用户名: 密码: 验证码:
无线光通信中的大气影响机理及抑制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息技术的发展,传统的无线射频通信已经越来越满足不了人们对通信速率的要求。近年来,无线光通信成为无线通信领域的一个研究热点。当无线光通信链路经过大气信道时,大气会对激光信号的传输产生一系列影响,造成通信系统性能变坏。大气影响已成为无线光通信推广应用的一大障碍。
     本文针对无线光通信应用,研究大气对激光传输的影响机理及抑制技术,全文主要包括四个部分。
     第一部分主要从理论上研究大气对无线光通信中激光传输的影响机理。首先从大气吸收和散射理论出发,研究了大气消光造成的激光功率衰减问题,并对各种能见度下的大气信道衰减特性进行了计算和分析;在大气多次散射模型基础上,基于辐射传输理论推导出接收端的漫射强度分量和消弱强度分量计算模型;使用蒙特卡洛光线跟踪方法计算了不同光学厚度下的激光脉冲传输时间响应,给出了多次散射大气信道的传输带宽模型;系统地研究了大气湍流对激光传输的影响,给出了影响通信系统性能的五种大气湍流效应及对应的理论计算模型,通过仿真分析了不同条件下的大气湍流影响结果。
     第二部分设计了一个野外激光传输实验系统,并在三条不同路径上开展了激光传输实验。在实验测量数据的基础上,分析了不同条件下的光强起伏、到达角起伏和焦平面光斑面积的变化情况。通过分析发现,大孔径接收、多光束发射都能够有效地降低接收光强的衰落深度、衰落概率和衰落频率。
     第三部分建立了大气信道中的激光功率传输模型,分析了不同大气湍流条件下的光纤耦合效率,为通信系统的功率预算提供了模型支持;给出了不同近似条件下的APD信号探测模型,为分析通信系统的性能奠定了基础。
     第四部分针对大气对激光探测信号产生的三种最终影响,研究了解决方法。为了解决激光脉冲时间展宽导致的码间串扰问题,研究了均衡滤波和小波调制发射速率分集技术,通过仿真对系统性能进行了分析;针对大气湍流导致的探测信号随机起伏问题,研究了自适应最优阈值判决技术,给出了相应的系统结构和预测流程,通过仿真对比了最小均方误差阈值自适应和Kalman滤波阈值自适应的性能;对部分相干光传输信道的性能进行了分析,提出了一种新的大气湍流影响抑制技术——优化光源初始相干度技术,给出了光源初始相干度的优化准则及相应的自适应系统结构;针对接收分集模式,推导出多子孔径接收器的等效孔径平均因子,对比分析发现相同接收面积条件下多子孔径接收优于单个大孔径接收,给出了最大似然合并接收分集和等增益合并接收分集的误码率计算模型,通过仿真对比了二者的性能。
     本文的研究成果对大气无线光通信系统的设计具有重要的指导意义和参考价值。
With the rapid development of the information technology, conventional radio frequency (RF) systems can not meet the increasing demand for the transmission rate. Recently, the optical wirelesss communication (OWC) becomes a research focus in the field of wirless communication. However, the atmosphere has a series of effects on the propagaton of a laser signal and can degrade the performance of OWC systems. The atmospheric effects have become an obstacle that limits the wide application of OWC technology.
     Focusing on the OWC application, this dissertation investigated the mechanism of atmospheric effects on the laser propagation and its mitigation technology. The dissertation consists of four important parts. The main contents are as follows:
     Firstly, the mechanism of atmospheric effects on the laser propagation in OWC was theoretically studied. One, based on the theory of atmospheric absorption and scattering, the problem of power attenuation caused by atmospheric extinction was researched, and the attenuation characteristics of the atmospheric channel with various visibility distances were caculated and analyzed. Two, based on the atmospheric multi-scattering model, the formula of the diffuse intensity and the reduced intensity at the receiver side were derived using radiative transfer theory. Three, the time-domain responses of a laser pulse through atmospheric channels with various optical thicknesses were computed using Monte Carlo ray tracing method, and then the transmission bandwidth model was proposed. Four, the turbulence-induced effects on the the laser propagation were systematically researched, and five kinds of turbulence effects and their mathematical models were discussed. Then, simulation results of turbulence effects under various conditions were analyzed.
