用户名: 密码: 验证码:
飞秒激光脉冲时域空域整形及时空耦合特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超短超强脉冲激光技术的迅速发展,为人类研究光与物质之间的超快相互作用、探索极端情况下新的物理现象与规律提供了强有力的技术支撑。很多情况下,不仅需要超短超强的飞秒脉冲光束,还对其时域波形与空间光场分布有特定要求,飞秒脉冲光束整形技术已成为超快领域不可或缺的工具,是当今超快研究领域热点之一,其成果已经广泛的应用于飞秒物理学、飞秒化学、信号处理、安全通信、生物学、医学成像以及飞秒微加工等领域。本文以实现飞秒脉冲光束任意时域波形与空间分布的整形为研究目标,对飞秒脉冲光束的时域和空域整形,以及飞秒激光脉冲时空耦合特性进行理论分析和实验研究,主要包括:
     1.以零色散4f傅里叶变换脉冲整形为基础研究飞秒激光脉冲时域整形,并以伽利略非球面镜折射整形系统为理论基础,研究飞秒脉冲光束空间整形。对飞秒脉冲光束的时域与空域整形结果进行优化设计,利用模拟退火迭代算法和梯度下降控制算法对飞秒脉冲的时域和空域整形进行补偿反馈优化,并从实验上进行验证。为飞秒脉冲时域与空域整形系统的进一步优化奠定基础。
     2.液晶空间光调制器是飞秒脉冲时域与空域整形的核心器件,从实验上检测液晶空间光调制器的输入电压控制与位相调制深度的响应关系,并得到液晶空间光调制器的输入位图灰度级与相位调制深度的关系图,为飞秒脉冲整形系统的误差分析以及液晶空间光调制器的位相控制程序,实现液晶空间光调制器的精确自动化控制提供数据依据。通过对频率分辨光开关法(FROG)的基本原理以及计算机模拟分析,对FROG的误差进行了研究,对完善飞秒脉冲测量仪器的研究以及飞秒脉冲时域整形补偿分析具有重要参考价值。
     3.理论上分析了零色散整形系统的分辨率与各光学元件间距角度失调的关系,并详细讨论了间距角度失调对系统效率和输出脉冲时间特性的影响。实验结果表明:透镜位置失调会导致脉冲展宽,且两个透镜位置失调对脉宽展宽的规律对称,光栅位置失调也会导致脉冲展宽。此外,器件角度失调对系统效率的影响大于位置失调。使用600线的光栅、30cm焦距的傅里叶透镜,当间距失调小于0.5cm,角度失调小于9°时可以满足系统效率变化和脉冲展宽都小于5%。在此基础上,提出并设计了嵌套准4f飞秒脉冲时域波形整形系统,可将飞秒脉冲各频率分量在二维方向上展开实现飞秒傅里叶变换时域整形。该系统对有效提高傅里叶平面上液晶空间光调制器像元阵列的利用率,并使得整形系统变得更加紧凑具有潜在的应用价值,并从实验上验证了利用嵌套准4f飞秒脉冲时域波形整形的可行性。
     4.研究和分析了伽利略双非球面镜整形系统,并将其引入了飞秒脉冲光束的空间光场分布整形。建立了基于液晶空间光调制器的伽利略非球面镜飞秒脉冲光束空域整形的实验装置,基于该实验装置实验上得到了飞秒高斯空心光束、飞秒超高斯平顶光束。采用直接对飞秒脉冲光束波前相位调制的方法,得到了飞秒径向偏振光束以及飞秒涡旋光束。并对飞秒径向偏振光束以及飞秒涡旋光束的时域特性进行分析,研究了实验装置对飞秒脉冲时域特性的影响。
     5.研究了4f整形系统的时空耦合特性,并对一阶空时耦合空间啁啾进行了详细的理论和实验研究。从实验上得到了空间啁啾的飞秒高斯光束、飞秒径向偏振光束以及飞秒涡旋光束的空间啁啾量与相应的时域脉冲宽度的关系,对飞秒脉冲空间啁啾的控制与利用具有重要指导意义。
     6.搭建了飞秒脉冲光束的时域波形与空间分布的整形系统,实现了对飞秒脉冲光束任意空间分布以及典型的时域波形分布的整形,并对整形脉冲光束进行时域特性研究。
     本文的研究工作主要是搭建飞秒脉冲时域与空域整形系统,研究了飞秒脉冲空时耦合特性,分析了整形系统的色散补偿反馈,提出并验证套嵌整形系统的可行性,总结了整形系统对飞秒脉冲时域特性的影响,并对失调系统进行了研究,为飞秒脉冲光束的时域与空域整形系统的进一步优化提供指导,为未来小型紧凑高效的整形系统的设计提供依据。
The great progresses in ultrafast and ultrahigh femtosecond pulse laser areproviding powerful tools for the investigations on opt-electronic interactions and novalphysical phenomena and rules under extreme conditions. But in many applications, justgeneral ultrafast and ultrahigh laser pulse can not be satisfied and particular temporalwaveforms and special spatial profiles of the laser pulses are needed. Pulse beamshaping techniques become indispensable to realize arbitrary temporal waveforms andspatial profiles, which have been one of the most important scientific researches inultrafast area. Both temporally and spatially shaped ultrafast pulse beam have beenapplied in the studies of ultrashort pulse code division multiple access communications,image processing in biomedicine, femtosecond chemistry, femtosecond physics andfemtosecond ablation and so on. The research target of this paper is to generate arbitaryspatial and temporal waveforms. According to this target theory and experimentalworks about pulse beam shaping and temporal-spatial coupling are investigated in detail.The main contents of this paper are shown as follows:
