying this method. To validate satellite retrievals over Northwest China where the surface is relatively bright, we compared the aerosol optical depth (AOD) products from different satellites/retrieving methods with the AOD from the ground-based observations. We also examined the capability of microwave channels onboard satellite to detect dust storm and propose an integrated method to monitor dust using visible, infrared and microwave channels from the satellite.
     Several advanced instruments including MFRSR and CIMEL were deployed in the 2008 China-U.S. joint field experiment. We used the data from the Zhangye site to retrieve dust aerosol optical properties over Northwestren China. The AOD, which we derived from the MFRSR, is consistent with that from CIMEL. The AOD difference between MFRSR and CIMEL is less than 0.02 at 0.67μm wavelength. By assuming a spherical shape of dust particle, we iterate the parameters of size distribution until the RMS differences among the AOD values derived from the observations at five MFRSR channels and those from Mie calculations is minimum. It is found that the mean values of the fine and coarse mode radii are 0.137μm and 2.22μm, respectively. The volume concentration of large particles is 10 times of small particles. We then use the diffuse-to-direct ratio method (DDR) to retrieve the single-scattering albedo (SSA) and asymmetry factor (ASY). The values of SSA, which range from 0.76 at 0.415μm to 0.86 at 0.870μm, are much lower than those derived in Africa and also relatively smaller than those obtained over East Asian. Our results clearly show that the dust aerosol over Northwest China is much more absorptive. We further carry out a radiative closure experiment. The daylight-averaged differences between model and observations are-2.07 Wm-2 for the direct normal flux,-2.90 Wm-2 for the diffuse flux, and-8.54 Wm-2 for the total flux. The good agreement between simulations and measurements indicates that our retrieved dust optical properties are reasonable and reliable.
     Since the MFRSR measures the irradiances, the MFRSR retrievals may not be much sensitive to the shape of aerosol particles. We thus assumed that the shape of dust particles is spherical. However, the shapes of dust particles are irregular. In order to test our assumption, we calculate SSA, ASY, extinction efficiency (Qe) and scattering phase function for non-spherical particles using the T-matrix and IGOM methods and spherical dust particles using the Mie code. The differences of SSA, ASY and Qe between spherical and non-spherical particles are very small; however, the scattering phase function of spherical particle is quite different from that of non-spherical particle. Using all these dust optical properties along with the SBDART model to calculate the solar radiative flux reaching at surface, it is found that the solar radiative flux is not sensitive to different particle shapes. Therefore it is reasonable to retrieve dust aerosol optical properties by assuming a spherical shape. We also wrote a Monte Carlo radiative transfer code to examine the AOD error caused by the forward scattering of dust particles. We show that when the AOD values are less than 1, the AOD relative error caused by forward scattering is less than-3%. When the AOD value is greater than 1 with high solar zenith angle (>60°), the relative error can reach-40%.
     Satellite observations are an effective way to provide a regional coverage of aerosol optical depth and monitor the occurrence and evolution of dust storm. We use surface retrieved AOD to validate the MISR and MODIS AOD products over Northwest China where the surface is bright. Our results suggest that MODIS retrieved AOD values are not reliable over semi-arid and arid scenes. This is most likely because the MODIS operational aerosol retrievals over land use the dark-target approach. In this approach the near-infrared (2.1 and 3.8μm) channels are employed to estimate the spectral surface reflectance in order to separate the surface and atmospheric components of the radiance received by the satellite. It also assumes an empirical relationship to deduce surface reflectances at wavelengths of 0.47 and 0.66μm using the remote sensed surface reflectance values at 2.1μm. The AOD based on the Deep Blue algorithm are much improved over the MODIS values because Deep Blue employs two blue channels (0.412 and 0.470μm) in MODIS, for which surface reflectances are relatively small, to infer aerosol properties. MISR provides radiance measurements of the same target at nine different viewing angles. Since MISR can remove the atmospheric path contribution from the surface-leaving radiance by taking advantage of differences in multi-angular signatures, MISR is much less sensitive to surface type and can successfully retrieve AOD over bright surfaces.
     The most common dust storms in East Asia are those caused by strong winds behind a cold front and generally coexist with cirrus. For example, the dust storm is especially often stirred up by Mongolian cyclone. The visible and IR techniques thus can not detect dust which is often under cirrus clouds. The microwave is not significantly attenuated by ice clouds and can penetrate ice cloud. We use AMSR-E and a microwave radiative transfer model to analyze dust effects on microwave. Both satellite measurements and model simulations show that dust particles can significantly reduce microwave radiation through the scattering and absorption effects. We propose a new method by defining a microwave polarized index (MPI) to detect dust storm underneath cirrus cloud. We then develop an ntegrated method to detect dust storm by combining the visible, infrared and microwave satellite instruments.