     Secondly, a field experiment system of laser propagation was designed, and the experiments over three different paths were conducted. Based on the data collected during the experiments, the intensity fluctuation, the angle-of-arrival fluctuation and the spot size on the focus plane were analyzed. The results show that the large aperture receiving and the multi-beam transmission can reduce the depth, probability and frequency of the received intensity degradation.
     Thirdly, the power model of the laser propagation through the atmosphere was established. And, the fiber coupling efficiency under various conditions was computed. This model can give a support for the power budget of OWC systems. In addition, the detection models of avalanche photodiodes (APD) with different approximation conditions were given, which layed a good foundation for analyzing the performance of OWC systems.
     Fourthly, the solutions to the three kinds of problems in OWC, caused by atmospheric effects on a detected signal, were studied in detail. One, focusing on the intersymbol interference caused by the time-domain extending of a laser pulse, the equalization filering and the wavelet-modualtion-based transimission-rate diversity were researched and the system performance was evaluated and analyzed by simulation. Two, the adaptive optimal thresholding method was investigated to overcome the turbulence-induced fluctuations of the detected signal; the system architecheture and the adaptive prediction process were described in detail; a comparision of the adaptive thresholding performance between the least-mean-square method and Kalman method was presented based on the simulation results. Three, the performance analysis of a link with a partially coherent beam was presented, and then a novel technology, called the optimal initial coherence technology of a laser source, for reducing the turbulence-induced effects was proposed; the optimization criterion and the system architecheture were also discussed in detail. Four, considering the receiving diversity scheme, the formula of the equivalent aperture averaging factor for a multi-subaperture receiver was derived; it shows by analysis that with the same receiving area, the aperture averaging performance of a multi-subaperture receiver is better than a single-large-aperture receiver; then, the bit-error-rate models for both the maximum-likelihood combining and the equal-gain combining were suggested, and a performance comparision between the two combining scheme was also presented.
     The results obtained in this dissertation are very benefical and valuable for the design of atmospheric OWC systems.
引文
1 M.Jeganathan,M.Toyoshima,K.Wilson,J.James,et al.Data Analysis Results from the GOLD Experiments[C].SPIE,1997,vol.2990:70-81.
    2 K.Wilson,M.Jeganathan,J.R.Lesh,et al.Results from Phase-1 and Phase-2 GOLD experiments[R],TDA Progress Report,1996:42-128.
    3 H.P.Lutz.Optical communications in space-twenty years of ESA effort[R].ESA Bulletin Nr.91,1997,vol.1:25-31.
    4 A.Biswas,M Ceniceros,J.Novak,et al.45-km horizontal-path optical link experiment[C].SPIE,1999,vol.3615:43-53.
    5 G.Nykolak,P.F.Szajowaki,A.Cashion,et al.40Gb/s DWDM Free-space optical transmission link over 4.4km[C].SPIE,2000,vol.3932:16-21.
    6 Angel Alonso,Marcos Reyes,Zoran Sodnik,et al.Performance of satellite-to-ground communications link between ARTEMIS and the Optical Ground Station[C],SPIE,2004,vol.5572:372-383.
    7 Markus Knapek,Joachim Horwath,Nicolas Perlot.The DLR Ground Station in the Optical Payload Experiment (STROPEX)-Results of the Atmospheric Measurement Instruments[C].SPIE,2006,vol.6304:63041U-1-63041U-11.
    8 Y.Takayama,T.Jono,M.Toyoshima,et al.Tracking and pointing characteristics of OICETS optical terminal in communication demonstrations with ground stations[C].SPIE,2007,vol.6457:6457-07-6457-15.