     1. The thesis begins with a comprehensive reviewing about the developmenthistory and updated achievenements and applied backgrounds of the femtosecond pulsebeam temporal and spatial shaping. Based on4f zero-dispersion Fourier transformshaping setup and direct wavefront phase modulating according to the Galileanasperical lenses shaping setup, temporal and spatial shaping are investigated. Dispersioncompensations for temporal and spatial shaping are investigated, which can be used forthe further design of the shaping system.
     2. The liquid cystal spatial light modulataor (LC-SLM) is the key opticalcomponent of the shaping setup, of which the relation between input voltage and phaseresponse is experimentally calibrated. Subsequently, the grayscale image phaseresponse is obtained, which can support the automatable control of the LC-SLM.Moreover, by analysis the measuring principle and simulation of the frequency resolvedoptical gating (FROG), the error of the FROG is studied, which is valuable forimproving femtosecond pulse checking and compensating the dispersion of temporalshaping.
     3. In order to study the effect of mismatched spacing and angle on zero-dispersionfemtosecond pulse shaping temporal properties, the relation between the resolution andthe mismatched spacing of the system was analyzed in theory. And then the effect ofmismatched spacing and angle on the system efficiency and pulse temporal propertywas discussed. The experimental results indicate that lens misalignment will broadenthe pulse and the influence of the first grating is symmetrical with the influence of thesecond one. Moreover, the influence on system efficiency of angle misalignment ismore serious than spacing misalignment. If600lines per millimeter grating and lens of30centimeter focal length were used, when the angle misalignment is smaller than9°orspacing misalignment is shorter than0.5centimeters, the changing of system efficiencyand pulse width are both smaller than5%. All the results above are helpful to anin-depth study on the zero-dispersion pulse shaping system. Nested qusi-4f pulseshaping setup is proposed, which can disper the frequent components in two dimensionsthat can improve the usage of the LC-SLM.
     4. Based on Galilean refractive aspheric lens shaping theory, a setup usingLC-SLM is proposed and the spatial profile of the pulse beam is shaped. Dark hollowGaussian beam and super-Gaussian flattop beam are generated. Based on purepolarizing controlling and direct wavefront phase modulating, fentosecond radiallypolarized beam and vortex beam are generated, and the temporal properties are studied.
     5. Temporal-spatial properties of4f shaping setup and spatial chirp in first orderare investigated in detail. The relationships between spatial chirped Gaussian beamvortex beam radially polarized beam and spatial chirp parameters are obtained, whichare valuable for spatial chirp control and utilized.