引文
钱云,符淙斌,淑瑜,1999,沙尘气溶胶与气候变化,地球科学进展,14(4),391-394
    王明星 张仁健,2001,大气气溶胶研究的前沿问题,气候与环境研究,6(1),119-124
    Husar, R. B., J. M. Prospero, and L. L. Stowe,1997, Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product, J. Geophys. Res.,102,16,889-16,909
    Herman, J. R., P. K. Bhartia, O. Torres, C. Hsu, C. Seftor, and E. Celarier,1997, Global distribution of UV-absorbing aerosols from Nimbus-7/TOMS data, J. Geophys. Res.,102, 16,911-16,922
    钱正安,贺慧霞,瞿章,等.我国西北地区沙尘暴的分级标准和个例谱及其统计特征.中国沙尘暴研究.北京:气象出版社,1997.
    王式功,董光荣,陈惠忠,李希良,金炯,2000,沙尘暴研究的进展,中国沙漠,20(4),349-356
    Haywood, J. M, Ramaswamy, V,& Soden, B. J.,1999, Tropospheric aerosol climate forcing in clear-sky satellite observations over the oceans. Science,283,1299-1305.
    Husar, R.B., D.M. Tratt, B.A. Schichtel, S.R. Falke, F. Li, D. Jaffe, S. Gasso, T. Gill, N.S. Laulainen, F. Lu, M.C. Reheis, Y. Chun, D. Westphal, B.N. Holben, C. Gueymard, I. McKendry, N. Kuring, G.C. Feldman, C. McClain, R.J. Frouin, J. Merrill, D. DuBois, F. Vignola, T. Murayama, S. Nickovic, W.E. Wilxon, K. Sassen and N. Sugimoto,2001, The Asian dust events of April 1998. Journal of Geophysical Research,106,18317-18330.
    Higurashi, A.,& Nakajima, T.,2002, Detection of aerosol types over the East China Sea near Japan from four-channel satellite data. Geophysical Research Letters,29,1836. doi:10.1029/2002GL015357
    Takemura, T., Uno, I., Nakajima, T., Higurashi, A.,& Sano, I.,2002, Modeling study of long-range transport ofAsian dust and anthropogenic aerosols from East Asia. Geophysical Research Letters,107,2158. doi:10.1029/2002GL016251
    Huang, J., P. Minnis, B. Chen, Z. Huang, Z. Liu, Q. Zhao, Y. Yi, and J. K. Ayers,2008: Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX, J. Geophys. Res.,113, D23212, doi:10.1029/2008JD010620.
    周自江,王锡稳,牛若芸,2002,近47年沙尘暴气候特征研究,应用气象学报,13(2),1993-200
    周自江,章国才,2003,科学通报,中国北方的典型强沙尘暴事件(1954-2002年),48(11),1224-1228
    高庆先,任阵海,李占青,普布次人,2004,中国北方沙尘气溶胶时空分布特征及其对地表辐射的影响,资源科学,26(5),1-10
    钱正安,宋敏红,李万元,2002,近50年来中国北方沙尘暴的分布及变化趋势,中国沙漠,22(2)106-111.
    叶笃正,丑纪范,刘纪远,等,2000,关于我国华北沙尘天气的成因与治理对策,地理学报,55(5),513-522.
    沈志宝,文军,沙漠地区春季的大气浑浊度及沙尘大气对地面辐射平衡的影响,1994,高原气象,13(3),330-338
    文军,甘肃省河西黑河流域沙漠、戈壁地区夏季大气浑浊度与沙尘特性分析,1994,应用气象学报,5(1),27-33
    黄美元,王自发,东亚地区黄沙长距离输送模式的设计,1998,大气科学,22(6);625—637.
    成天涛,沈志宝,2002,中国西北大气沙尘的辐射强迫,高原气象,21(5),473-478
    Huang, J., B. Lin, P. Minnis, T. Wang, X. Wang, Y. Hu, Y. Yi, and J. R. Ayers,2006, Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia, Geophys. Res. Lett.,33, doi:10.1029/2006GL026561.