    9 Takashi Jono,Yoshihisa Takayama,Koichi Shiratama,and et al.Overview of the inter-orbit and orbit-to-ground laser communication demonstration by OICETS[C].SPIE,2007,vol.6457:6457-02-6457-06.
    10 David W.Young,Juan C.Juarez,Raymond Sova,et al.Multichannel high data rate transmission between ground and airborne platforms[C].SPIE,2007,vol.6457:645705-1-645705-8.
    11 陈刚,方祖捷,陈高庭,等.34Mbit/s大气传输光通信系统的研制[C].全国第九次光纤通信暨第十届集成光学学术会议论文集,1998:463-464.
    12 蒋丽娟,朱道伟.近地实用激光大气通信系统设计[J].光通信技术,2000,24(3):219-222.
    13 徐科华,马晶,谭立英.深空光通信中光束瞄准技术研究[J].光学 精密工程,2006,14(1):16-21.
    14 李晓峰,胡渝.空-地激光通信链路地面站选址大气信道传输因素研究[J].宇航学报,2003,24(5):534-536.
    15 佟首峰,姜会林,刘云清,等.自由空间激光通信系统APT粗跟踪伺服带宽优化设计[J].光电工程,2007,34(9):16-20.
    16 姜会林,刘志刚,佟首峰,等.机载激光通信环境适应性及关键技术分析[C].2007年激光技术发展与应用学术交流会,2007:20-25.
    17 李晓峰,张永健,陈彦,等.大气信道对空-地光通信的影响分析[J].应用光学,2003,24(6):14-17.
    18 Jennifer C.Ricklin,Stephen M.Hammel,Frank D.Eaton,et al.Atmospheric channel effects on free-sapce laser communication[J].J.Opt.Fiber.Commun.Rep.,2006,(3):111-158.
    19 Florian Moll,Markus Knapek.Wavelength Selection Criteria and Link Availability due to Cloud Coverage Statistics and Attenuation affecting Satellite,Aerial,and Downlink Scenarios[C].SPIE,2007,vol.6706:670916-1-670916-12.
    20 M.Al Naboulsi,H.Sizun,F.de Fornel.Fog Attenuation prediction for optical and infrared waves[J].Optical engineering,2004,43(2):319-329.
    21 Stotts L B.Closed Form Expression for Optical Pulse Broadening in Multiple Scatting Media[J],Applied Optics,1978,17(4):504-505.
    22 S.Arnon,D.Sadot and N.S.Kopeika.Analysis of Optical Pulse Distortion through Clouds for Satellite to Earth Adaptive Optical Communication[J].Journal of Modern Optics,1994,41(8):1591-1605.
    23 Urachada Ketprom,Yasuo Kuga,Sermsak Jaruwatanadilok et al.Numerical Studies on Time-Domain Response of On-off-keyed Modulated Optical Signals through a Dense Fog[J].Applied Optics,2004,43(2):496-505.
    24 Arnold D.Kim,Akira Ishimaru.Optical diffusion of continuous-wave,pulsed,and density waves in scattering media and comparisons with radiative transfer[J].Applied Optics,1998,37(22):5313-5319.
    25 Binbin Wu,Brian Marchant,and Mohsen Kavehrad.Channel modeling of light signals propagating through battlefield environment:analysis of channel spatial,angular and temporal dispersion[J].Applied Optics,2007,46(25):6442-6448.
    26 Daniel V.Hahn and Donald D.Duncan.Optimized link model for optical communications through clouds[C].SPIE,2004,vol.5550:170-181.
    27 Tatarskii V I.Wave propagation in a turbulent medium[M].New York:McGraw-Hill,1961.
    28 饶瑞中.光在湍流大气中的传播[M].合肥:安徽科学技术出版社,2005.
    29 H.T.Yura.Physical model for strong optical-amplitude fluctuations in a turbulent medium[J].J.Opt.Soc.Am,1974, 64(1):59-67.
    30 J.Richard Kerr,James R.Dunphy.Experimental effects of finite transmitter apertures on scintillations[J].J.Op.Soc.Am.,1973,63(1):1-8.