     6. A setup for both temporal and spatial pulse shaping is proposed, based on whicharbitrary spatial profiles and typical temporal waveforms are generated. And thetemporal properties are analyzed in detail.
     In a word, this thesis proposes a system for both temporal and spatial shaping offemtosecond pulse beam. Temporal-spatial coupling and dispersion compensation andthe effects of the shaping setup on femtosecond pulse temporal proerties are studied.The effect of mismatched spacing and angle on4f zero-dispersion femtosecond pulseshaping is investigated and nested shaping system is proposed. All the results above areof potential value for improving the shaping system and designing the future minaturecompact and high efficiency shaping system.
引文
[1] R. L. Fork, B. I. Greene, C. V Shank. Generation of optical pulses shorter than0.1psec by colliding pulse mode locking [J]. Appl. Phys. Lett,1981,38(9):671~672.
    [2] J. A. Valdmanis, R. L. Fork, J. P. Gordon. Generation of optical pulse as short as27femtoseconds directly from a laser balancing self-phase modulation groupvelocity dispersion saturable absorption and saturable gain [J]. Opt Lett,1985,10(3):131~133.
    [3]陈国夫,程光华,令维军.飞秒激光产生与放大技术[J].红外与激光工程,2008,37(2):195~199.
    [4] R. L. Fork, G. H. Britocruz, P. C. Becker, et al. Compression of optical pulses tosix femtoseconds by using cubic phase compensation [J]. Opt. Lett.,1987,12(7):483~485.
    [5] D. E. Spence, E. N. Kean, W Sibbett.60-fsec pulse generation from aself-mode-locked Ti: sapphire laser [J]. Opt. Lett.,1991,16(1):42~44.
    [6] C. P. Huang, M. T. Asaki, S.Backus, et al.17-fs pulses from a self-mode-locked Ti:sapphire laser [J]. Opt. Lett.,1992,17(18):1289~1291.
    [7] M. T. Asaki, C. Huang, D. Garvey, et a1. Generation of11fs pulses from aself-mode-locked Ti: sapphire laser [J]. Opt. Lett.,1993,18(3):203~204.
    [8] A. Sting, M. Lenzner, C. Spielmann, et a1. Sub-10fs mirror-dispersion-controlledTi: sapphire laser [J]. Opt. Lett.,1995,20(6):602~604.
    [9] A. Poppe, L. Xu, F. Krausz, et al. Noise characterization of sub-10-fs Ti: sapphireoscillators [J]. IEEE J. Quantum Electron.,1998,4(2):179~184.
    [10] L. Xu, C. Spielmann, F. Krausz, et al. Ultrabroad band ring oscillator for sub-10-fspulse generation [J]. Opt. Lett.,1996,21(16):1259~1261.
    [11] U. Morgner, F. X. Kartner, S. H. Cho, et al. Sub-two-cycle pulses from a Kerr-lensmode-locked Ti: sapphire laser [J]. Opt. Lett.,1999,24(6):411~413.
    [12] B. Schenkel, J. Biegert, U. Keller, et al. Generation of3.8-fs pulses from adaptivecompression of a cascaded hollow fiber supercontinuum [J]. Opt. Lett.,2003,28(20):1987~1989.
    [13] E. Matsubara, K. Yamane, T. Sekikawa, et al. Generation of2.6fs optical pulsesusing induced-phase modulation in a gas-filled hollow fiber [J]. J. Opt. Soc. Am. B,2007,24(4):985~989.
    [14] M. Y. Shverdin, D. R. Walker, D. D. Yavuz, et al. Generation of a single-cycleoptical pulse [J]. Phys. Rev. Lett.,2005,94:033904~033907.
    [15] G. Krauss, S. Lohss, T. Hanke, et al. Synthesis of a single cycle of light withcompact erbium-doped fibre technology [J]. Nature Photonics,2010,4(1):33~36.
    [16] B. E. Schmidt, P. Bejot, M. Giguere, et al. Compression of1.8μm laser pulses tosub two optical cycles with bulk material [J]. Appl. Phys. Lett.,2010,96(12):121109.