    Carlson. T N and S Benjamin,1980, Radiative heating rates for Saharan dust, J. Atmos. Sci.,37, 193-213
    Tegen I., A. Lacis Andrew., and I. Fung,1996, The influence on climate forcing of mineral aerosol from disturbed soils. Nature,380,419-422
    Fouquart, Y, B. Bonnell, G. Brogniez, J. C. Buriez, L. Smith, J. J. Morcrette, and A. Cerf,1987, Observations of Saharan aerosols:Results of ECLATS field experiment. Part II. Broadband radiative characteristics of the aerosols and vertical radiative flux divergence. J. Climate Appl. Meteor.,26,38-52.
    石广玉,赵思雄,2003,沙尘暴研究中的若干科学问题,大气科学,27(4),591-606
    成天涛,吕达仁,陈洪滨,李占清,2005a,浑善达克沙地沙尘气溶胶的粒谱特征,大气科学,29(1),147-153
    成天涛,吕达仁,陈洪滨,王庚辰,2005b, 浑善达克沙地沙尘气溶胶的物理化学特性,科学通报,50(5),468-472
    邱金桓,孙金辉,1994,沙尘暴的光学遥感及分析,大气科学,18(1),1-10
    王宏, 石广玉,T.Aoki,王标,Zhao Tianliang,2004,2001年春季东亚-北太平洋地区沙尘气溶胶的辐射强迫,科学通报,49(19),1993-2000
    夏祥鳌,王普才,陈洪滨,Philippe Gouloub,章文星,2005,中国北方地区春季气溶胶光学特性地基遥感研究,遥感学报,9(4),429-437
    Haywood, J. M., P. N. Francis, M. D. Glew, and J. P. Taylor,2001, Optical properties and direct radiative effect of Saharan dust:A case study of two Saharan dust outbreaks using aircraft data, J. Geophys. Res.,106,18417-18430.
    Kim, D.-H., B.J. Sohn, T. Nakajima, and T. Takamura,2005, Aerosol radiative forcing over East Asia determined from ground-based solar radiation measurements. J. Geophys. Res.,110, D10S22.
    Dubovik, O., B. N. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, and I. Slutsker, 2002, Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Atmos. Sci.,59,590-608.
    Pandithurai, G., S. Dipu, K. K. Dani, S. Tiwari, D. S. Bisht, P. C. S. Devara, and R. T. Pinker,2008, Aerosol radiative forcing during dust events over New Delhi, India.. J. Geophys. Res.,113, D13209, doi:10.1029/2008JD009804.
    McFarlane, S. A., E. I. Kassianov, J. Barnard, C. Flynn, T. P. Ackerman,2009, Surface shortwave aerosol radiative forcing during the Atmospheric Radiation Measurement Mobile Facility deployment in Niamey, Niger, J. Geophys. Res.,114, D00E06, doi:10.1029/2008JD010491.
    Huang J., Q. Fu, J. Su, Q. Tang, P. Minnis, Y. Hu, Y. Yi, and Q. Zhao,2009:Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints, Atmos. Chem. Phys.,9,4011-4021.
    William E. and Robert J. Curran,1974, The Detection of Dust Storms Over Land and Water With Satellite Visible and Infrared Measurements, Monthly Weather Review,102,830-837
    Toby N. Carlson,1978, Atmospheric Turbidity in Saharan Dust Outbreaks as Determined by Analyses of Satellite Brightness Data, Monthly Weather Review,107,322-335
    Norton, C. C., Mosher, F. R., Hinton, B., Martin, D. W., Santek, D., and Kuhlow, W.,1980, A Model for Calculating Desert Aerosol Turbidity over the Oceans from Geostationary Satellite Data, J. Appl. Meteorol.,19,633-644.
    方宗义,张运刚,2001,用气象卫星遥感监测沙尘暴的方法和初步结果,第四纪研究,21(1),48-55
    范一大,史培军,潘耀忠等,2001,基于NOAA/AVHRR数据的区域沙尘暴强度监测,自然灾害学报,10(4),46-51
    卢乃锰,胡秀清,邱红,2002利用静止气象卫星监测沙尘暴的业务方法,沙尘暴监测预警服务研究,北京:气象出版社,34-39
    Huang, J., W. Zhang, J. Zuo, J. Bi, J. Shi, X. Wang, Z. Chang, Z. Huang, S. Yang, B. Zhang, G. Wang, G. Feng, J. Yuan, L. Zhang, H. Zuo, S. Wang, C. Fu and J. Chou,2008, An overview of the Semi-Arid Climate and Environment Research Observatory over the Loess Plateau, Advances in Atmospheric Sciences,25,1-16.