    31 James H.Churnside.Aperture averaging of optical scintillations in the turbulent atmosphere[J].Appl.Opt.,1991,30(15):1982-1994.
    32 J.W.Goodman.Statistical Optics[M].Washington:John Wiley & Sons,Inc,1985.
    33 D.L.Fried.Optical resolution through a randomly inhomogeneous medium for very long and very short exposure[J].J.Opt.Soc.Am.,1966,56(10):1372-1379.
    34 M.C.Roggemann.Imaging Through Turbulence[M].New York:CRC Press,1996.
    35 Weiss-Wrana,Karin R..Influence of atmospheric turbulence on imaging quality of electro-optical sensors in different climates[C].SPIE,2004,vol.5237:1-12.
    36 Larry C.Andrews,Ronald L.Phillips,Cynthia Young Hopen.Scintillation model for a satellite communication link at large zenith angles[J].Opt.Eng.,2000,39(12):3272-3280.
    37 Heba Yuksel.Studies of the Effects of Atmospheric Turbulence on Free Space Optical Communications:[博士学位论文].Maryland,USA:the University of Maryland,2005.
    38 M.A.Al-Habash,L.C.Andrews,R.L.Philips.Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media[J].Opt.Eng.,2001,40(8):1554-1562.
    39 Eric E.Silbaugh,Byron M.Welsh,Michael C.Roggemann.Characterization of atmospheric turbulence phase statistics using wavefront slope measurements[J].J.Opt.Soc.Am.A,1996,13(12):2453-2460.
    40 A.Biswas and M.W.Wright.Mountain-Top-to-Mountain-Top Optical Link Demonstration:Part Ⅰ[R].IPN Progress Report,2002:42-149.
    41 N.Perlot,D.Giggenbach,H.Henniger,J.Horwath,M.Knapek.Measurements of the Beam-Wave Fluctuations over a 142-km Atmospheric Path[C].SPIE,2006,vol.6304:6304-1-6304-10.
    42 R.L.Phillips,L.C.Andrews,J.Stryjewski,et al.Beam wander experiments:terrestrial path[C].SPIE,2006,vol.6303:630306-1-630306-9.
    43 S.Arnon,N.S.Kopeika.Free-space optical communication:detector array aperture for optical communication through thin clouds[C].Optical Engineering,1995,34(2):518-522.
    44 S.Arnon and N.S.Kopeika.Adaptive optical transmitter and receiver for space communication through thin clouds[J].Appl.Opt.1997,36(9):1987-1993.
    45 Marius Aharonovich and Shlomi Arnon.Performance improvement of optical wireless communication through fog with a decision feedback equalizer[J].J.Opt.Soc.Am.A,2005,22(8):1646-1654.
    46 Heba Yuksel,Christopher C.Davis.Aperture Averaging Analysis and Aperture Shape Invariance of Received Scintillation in Free Space Optical Communication Links[C].SPIE,2006,vol.6304:63041E-1-63041E-11.
    47 Heba Yuksel,Christopher C.Davis.Aperture Averaging for Studies of Atmospheric Turbulence and Optimization of Free Space Optical Communication Links[C].SPIE,2005,vol.5892:58920P-1-58920P-13.
    48 Heba Yuksel,Stuart Milner,Christopher C,Davis.Aperture averaging for optimizing receiver design and system performance on free-space optical communication links[J].Journal of Optical Networking,2005,4(8):462-475.
    49 Linda M.Wasiczko,Christopher C.Davis.Aperture averaging of optical scintillations in the atmosphere:Experimental results[C].SPIE,2005,vol.5793:197-208.
    50 Frida Stromqvist Vetelino,Cynthia Young,Larry Andrews,et al.Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence[J].Appl.Opt.,2007,46(11):2099-2108.
    51 Christopher I.Moorea,Harris R.Burrisb,Michele R.Suitea.Spatial intensity correlation and aperture averaging measurements in a 20 mile retro-reflected lasercom link[C].SPIE,2003,vol.5160:474-482.