    [17] S. W. Huang, G. Cirmi, J. Moses, et al. High-energy pulse synthesis with sub-cyclewaveform control for strong-field physics [J]. Nature Photonics,2011,5(8):475~479.
    [18] A. Wirth, M. T. Hassan, I. Grguras, et al. Synthesized light transients [J]. Science,2011,334(6053):195~200.
    [19] E. Granados, L. Chen, C. Lai, et al. Wavelength scaling of optimal hollow-corefiber compressors in the single-cycle limit [J]. Opt. Express,2012,20(8):9099~9108.
    [20] C. Froehly, B. Colombeau, M. Vampouille. Shaping and analysis of picosecondlight pulses [J]. Progress in Optics,1983,20:63~153.
    [21] J. P. Heritage, R. Bank, A. M. Weiner, et al. Shaping optical pulses by amplitudeand phase marsking [P]. U.S. patent,4655547,1987.
    [22] J. P. Heritage, A. M. Weiner, R. N. Thurston. Picosecond pulse shaping by spectralphase and amplitude manipulation [J]. Opt. Lett.,1985,10(12):609~611.
    [23] A. M. Johnson, R. H. Stolen, W. M. Simpson.80single-stage compression offrequency doubled Nd: yttrium aluminum garnet laser pulses [J]. Appl. Phys. Lett.,1984,44(8):729~731.
    [24] O. E. Martinez. Design of high-power ultrashort pulse amplifiers by expansionand recompression [J]. IEEE J. Quantum Electron,1987,23(8):1385~1387.
    [25] D. H. Reitze, A. M. Weiner, D. E. Leaird. High-power femtosecond optical pulsecompression by using spatial solitons [J]. Opt. Lett.,1991,16(18):1409~1411.
    [26] R. N. Thurston, J. P. Heritage, A. M. Weiner. Analysis of picosecond pulse shapesynthesis by spectral masking in a grating pulse compressor [J]. IEEE J. QuantumElectron.,1986,22(5):682~696.
    [27] A. M. Weiner, J. P. Heritage. Picosecond and femtosecond Fourier pulse shapesynthesis [J]. Rev. Phys. Appl.,1987,22(1987):1619~1628.
    [28] A. Prakelt, M. Wollenhaupt, A. Assion, et al. Compact, robust, and flexible setupfor femtosecond pulse shaping [J]. Rev. Sci. Instrum,2003,74(11):4950~4953.
    [29] A. M. Weiner, J. P. Heritage, E. M. Kirschner. High-resolution femtosecond pulseshaping [J]. J. Opt. Sot. Am. B,1988,5(8):1563~1572.
    [30] A. M. Weiner, J. P. Heritage, R. N. Thurston. Synthesis of phase coherent,picosecond optical square pulses [J]. Opt. Lett.,1986,11(3):153~155.
    [31] A. M. Weiner, J. P. Heritage, J. A. Salehi. Encoding and decoding of femtosecondpulses [J]. Opt. Lett.,1988,13(4):300~302.
    [32] A. M. Weiner, D. E. Leaird. Generation of terahertz-rate trains of femtosecondpulses by phase-only filtering [J]. Opt. Lett.,1990,15(1):51~53.
    [33] A. M. Weiner, D. E. Leaird, J. S. Pate1, et al. Programmable shaping offemtosecond optical pulses by use of128-element liquid crystal phase modulator[J]. IEEE J. Quantum Electron.,1992,28(14):908~920.
    [34] A. Efimov, C. Schaffer, D. H. Reitze. Programmable shaping ofultrabroad-bandwidth pulses from a Ti: sapphire laser [J]. J. Opt. Soc. Am. B,1995,12(10):1968~1980.
    [35] A. M. Weiner, D. E. Leaird, D. H. Reitze. Femtosecond spectral holography [J].IEEE J. Quantum Electron.,1992,28(10):2251~2261.
    [36] C. W. Hillegas, J. X. Tull, D. Goswami. Femtosecond laser pulse shaping by useof microsecond radio-frequency pulses [J]. Opt. Lett.,1994,9(10):737~739.