    闭建荣,2008,黄土高原半干旱地区地表能量平衡的观测实验研究,硕士学位论文。
    史晋森,2008,半干旱地区近地面臭氧特性的观测研究,硕士学位论文。
    王鑫,2009,黄土高原地区沙尘气溶胶的综合观测研究,博士学位论文。
    王天河,2009,利用MFRSR反演西北混合相沙尘云光学及物理特性的研究,博士学位论文。
    闭建荣,黄建平,刘玉芝,等,2008,黄土高原半干旱地区地表辐射特征,兰州大学学报(自然科学版),44(3),1-6.
    Zuo J., J. Huang, J. Wang, W. Zhang, J. Bi, G. Wang, W. Li, and P. Fu,2009, Surface turbulent flux measurements over the Loess Plateau for a semi-arid climate change study, Advances in Atmospheric Sciences,26(4),679-691.
    Guan X., J. Huang, N. Guo, J. Bi, and G. Wang,2009, Variability of soil moisture and its relationship with surface albedo and soil thermal parameters over the Loess Plateau, Advances in Atmospheric Sciences,26(9),692-700
    Ge JM, Su J, Ackerman TP, Fu Q, Huang JP, Shi JS,2010, Dust Aerosol Optical Properties Retrieval and Radiative Forcing over Northwestern China during the 2008 China-US Joint Field Experiment. J. Geophys Res. (in press).
    Harrison, L. C., J. J. Michalsky, and J. Berndt,1994, Automated multifilter rotation shadowband radiometer:An instrument for optical depth and radiation measurements, Appl. Opt.,33(22), 5118-5125.
    Holben, B. N., and Coauthors,1998, AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ.,66,1-16.
    Welton, E. J., J. R. Campbell, J. D. Spinhirne, and V. S. Scott,2001, Global monitoring of clouds and aerosols using a network of micropulse lidar systems, Proc. Lidar Remote Sensing for Industry and Environmental Monitoring, Sendai, Japan, SPIE,4153,51-158.
    Michalsky, J. J.,1988, The Astronomical Almanac's Algorithm for Approximate Solar Position (1950-2050), Solar Energy,40,227-235.
    Reda, I., and A. Andreas,2008, Solar position algorithm for solar radiation Applications, Technical Report, NREL/TP-560-34302.
    Wesely, M. L.,1982, Simplified techniques to study components of solar radiation under haze and clouds, J. Appl. Meteorol.,21,373-383.
    Guzzi, R., G. C. Maracci, R. Rizzi, and A. Sicardi,1985, Spectroradiometer for ground-based measurements related to remote sensing in the visible from a satellite, Appl. Opt.,24, 2859-2863.
    Stoffel, T., C. Riordan, and J. Bigger,1991, Joint EPRI/SERI project to evaluate solar energy radiation measurement systems for electric utility solar radiation resource assessment, in Proceedings of the IEEE Photovoltaic Specialist's Conference (Institute of Electrical and Electronics Engineers, New York).
    IPCC,1990, Cambridge University Press, Cambridge, United Kingdom and New York, N Y, USA
    石广玉,1996,气候变化的辐射强迫研究的最新进展, 现代大气科学前言与展望, 北京:气象出版社。
    罗云峰,周秀骥,李维亮,1998,大气气溶胶辐射强迫及气候效应的研究现状,地球科学进展,13(6),572-581.
    IPCC,1995, Cambridge University Press, Cambridge, United Kingdom and New York, N Y, USA.
    Penner, J. E., Andreae, M., Annegarn, H., Barrie, L., Feichter, J., Hegg, D., Jayaraman, A., Leaitch, R., Murphy, D., Nganga, J., and Pitari, G.,2001, Aerosols, their Direct and Indirect Effects, in: Climate Change 2001:The Scientific Basis, edited by:Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., Van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A., Report to Intergovernmental Panel on Climate Change from the Scientific Assessment Working Group (WGI), Cambridge University Press,289-416.
    Haywood, J. and O. Boucher,2000, Estimates of the direct and indirect radiative forcing due to tropospheric aerosols:A review. Rev. Geophys.,38:513-543.
    IPCC,2007, Cambridge University Press, Cambridge, United Kingdom and New York, N Y, USA.
    Andrew T. Young,1994, Air mass and refraction, Applied Optics,33(6),1108-1110.
    Harrison, L. and J. Michalsky,1994a, Objective Algorithms for the Retrieval of Optical Depths from Ground-Based Measurements, Applied Optics,33(22),5126-5132.