    52 A.Kumar,V.K.Jain.Antenna Aperture Averaging and Power Budgeting for Uplink and Downlink Optical Satellite Communication[C].ICSCN '08,2008:126-131.
    53 A.Kumar,V.K.Jain.Antenna aperture averaging with different modulation schemes for optical satellite communication links[J].Journal of Optical Networking,2007,6(12):1323-1328.
    54 Jaime A.Anguita,Mark A.Neifeld,Bane V.Vasic.Spatial correlation and irradiance statistics in a multiple-beam terrestrial free-space optical communication link[J].Appl.Opt.,2007,46(26):6561-6571.
    55 Jaime A.Anguita,Mark A.Neifeld,Bane V Vasic.Multi-beam space-time coded systems for optical atmospheric channels[C].SPIE,2006,vol.6304:63041B-1-63041B-9.
    56 Pan Feng,Ma Jing,Tan Liying,et al.Scintillation characterization of multiple transmitters for ground-to-satellite laser communication[C].SPIE,2004,vol.5640:448-454.
    57 M.M.Ibrahim,A.M.Ibrahim.Performance analysis of optical receivers with space diversity reception[J].IEE Proc.Commun.,1996,143(6):369-372.
    58 V.Vilnrotter,C.-W.Lau,K.Andrews,et al.Real-time combining of optical array signals[C].SPIE,2006,vol.6105:610508-1-610508-11.
    59 V.Vilnrotter,C.-W.Lau,M.Srinivasan,et al.Optical array receiver for communication through atmospheric turbulence [J].IEEE Journal of Lightwave Technology,2005,23(4):1664-1675.
    60 V.Vilnrotter,C.-W.Lau,K.Andrews,et al.Two-element optical array receiver concept demonstration[C].SPIE,2005,vol.5712:225-239.
    61 S.Mohammad Navidpour,Murat Uysal,Mohsen Kavehrad.BER performance of free-space optical transmission with spatial diversity[J].IEEE Trans.on Wireless Communications,2007,6(8):2813-2819.
    62 Cvijetic Neda,Wilson Stephen G.,Brandt-Pearce Maite.Performance bounds for free-space optical MIMO systems with APD receivers in atmospheric turbulence[J].IEEE J.Sel.Areas Commun.,2008,26(3):3-11.
    63 Kamran Kiasaleh.Scintillation index of a multiwavelength beam in turbulent atmosphere[J].J.Opt.Am.A,2004,21(8):1452-1454.
    64 Kamran Kiasaleh.Impact of turbulence on multi-wavelength coherent optical communications[C].SPIE,2005,vol.5892:58920R-1-58920R-9.
    65 Kamran Kiasaleh.On the scintillation index of a multiwavelength Gaussian beam in a turbulent free-space optical communications channel[J].J.Opt.Am.A,2006,23(3):557-566.
    66 Sugianto Trisno,Igor I.Smolyaninov,Stuart D.Milner,et al.Characterization of time delayed diversity to mitigate fading in atmospheric turbulence channels[C].SPIE,2005,vol.5892:589215-1-589215-10.
    67 Rahual M.Khandekar,Vladimir V.Nikulin.Mitigation of dynamic wavefront distortions using a Nematic liquid crystal spatial light modulator and simplex optimization[C].SPIE,2006,vol.6105:61050Q-1-61050Q-10.
    68 Tomas Weyrauch,Mikhail A.Vorontsov.Free-space laser communications with adaptive optics:atmospheric compensation experiments[J].J.Opt.Fiber.Commun.Rep.,2004,(1):355-379.
    69 盛裵轩,毛节泰,李建国,等.大气物理学[M],北京:北京大学出版社,2003.
    70 NOAA,NASA,and USAF.U.S.Standard Atmosphere[S],Washington,D.C.:U.S.Government Printing Office,1976.
    71 吴健,杨春平,刘建斌.大气中的光传输理论[M].北京:北京邮电大学出版社,2005.
    72 蒋维媚,苗世光.大涡模拟与大气边界层研究-30年回顾与展望[J].自然科学进展,2004,14(1):11-19.