    [37] E. Zeek, K. Maginnis, S. Backus. Pulse compression by use of deformable mirrors[J]. Opt. Lett.,1999,24(7):493~495.
    [38] D. E. Leaird, A. M. Weiner. Femtosecond optical packet generation by a directspace-to-time pulse shaper [J]. Opt. Lett.,1999,24(12):853~855.
    [39] Y. Ding, R. M. Brubaker, D. D. Nolte. Femtosecond pulse shaping by dynamicholograms in photorefractive multiple quantum wells [J]. Opt. Lett.,1997,22(10):718~720.
    [40] D. Yelin, D. Meshulach, Y. Silberberg. Adaptive femtosecond pulse compression[J]. Opt. Lett.,1997,22(23):1973~1975.
    [41] D. E. Leaird, A. M. Weiner. Femtosecond Direct Space-to-Time Pulse Shaping [J].IEEE J. Quantum Electron.,2001,37(4):494~504.
    [42] H. Wang, Z. Zheng, D. E. Leaird.20-fs pulse shaping with a512-elementphase-only liquid crystal modulator [J]. IEEE J. Quantum Electron.,2001,7(4):718~727.
    [43] N. Karasawa, L. Li, A. Suguro. Optical pulse compression to5.0fs by use of onlya spatial light modulator for phase compensation [J]. J. Opt. Soc. Am. B,2001,18(11):1742~1746.
    [44] Z. Zheng, A. M. Weiner. Spectral phase correlation of coded femtosecond pulsesby second-harmonic generation in thick nonlinear crystals [J]. Opt. Lett.,2000,25(13):984~986.
    [45] R. D. Nelson, D. E. Leaird, A. M. Weiner. Programmable polarization-independentspectral phase compensation and pulse shaping [J]. Opt. Express,2003,11(15):1763~1769.
    [46] F. Verluise, V. Laude, Z. Cheng. Amplitude and phase control of ultrashort pulsesby use of an acousto-optic programmable dispersive filter: pulse compression andshaping [J]. Opt. Lett.,2000,25(8):575~577.
    [47] R. E. Saperstein, N. Alic, D. Panasenko. Time-domain waveform processing bychromatic dispersion for temporal shaping of optical pulses [J]. J. Opt. Soc. Am. B,2005,22(11):2427~2436.
    [48] D. E. Leaird, A. M. Weiner. Femtosecond direct space-to-time pulse shaping in anintegrated-optic configuration [J]. Opt. Lett.,2004,29(13):1551~1553.
    [49] S. Xiao, J. D. McKinney, A. M. Weiner. Photonic Microwave Arbitrary WaveformGeneration Using a Virtually Imaged Phased-Array (VIPA) Direct Space-to-TimePulse Shaper [J]. IEEE Photon. Technol. Lett.,2004,16(8):1936~1938.
    [50] Z. Jiang, D. S. Seo, D. E. Leaird. Spectral line-by-line pulse shaping [J]. Opt. Lett.,2005,30(12):1557~1559.
    [51] I. S. Lin, Jason D. McKinney, A. M. Weiner. Photonic Synthesis of BroadbandMicrowave Arbitrary Waveforms Applicable to Ultra-Wideband Communication [J].IEEE Microw. Wireless Compon. Lett.,2005,15(4):226~228.
    [52] Z. Jiang, C. Huang, D. E. Leaird. Optical arbitrary waveform processing of morethan100spectral comb lines [J]. Nature Photonics,2007,1:463~467.
    [53] Z. Jiang, D. Seo, S. Yang. Four-User10-Gb/s Spectrally Phase-Coded O-CDMASystem Operating at30fJ/bit [J]. IEEE Photon. Technol. Lett.,2005,17(3):705~707.
    [54] J. C. Vaughan, T. Hornung, T. Feurer. Diffraction-based femtosecond pulseshaping with a two-dimensional spatial light modulator [J]. Opt. Lett.,2005,30(3):323~325.
    [55] J. Vaughan, T. Feurer, K. Stone. Analysis of replica pulses in femtosecond pulseshaping with pixelated devices [J]. Opt. Express,2006,14(3):1314~1328.