    Harrison, L., J. Michalsky, and J. Berndt,1994b, Automated multifilter rotating shadow-band radiometer:an instrument for optical depth and radiation measurements, Applied Optics,33(22), 5118-5125.
    Alexandrov, M., A. Lacis, B. Carlson, and B. Cairns,2002, Remote sensing of atmospheric aerosols and trace gases by means of multifilter rotating shadowband radiometer. Part Ⅱ: Climatological applications, J. Atmos. Sci.,59,544-566.
    王天河,2009,利用MFRSR反演西北混合相和沙尘云光学及物理特性的研究,博士学位论文。
    Yankee Environmental Systems, INC.,2003, MFR-7 Rotating Shadowband Radiometer: Installation and user guide, Version 2.20.
    E.P.Shettle & S.Anderson,1995, New visible and near IR ozone absorption cross-sections for MODTRAN, Proceedings of the 17th Annual Review Conference on Atmospheric Transmission Models,335-345.
    Bhartia, P. K., J. R. Herman, R. D. McPeters and O. Torres,1993, Effect of Mount Pinatubo Aerosols on Total Ozone Measurements From Backscatter Ultraviolet (BUV) Experiments, J. Geophys. Res.,98,18547-18554.
    Liou, K. N.,2002, An introduction to atmospheric radiation [second version], New York:Academic Press.
    Whitby, K. T.,1978, The physical characteristics of sulfur aerosols. Atmos. Environ.,12,135-159.
    Shettle, E. P., and R. W. Fenn,1979, Models of aerosols of lower troposphere and the effect of humidity variations on their optical properties. AFCRL Tech. Rep.79 0214, Air Force Cambridge Res. Lab., Hanscom Air Force Base, Mass.,100 pp.
    Remer, L. A., and Y. J. Kaufman,1998, Dynamic aerosol model:Urban/industrial aerosol. J. Geophys. Res.,103,13859-13871.
    Dubovik, O., B. N. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre and I. Slutsker,2002, Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Atmos. Sci.,59,590-608.
    Buseck, P. R.,& Posfai, M.,1999, Airborne minerals related aerosol particles:Effect on climate and the environment. Proceedings of the National Academy Science,96,3372-3379.
    Yang, P., Q. Feng, G. Hong, G. W. Kattawar, W. J. Wiscombe, M. I. Mishchenko, O. Dubovik, I. Laszlo, I. N. Sokolik,2007, Modeling of the scattering and radiative properties of nonspherical dust like aerosols, J. of Aerosol Sci.,38,995-1014.
    Kim, D.-H., B.J. Sohn, T. Nakajima, and T. Takamura,2005, Aerosol radiative forcing over East Asia determined from ground-based solar radiation measurements. J. Geophys. Res.,110, D10S22.
    Zheng, Y., J. Liu, R. Wu, Z. Li, B. Wang, and T. Tamio,2008, Seasonal statistical characteristics of aerosol optical properties at a site near a dust region in China, J. Geophys. Res.,113, D16205, doi:10.1029/2007JD009384
    King, M. D., D. M. Byrne, B. M. Herman, J. A. Reagan,1978, Aerosol Size Distributions Obtained by Inversion of Spectral Optical Depth Measurements, J. Atmos. Sci.,35,2153-2167.
    Hansen, J., M. Sato, and R. Ruedy,1997, Radiative forcing and climate response, J. Geophys. Res. 102,6831-6864.
    Jacobson, M. Z.,2001, Global direct radiative forcing due to multi-component anthropogenic and natural aerosols. J. Geophys. Res.,106,1551-1568.
    Ramanathan, V, Crutzen, P. J. Kiehl, J. L. and D. Rosenfeld,2001, aerosols, climate, and the hydrological cycle. Science,294,2119-2124.
    Paul Ricchiazzi, Shiren Yang, Catherine Gautier, and David Sowle,1998, SBDART:A Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth's Atmosphere, 79(10),2101-2114.
    Shettle, E. P., F. X. Kneizys and W. O. Gallery,1980, Suggested modification to the total volume molecular scattering coefficient in LOWTRAN. Appl. Opt.,19,2873-2874.
    Herman, B., Browning, R., and De Luisi, J.,1975, Determination of the effective imaginary term of the complex refractive index of atmospheric dust by remote sensing:The diffuse-direct radiation method, J. Atmos. Sci.,32,918-925.
    Holler, R., K. Ito, S. Tohno, and M. Kasahara,2003, Wavelength-dependent aerosol single-scattering albedo:Measurements and model calculations for a coastal site near the Sea of Japan during ACE-Asia, J. Geophys.Res., 108(D23),8648, doi:10.1029/2002JD003250.