    73 H.Henniger,D.Giggenbach,J.Horwath.Evaluation of optical up-and downlinks from high altitude platforms using IM/DD[C].SPIE,2005,vol.5712:24-36.
    74 F.David,D.Giggenbach,H.Henniger,et al.Design Considerations for Optical Inter-HAP Links[C].ICSSC 2004,2004:9-12.
    75 Isaac I.Kim,Bruce McArthur,and Eric Korevaar.Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications[C].SPIE,2001,vol.4214:38-45.
    76 W.E.K.Middleton.Vision Through the Atmosphere[M].Toronto:University of Toronto Press,1952.
    77 陈纯毅,杨华民,佟首峰,等.空地光通信系统空间链路的建模与仿真[J].系统仿真学报,2007,19(12):2706-2709+2719.
    78 P.W.Kruse.Elements of infrared technology:Generation,transmission and detection[M].New York:John Wiley &Sons.Inc,1962.
    79 陈彦.空-地光通信系统的方案设计和关键技术分解及信道仿真:[硕士学位论文].成都:电子科技大学,2003.
    80 Robert Meneghini,Toshio lguchi.Ground-to-space optical power transfer[C].SPIE,1999,vol.2120:108-117.
    81 A.R.Jha.INFRARED TECHNOLOGY[M].New York:John Wiley & Sons.Inc,.2000.
    82 O.Bouchet,T.Marquis,M.Chabane,M.Al Naboulsi,et al.FSO and quality of service software prediction[C],SPIE,2005,vol.5892:1-12.
    83 M.Al Naboulsi,H.Sizun,F.de Fornel.Propagation of optical and infrared waves in the atmosphere[EB/OL].http://www.ursi.org/Proceedings/ProcGA05/pdf/F01P.7(01729).pdf,2005.
    84 S.Sheikh Muhammad,P.K(o|¨)hldorfer,E.Leitgeb.Channel Modeling for Terrestrial Free Space Optical Links[C].ICTON 2005,2005:407-410.
    85 T.H.Carbonneau,D.R.Wisely.Opportunities and challenges for optical wireless;the competitive advantage of free space telecommunications links in today's crowded market place[C].SPIE,1998,vol.3232:119-128.
    86 Arnold D.Kim,Akira Ishimaru.Optical diffusion of focused beam wave pulses in discrete random media[C].SPIE,2000,vol.3914:423-434.
    87 D.J.Durian and J.Rudnick.Photon migration at short times and distances and in cases of strong absorption[J].J.Opt.Soc.Am.A,1997,14(1):235-245.
    88 D.J.Durian and J.Rudnick.Photon migration at short times and distances and in cases of strong absorption:erratum[J].J.Opt.Soc.Am.A,1997,14(4):940.
    89 M.C.W.van Rossum and T.M.Nieuwenhuizen.Multiple scattering of classical waves:microscopy,mesoscopy,and diffusion[J].Rev.Mod.Phys.,1999,71(1):313-371.
    90 Daniel V.Hahn,Donald D.Duncan.Optimized link model for optical communications through clouds[C].SPIE,2004,vol.5550:170-181.
    91 陈纯毅,杨华民,姜会林,等.激光脉冲云层传输时间扩展与信道均衡[J].兵工学报,2008,29(11):1325-1329
    92 陈纯毅,杨华民,姜会林,等.云层信道光通信链路误码率及改善途径分析[J].系统仿真学报,2009,21(5):1245-1248.
    93 Mohsen Kavehrad,Belal Hamzeh.Laser Communication System Using Wavelet-based Multi-rate Signaling[C].MILCOM 2004,2004,vol.1:398-403.
    94 A.N.Kolmogorov.A refinement of previous hypotheses concerning local structure of turbulence in a viscous incompressible fluid at high Reynolds number[J].Journal of Fluid Mechanics,1962,13(1):82-85.
    95 R.M.Williams and C.A.Paulson.Microscale temperature and velocity spectra in the atmospheric boundary layer[J].Journal of Fluid Mechanics,1977,83(3):547-567.