    [56] S. Shim, D. B. Strasfeld, E. C. Fulmer. Femtosecond pulse shaping directly in themid-IR using acousto-optic modulation [J]. Opt. Lett.,2006,31(6):838~840.
    [57] S. Xiao, A. M. Weiner. Coherent Fourier transform electrical pulse shaping [J].Opt. Express2006,14(7):3073~3082.
    [58] Y. Park, M. Kulishov, R. Slavik. Picosecond and sub-picosecond flat-top pulsegeneration using uniform long-period fiber gratings [J]. Opt. Express,2006,14(26):12670~12678.
    [59] B. V. Vacano, W. Wohlleben, M. Motzkus. Actively shaped supercontinuum froma photonic crystal fiber for nonlinear coherent microspectroscopy [J]. Opt. Lett.,2006,31(3):413~415.
    [60] C. Wang, F. Zeng, J. Yao. All-Fiber Ultrawideband Pulse Generation Based onSpectral Shaping and Dispersion-Induced Frequency-to-Time Conversion [J]. IEEEPhoton. Technol. Lett.,2007,19(3):137~139.
    [61] E. Frumker, Y. Silberberg. Phase and amplitude pulse shaping withtwo-dimensional phase-only spatial light modulators [J]. J. Opt. Soc. Am. B,2007,24(12):2940~2947.
    [62] B. J. Pearson, T. C. Weinacht. Shaped ultrafast laser pulses in the deep ultraviolet[J]. Opt. Express,2007,15(7):4385~4388.
    [63] E. Frumker, Y. Silberberg. Femtosecond pulse shaping using a two-dimensionalliquid-crystal spatial light modulator [J]. Opt. Lett.,2007,32(11):1384~1386.
    [64] R. P. Scott, N. K. Fontaine, J. Cao, et al. High-fidelity line-by-line opticalwaveform generation and complete characterization using FROG [J]. Opt. Express,2007,15(16):9977~9988.
    [65] O. Masihzadeh, P. Schlup, R. A. Bartels. Complete polarization state control ofultrafast laser pulses with a single linear spatial light modulator [J]. Opt. Express,2007,15(26):18025~18036.
    [66] Y. Park, M. H. Asghari, T. Ahn, et al. Transform-limited picosecond pulse shapingbased on temporal coherence synthesization [J]. Opt. Express,2007,15(15):9584~9599.
    [67] F. M. Reinert, M. Ninck, W. Lüthy, et al. Shaping a femtosecond pulse with aprogrammable thermo-optically driven phase modulator [J]. Opt. Express,2007,15(7):4372~4377.
    [68] M. Ninck, A. Galler, T. Feurer, et al. Programmable common-path vector fieldsynthesizer for femtosecond pulses [J]. Opt. Lett.,2007,32(23):3379~3381.
    [69] V. R. Supradeepa, C. Huang, D. E. Leaird, et al. Femtosecond pulse shaping intwo dimensions: Towards higher complexity optical waveforms [J]. Opt. Express,2008,16(16):11878~11887.
    [70] I. Will, G. Klemz. Generation of flat-top picosecond pulses by coherent pulsestacking in a multicrystal birefringent filter [J]. Opt. Express,2008,16(19):4922~4937.
    [71] J. T. Willits, A. M. Weiner, S. T. Cundiff. Theory of rapid-update line-by-line pulseshaping [J]. Opt. Express,2008,16(1):315~327.
    [72] M. Abtahi, M. Mirshafiei, J. Magne. Ultra-Wideband Waveform Generator Basedon Optical Pulse-Shaping and FBG Tuning [J]. IEEE Photon. Technol. Lett.,2008,20(2):135~137.
    [73] S. Rausch, T. Binhammer, A. Harth, et al. Few-cycle femtosecond fieldsynthesizer [J]. Opt. Express,2008,16(22):17410~17419.
    [74] A. Rondi, J. Extermann, L. Bonacina, et al. Characterization of a MEMS-basedpulse-shaping device in the deep ultraviolet [J]. Appl. Phys. B,2009,96(4):757~761.