    Bergstrom, R. W., P. B. Russell, and P. Hignett,2002, Wavelength dependence of the absorption of black carbon particles:Predictions and results from the TARFOX experiment and implications for the aerosol single scattering albedo, J. Atmos. Sci.,59,567-577.
    Kim, D.-H., B.J. Sohn, T. Nakajima, T. Takamura, T. Takemura, B.C. Choi and S.C. Yoon.,2004, Aerosol optical properties over East Asia determined from ground-based sky radiation measurements. J. Geophys. Res.,109, D02209
    Fouquart, Y., B. Bonnel, G. Brogniez, J. C. Buriez, L. Smith, J. J. Morcrette, and A. Cerf,1987, Observations of Saharan aerosols:Results of ECLATS field experiment. Part Ⅱ:Broadband radiative characteristics of the aerosols and vertical radiative flux divergence, J. Clim. Appl. Meteorol,26,38-52.
    Haywood, J. M., P. Francis, S. Osborne, M. Glew, N. Loeb, E. Highwood, D. Tanre, G. Myhre, P. Formenti, and E. Hirst,2003, Radiative properties and direct radiative effect of Saharan dust measured by the C-130 aircraft during SHADE:1. Solar spectrum, J. Geophys. Res.,108(D18), 8577, doi:10.1029/2002JD002687.
    McFarlane, S. A., E. I. Kassianov, J. Barnard, C. Flynn, T. P. Ackerman,2009, Surface shortwave aerosol radiative forcing during the Atmospheric Radiation Measurement Mobile Facility deployment in Niamey, Niger, J. Geophys. Res.,114, D00E06, doi:10.1029/2008JD010491.
    Kato, M., H. Kamiyama, A, Okazaki, K, Kumaki, Y, Kato and Y. Sugiyama,1997, Mechanism for the Nonlinear Pharmacokinetics of Erythropoietin in Rats, J. Pharm. Exp Ther.,283,520-527.
    Halthore, R. N., M. A. Miller, J. A. Ogren, P. J. Sheridan, D. W. Slaterand, and T. Stoffel,2004, Further developments in closure experiments for surface diffuse irradiance under cloud-free skies at a continental site, Geophys. Res. Lett.,31, L07111, doi:10.1029/2003GL019102.
    Buseck, P. R.,& Posfai, M,1999, Airborne minerals related aerosol particles:Effect on climate and the environment. Proceedings of the National Academy Science,96,3372-3379.
    Gao, Y.,& Anderson, J. R,2001, Characteristics of Chinese aerosols determined by individual particle analysis. J. Geophys. Res.,106,18,037-18,045.
    Okada, K., Heintzenberg, J., Kai, K.,& Qin Y,2001, Shape of atmospheric mineral particles collected in three Chinese arid-regions. Geophys. Res. Letter,28,3123-3126.
    Munoz, O., Volten, H., de Haan, J., Vassen,W.,& Hovenier, J.W,2001, Experimental determination of scattering matrices of randomly oriented fly ash and clay particles at 442 and 633 nm. J. Geophys. Res.,106,22,833-22,844.
    Mishchenko, M. I., Travis, L. D., Kahn, R. A.,& West, R. A,1997, Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids. J. Geophys. Res.,102,16,831-16,847.
    Yang, P., Q. Feng, G. Hong, G. W. Kattawar, W. J. Wiscombe, M. I. Mishchenko, O. Dubovik, I. Laszlo, I. N. Sokolik,2007, Modeling of the scattering and radiative properties of nonspherical dust like aerosols, J. of Aerosol Sci.,38,995-1014.
    Dubovik, O., Alexander Sinyuk, Tatyana Lapyonok, Brent N. Holben, Michael Mishchenko, Ping Yang, Tom F. Eck, Hester Volten, Olga Mun~oz, Ben Veihelmann, Wim J. van der Zande, Jean-Francois Leon, Michael Sorokin and Ilya Slutsker,2006, Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust, J. Geophys. Res., 111,D11208,doi:10.1029/2005JD006619.
    Fu, Q., T. J. Thorsen, J. Su, J. M. Ge, and J. P. Huang,2009, Test of Mie-based single-scattering properties of non-spherical dust aerosols in radiative flux calculations, J. Quan. Spectro. Rad. Trsnsfer,110,1640-1653, doi:10.1016/j.jqsrt.2009.03.010.