    96 R.J.Hill and S.F.Clifford.Modified spectrum of atmospheric temperature fluctuations and its application to optical propagation[J].J.Opt.Soc.Am.,1978,68(7),892-899.
    97 L.C.Andrews,R.L.Phillips,C.Y.Hopen,et al.Theory of optical scintillation[J].J.Opt.Soc.Am.A,1999,16(6):1417-1429.
    98 L.C.Andrews.Analytical model for the refractive index power spectrum and its application to optical scintillations in the atmosphere[J].Journal of Modern Optics,1992,39(9):1849.
    99 H.Rachele and A.Tunick.Energy balance model for imagery and electromagnetic propagation[C].SPIE,1992,vol.1688:382-412.
    100 陈纯毅,杨华民,佟首峰,姜会林.飞机对卫星激光通信上行链路建模与功率分析[J].通信学报,2008,29(1):125-131.
    101 张晓芳,俞信,阎吉祥,等.大气湍流对光学系统图像分辨力的影响[J].光学技术,2005,31(2):263-265.
    102 W.P.Brown,S.C.Fry,G.C.Valley.Simulation of Ground-to-Space Optical Propagation[R].HUGHES RESEARCH LABS,Final rept.,1982.
    103 M.G.Miller and P.L.Zieske.Turbulence environmental characterization[R],Rome Air Development Center,RADC-TR-79-131,1979.
    104 张逸新,迟泽英.光波在大气中的传输与成像[M].北京:国防工业出版社,1997.
    105 L.C.Andrews,R.L.Phillips.Impact of scintillation on laser communication systems:recent advances in modeling[C].SPIE,2002,vol.4489:23-34.
    106 Z.-S.Wu,H.-Y.Wei,R.-K.Yang,L.-X.Guo.Study on scintillation considering inner-and outer-scales for laser beam propagation on the slant path through the atmospheric turbulence[J].Progress In Electromagnetics Research,2008,80:277-293.
    107 Frida Stromqvist Vetelino,Cynthia Young,Larray Andrews.Scintillation:theory vs.experiment[C].SPIE,2005,vol.5793:166-177.
    108 A.J.Masino,C.Y.Young,L.C.Andrews,K.Swanger.Mean Irradiance:Experimental and Theoretical Results[C].SPIE,2005,vol.5793:178-184.
    109 A.Tiker,N.Yarkoni,N.Blaunstein,et al.Prediction of data stream parameters in atmospheric turbulent wireless communication links[J].Appl.Opt.,2007,46(2):190-199.
    110 Kamran Kiasaleh.Performance Analysis of Free-space,On-Off-Keying Optical Communication Systems Impaired by Turbulence[C].SPIE,2002,vol.4635:150-161.
    111 L.C.Andrews,R.L.Philips,C.Y.Hopen.Aperture averaging and the temporal spectrum of optical scintillations[C],SPIE,1999,vol.3866:110-118.
    112 S.F.Clifford.The classical theory of wave propagation in a turbulent medium[J].Laser Beam Propagation in the Atmosphere,1978,25:9-43.
    113 Akira Ishimaru.Wave propagation and scattering in random media[M],New York:IEEE Press and Oxford University Press,1997.
    114 陈纯毅,杨华民,冯欣,等.基于球泡模型的大气湍流光束漂移Monte Carlo模拟[J].长春理工大学学报,2008,31(3):16-19.
    115 马东堂.大气激光通信中的多光束发射和接收技术研究:[博士学位论文].长沙:国防科技大学,2004.
    116 Fabio E.Zocchi.A simple analytical model of adaptive optics for direct detection free-space optical communication[J].Opt.Commun.,2005,248(4-6):359-374.
    117 Larry C.Andrews,Ronald L.Philips and Cynthia Y.Hopen.Laser Beam Scintillation with Applications[M].Washington,D.C.:SPIE Press,2001.
    118 张逸新.湍流大气传输光束的孔径平均到达角起伏[J],激光杂志,2008,29(2):53-54.