    [75] C. T. Middleton, D. B. Strasfeld, M. T. Zanni. Polarization shaping in the mid-IRand polarization-based balanced heterodyne detection with application to2D IRspectroscopy [J]. Opt. Express,2009,17(17):14526~14533.
    [76] D. S. N. Parker, A. D. G. Nunn, R. S. Minns, et al. Frequency doubling andFourier domain shaping the output of a femtosecond optical parametric amplifier:easy access to tuneable femtosecond pulse shapes in the deep ultraviolet [J]. Appl.Phys. B,2009,94(2):181~186.
    [77] Y. Esumi, M. D. Kabir, F. Kannari. Spatiotemporal vector pulse shaping offemtosecond laser pulses with a multi-pass two-dimensional spatial light modulator[J]. Opt. Express,2009,17(21):19153~19159.
    [78] C. Finot, J.M. Dudley, B. Kibler,et al. Optical parabolic pulse generation andapplications [J]. IEEE J. Quantum Electron.,2009,45(11):1482~1489.
    [79] D. J. Geisler, N. K. Fontaine, T. He, et al. Modulation-format agile, reconfigurableTb/s transmitter based on optical arbitrary waveform generation [J]. Opt. Express,2009,17(18):15911~15925.
    [80] C. D'Amico, M. Tondusson, J. Degert, et al. Tuning and focusing THz pulses byshaping the pump laser beam profile in a nonlinear crystal [J]. Opt. Express,2009,17(2):592~597.
    [81] V. Y. Molchanov, S. I. Chizhikov, O. Y. Makarov, et al. Adaptive acousto-optictechnique for femtosecond laser pulse shaping [J]. Appl. Optics,2009,48(7):118~124.
    [82] N. Krebs, R. A. Probst, E. Riedle. Sub-20fs pulses shaped directly in the UV byan acousto-optic programmable dispersive filter [J]. Opt. Express,2010,18(6):6164~6171.
    [83] H. Chuang, C. Huang. Generation and delivery of1-ps optical pulses withultrahigh repetition-rates over25-km single mode fiber by a spectral line-by-linepulse shaper [J]. Opt. Express,2010,18(23):24003~24011.
    [84] M. Akbulut, S. Bhooplapur, I. Ozdur, et al. Dynamic line-by-line pulse shapingwith GHz update rate [J]. Opt. Express,2010,18(17):18284~18291.
    [85] S. Thomas, A. Malacarne, F. Fresi, et al. Fiber-Based Programmable PicosecondOptical Pulse Shaper [J]. J. Lightwave Techn.,2010,28(12):1832~1843.
    [86] S. M. Weber, J. Extermann, L. Bonacina, et al. Ultraviolet and near-infraredfemtosecond temporal pulse shaping with a new high-aspect-ratio one-dimensionalmicromirror array [J]. Opt. Lett.,2010,35(18):3102~3104.
    [87] S. Bonora, D. Brida, P. Villoresi. Ultrabroadband pulse shaping with a push-pulldeformable mirror [J]. Opt. Express,2010,18(22):23147~23152.
    [88] C. Toth. Simple optical pulse lengthening setup for the subnanosecond range [J].Appl. Opt.,1995,34(34):8070~8071.
    [89] M. H. Khan, H. Shen, Y. Xuan, et al. Ultrabroad-bandwidth arbitraryradiofrequency waveform generation with a silicon photonic chip-based spectralshaper [J]. Nature Photonics,2010,4:117~122.
    [90] C. Huang, A. M. Weiner. Analysis of time-multiplexed optical line-by-line pulseshaping: application for radio-frequency and microwave photonics [J]. Opt. Express,2010,18(9):9366~9377.
    [91] S. Weber, M. Barthélemy, B. Chatel. Direct shaping of tunable UV ultra-shortpulses [J]. Appl. Phys. B,2010,98(2-3):323~326.
    [92] O. M. Yero, G. M. Vega, J. Lancis, et al. Diffractive pulse shaper for arbitrarywaveform generation [J]. Opt. Lett.,2010,35(4):535~537.
    [93] J. Das, M, Yamaguchi. Tunable narrow band THz wave generation from laserinduced gas plasma [J]. Opt. Express,2010,18(7):7038~7046.