    Mishchenko, M. I., Travis, L. D.,& Lacis, A. A,2002, Scattering, absorption and emission of light by small particles. Cambridge:Cambridge University Press.
    Yang, P.,& Liou, K. N,1996, Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals. Applied Optics,35,6568-6584.
    Waterman, P. C,1965, Matrix formulation of electromagnetic scattering. Proceedings of the IEEE, 53,805-812.
    Waterman, P. C,1971, Symmetry, unitarity, and geometry in electromagnetic scattering. Physical Review D:Particles and Fields,3,825-839.
    Mishchenko, M. I.,&Travis, L. D,1994, Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths of observations. Applied Optics,33, 7206-7225.
    Q. Cai and K.N. Liou,1982, Polarized light scattering by hexagonal ice crystals:Theory, Applied Optics 21 (1982), pp.3569-3580.
    A. Macke,1993, Scattering of light by polyhedral ice crystals, Applied Optics 32 (1993), pp. 2780-2788.
    S. Chandrasekhar, Radiative Transfer, 1960, New York, Dover.
    Knut Stamnes, S-Chee Tsay, Warren Wiscombe, and Kolf Jayaweera,1988, Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layeredmedia, Applied Optics,27 (12),2502-2509.
    Levoni, C, Cervino, M., Guzzi, R.,&Torricella, F,1997, Atmospheric aerosol optical properties:Adatabase of radiative characteristics for different components and classes. Applied Optics,36,8031-8041.
    Shiobara M, Asano S.1994. Estimation of cirrus optical thickness from Sun photometer measurements. J. Appl Meteorol,33:672-681.
    Russell PB, Livingston JM, Dubovik O, Ramirez SA, Wang J, Redemann J, Schmid B, Box M, Holben BN,2004, Sunlight transmission through desert dust and marine aerosols:Diffuse light corrections to Sun photometry and pyrheliometry. J. Geophys Res.109:D08207.
    Husar, R.B., J.M. Prospero and L.L. Stowe,1997, Characterization of tropospheric aerosols over ocean with NOAA advanced very high resolution radiometer optical thickness operational product, J. Geophys. Res.,102,16889-16909.
    Herman, J.R., P.K. Bhartia, O. Torres, C. Hsu, C. Seftor, and E.Celarier,1997, Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data, J. Geophys. Res.,102,16,911-16,922.
    N. C. Hsu, S. C. Tsay, M. D. King, and J. R. Herman,2004, Aerosol properties over bright-reflecting source regions, IEEE Trans. Geosci. Remote Sens.,42(3),557-569.
    Y. J. Kaufman, D. Tanre, L. A. Remer, E. F. Vermote, D. A. Chu, and B. N. Holben,1997, Operational remote sensing of tropospheric aerosol over land from EOS Moderate Resolution Imaging Spectroradiometer, J. Geophys. Res.,102,14,17051-17067.
    Kaufman, Y. J., and C. Sendra, Algorithm for atmospheric corrections, Znt. J. Remote Sens.,9, 1357-1381,1988.
    Martins, J. V, D. Tanre, L. A. Remer, Y. J. Kaufman, S. Mattoo and R. Levy,2002:MODIS cloud screening for remote sensing of aerosol over oceans using spatial variability. Geophys. Res. Lett.,29,8009, doi:10.1029/2001GL013252.
    Gao, B.-C, Y. J. Kaufman, D. Tanre, and R.-R. Li,2002:Distin-972 JOURNAL OF THE ATMOSPHERIC SCIENCES—SPECIAL SECTION VOLUME 62 guishing tropospheric aerosols from thin cirrus clouds for improved aerosol retrievals using the ratio of 1.38-_m and 1.24-_m channels. Geophys. Res. Lett.,29,1890, doi:10.1029/2002GL015475.
    Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003, The MODIS cloud products:Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens.,41,459-473.
    L. A. Remer, Y. J. Kaufman, D. Tanre, S. Mattoo, D. A. Chu, J. V. Martins, R.-R. LI, C. Ichoku, R. C. Levy, R. G. Kleidman, T. F. Eck, E. Vermote and B. N. Holben,2005, The MODIS Aerosol Algorithm, Products, and Validation, J. Atmos. Sci.,62,947-973.
    Ackerman, S. A., K.I. Strabala, W. P. Menzel, R. A. Frey, C. C Moeller, and L. E. Gumley,1998, Discriminating clear sky from clouds with MODIS. J. Geophys. Res.,103,32139-32140.