    119 A.Biswas,M.W.Wright.Mountain-Top-to-Mountain-Top Optical Link Demonstration:Part Ⅱ[R].IPN Progress Report 42-151,2002:1-16.
    120 Yamac Dikmelik,Frederic M.Davidson.Fiber coupling efficiency for free-space optical communication through atmospheric turbulence[C],SPIE,2004,vol.5338:76-80.
    121 L.C.Andrews and R.L.Phillips.Laser Beam Propagation through Random Media[M].Washington D.C.:SPIE Press,1998.
    122 P.J.Winzer and W.R.Leeb.Fiber coupling efficiency for random light and its applications to lidar[J].Opt.Lett.,1998,23(13):986-988.
    123 S.Dolinar,D.Divsalar,J.Hamkins,et al.Capacity of Pulse-Position Modulation(PPM) on Gaussian and Webb Channels[R].TMO Progress Report,2000:42-142.
    124 Michael Reuter.Numerically Efficient Fourier-Based Technique for Calculating Error Probabilities with Intersymbol Interference[J].IEEE Transactions on Communications,1997,45(6):629-632.
    125 Ming-Kang Liu,Antonios C.Vrahas,and Marc-Jules B.Moretti.Saddle Point Bit Error Rate Computations for Optical Communication Systems Incorporating Equalizers[J].IEEE Transactions on Communications,1995,43(2):989-1000.
    126 I.Daubechies.Ten Lectures on Wavelets[M].Philadelphia:SIAM,1992.
    127 S.G.Mallat.A theory for multiresolution signal decomposition:The wavelet representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,2(7):674-692.
    128 郝久玉,段小嫣,李慧敏.基于小波变换/小波包变换的多载波调制技术[J].信号处理,2003,19(1):64-68.
    129 B.Y.Hamzeh.Multi-rate wireless optical communications in cloud obscured channels:[博士学位论文].Pennsylvania,USA:The Pennsylvania State University,2005.
    130 Xiaoming Zhu,Joseph M.Kahn.Free-space optical communication through atmospheric turbulence channels[J].IEEE TRANSACTIONS ON COMMUNICATIONS,2002,50(8):1293-1300.
    131 William C.Brown.Optimum Thresholds for Optical On-Off Keying Receivers Operating in the Turbulent Atmosphere[C].SPIE,2000,vol.2990:254-261.
    132 O.Korotkova,L.C.Andrews,R.L.Philips.Phase diffuser at the transmitter for lasercom link:effect of partially coherent beam on the bit-error-rate[C].SPIE,2003,vol.4976:70-77.
    133 彭仁军,吴健.多模光纤产生用于大气光通信的部分相干光源[J].强激光与粒子束,2005,17(6):813-816.
    134 Olga Korotkova,Larry C.Andrews,Ronald L.Phillips.Model for a partially coherent Gaussian beam in atmospheric turbulence with application in lasercom[J].Opt.Eng.,2004,43(2):330-341.
    135 谢永杰,赵学庆,王立君,等.液晶散射法产生部分相干光实验[J].强激光与粒子束,2001,13(2):191-194.
    136 J.V.Moloney,A.Peleg,P.Polynkin,et al.Tunable high-power high-brightness VECSELs as partially coherent sources for lasercom[C].SPIE,2007,vol.6457:64570N-1-64570N-13.
    137 陈纯毅,杨华民,姜会林,等.大气信道部分相干光通信链路性能分析与优化[J].电子学报,2009,37(8).
    138 A.S.Ostrovsky and E.Hernandez Garcia.Modulation of spatial coherence of optical field by means of liquid crystal light modulator[J].Revista Mexicana De Fisica,2005,51(5):442-446.
    139 张逸新.随机介质中光的传播与成像[M].北京:国防工业出版社,2002.
    140 M.M.Ibrahim,A.M.Ibrahim.Performance analysis of optical receivers with space diversity reception[J].IEE Proc.Commun.,1996,143(6):369-372.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700