    J. V. Dave,1972, Development of programs for computing characteristics of ultraviolet radiation, Fed. Syst. Div, IBM Corp., Gaithersburg, MD. Tech. Rep., Vector Case.
    D. J. Diner, J. C. Beckert, T. H. Reilly, C. J. Bruegge, J. E. Conel, R. A. Kahn, J. V. Martonchik, T. P. Ackerman, R. Davies, S. A. W. Gerstl, H. R. Gordon, J.-P. Muller, R. Myneni, P. J. Sellers, B. Pinty, and M. M. Verstraete,1998, Multi-angle Imaging SpectroRadiometer instrument description and experiment overview, IEEE Trans. Geosci.Remote Sensing,36(44), pp. 1072-1087.
    M. Wang and H. R. Gordon,1994, Radiance reflected from the ocean atmosphere system: Synthesis from individual components of the aerosol size distribution, Appl. Opt.,33, 7088-7095.
    J. V. Martonchik, D. J. Diner, R. A. Kahn, T. P. Ackerman, M. M. Verstraete, B. Pinty, and H. R. Gordon,1998, Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging, IEEE Trans. Geosci. Remote Sensing,36,1212-1227.
    J. V. Martonchik, David J. Diner, Kathleen A. Crean, and Michael A. Bull,2002, Regional Aerosol Retrieval Results From MISR, IEEE Trans. Geosci. Remote Sensing,40(7),1520-1531.
    Dubovik, O. and M. D. King,2000, A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res.,105,20673-20696.
    Dubovik, O., A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J-F Leon, M. Sorokin, and I. Slutsker,2006, Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res., 111, doi:10.1029/2005JD006619.
    Hsu, N. C., Si-Chee Tsay, M. D. King, and J. R. Herman,2006, Deep Blue Retrievals of Asian Aerosol Properties During ACE-Asia, IEEE Trans. Geosci. Remote Sens.,44,3180-3199.
    William E. and Robert J. Curran,1974, The Detection of Dust Storms Over Land and Water With Satellite Visible and Infrared Measurements, Monthly Weather Review,102,830-837
    Toby N. Carlson,1978, Atmospheric Turbidity in Saharan Dust Outbreaks as Determined by Analyses of Satellite Brightness Data, Monthly Weather Review,107,322-335.
    Norton, C. C., Mosher, F. R., Hinton, B., Martin, D. W., Santek, D., and Kuhlow, W.,1980, A Model for Calculating Desert Aerosol Turbidity over the Oceans from Geostationary Satellite Data, J. Appl. Meteorol.,19,633-644.
    Ackerman, Steven A.,1989, Using the radiative temperature difference at 3.7 μm and 11 μm to track dust outbreaks. Rentote Sensing of Environment,27:129-133.
    郑新江,徐建芬,罗敬宁,陶健红,张胜才,2000,利用风云-1C气象卫星对南疆沙尘暴进行了监测研究,中国沙漠,20(3),286-288.
    方宗义,张运刚,郑新江等,2001,用气象卫星遥感监测沙尘的方法和初步结果,第四纪研究,21(1):48-55.
    范一大,史培军,潘耀忠等,2001,基于NOAA/AVHRR数据的区域沙尘暴强度监测,自然灾害学报,10(4),46-51.
    郭铌,梁芸,2006,利用MODIS资料定量判识沙尘暴方法研究,干旱气象,24(1),1-6.
    卢乃锰,胡秀清,邱红,2002利用静止气象卫星监测沙尘暴的业务方法,沙尘暴监测预警服务研究,北京:气象出版社,34-39.
    Steven, A., Ackerman,1997, Remote sensing aerosols using satellite infrared observations, J. Geophys. Res.,102(14),17069-17079.
    Prata, A. J.,1989, Observations of volcanic ash clouds in the 10-12μm window using AVHRR/2 data, Int. J. Remote Sens.,10(4),751-761
    Basist, A., D. Garrett, R. Ferraro, N.C. Grody, and D. Forsyth,1996, A comparison between snow cover products derived from visible and microwave satellite observations, J. Appl. Mereor.,35, 163-177.
    Weng F.,1992, A multi-layer discrete-ordinate method for vector radiative transfer in a vertically-inhomogeneous, emitting and scattering atmosphere-Ⅱ, Appl. J. Quant. Spectrosc. Radiat. Transfer,47,35-42.
    Cheng, T., Lu, D., Chen, H., et al.,2004, Physical characteristics of dust aerosol over Hunshan Dake sandland in Northern China, Atmos. Environ.,39,1237-1243.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700