    [94] J. Liu, K. Okamura, Y. Kida, et al. Temporal contrast enhancement of femtosecondpulses by a self-diffraction process in a bulk Kerr medium [J]. Opt. Express,2010,18(21):22245~22254.
    [95] A.Vega, D. E. Leaird, A. M. Weiner. High-speed direct space-to-time pulseshaping with1ns reconfiguration [J]. Opt. Lett.,2010,35(10):1554~1556.
    [96] Y. C. Yin, D. French, I. Jovanovic. Ultrafast temporal pulse shaping viaphase-sensitive three-wave mixing [J]. Opt. Express,2010,18(17):18471~18482.
    [97]李德华,白亚,周薇等.利用飞秒激光脉冲整形进行太赫兹波整形[J].山东科技大学学报,2008,27(4):60~64.
    [98]李品川.基于光学超晶格材料的超快激光脉冲整形和压缩研究[D].上海:上海交通大学,2006.
    [99]张少军,刘静纨,黄骝. YAG激光输出波形的时域整形技术[J].激光与红外,2001,31(6):343~345.
    [100]朱鹏飞,杨镜新,薛绍林.超短脉冲的光谱整形[J].中国激光,2003,30(12):1075~1078.
    [101]邹华,朱卫华,吴坚等.达曼类滤波器的飞秒脉冲整形技术[J].激光技术,2009,34(3):374~376.
    [102]邹华,周常河.飞秒脉冲时空变换整形技术[J].激光与光电子学进展,2005,42(2):1~7.
    [103]俞本立,毛红敏.光学超短脉冲整形的研究进展[J].安徽大学学报,2005,29(2):45~49.
    [104] P. Colman, C. Husko, S. Combrie, et al. Temporal solitions and pulsecompression in photonic crystal waveguides [J]. Nature Photonics,2010,4:862~868.
    [105] A. M. Weiner. Femtosecond pulse shaping using spatial light modulators [J].Rev. Sci. Instr.,2000,71:1929~1960.
    [106] S. T. Cundiff, A. M. Weiner. Optical arbitrary waveform generation [J]. NaturePhotonics,2010,4(11):760~766.
    [107] M. Aeschlimann, M. Bauer, D. Bayer. Adaptive subwavelength control ofnano-optical fields [J]. Nature,2007,446(15):301~308.
    [108] T. Feurer, J. C. Vaughan, K. A. Nelson. Spatiotemporal coherent control oflattice vibrational waves [J]. Science,2003,299(17):374~377.
    [109] Y. Liu, X. Liu, Y. Deng, et al. Selective Steering of Molecular MultipleDissociative Channels with Strong Few-Cycle Laser Pulses [J]. Phys. Rev. Lett.,2011,106:073004~073007.
    [110] A. Assion, T. Baumert, M. Bergt, T. Brixner, et al. Control of ChemicalReactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses [J].Science,1998,282(30):919~922.
    [111] C. C. Chang, H. P. Sardesai, A. M. Weiner. Dispersion-free fiber transmissionfor femtosecond pulses by use of a dispersion-compensating fiber and aprogrammable pulse shaper [J]. Opt. Lett.,1998,23(4):283~285.
    [112] M. Y. Shverdin, D. R. Walker, D. D. Yavuz, et al. Generation of aSingle-Cycle Optical Pulse [J] Rev. Lett.,2005,94:033904~033907.
    [113] H. Kogelnik, T. Li. Laser beams and resonators [J]. Appl. Opt.,1966,5(10):1550~1567.
    [114]周炳坤,高以智,陈倜嵘等.激光原理[M].北京:国防工业出版社,2004.
    [115]马浩统.基于优化式自适应光学的光束全场整形研究[D].长沙:国防科学与技术大学,2011.
    [116] F. M. Dickey, S. C. Holswade. Laser beam shaping: Theory and Techniques[M]. New York, Marcel Dekker,2000.
    [117]印建平,刘南春,夏勇等.空心光束的产生及其在现代光学中的应用[J].物理学进展,2004,24(3):336~380.
    [118]龚华平,吕志伟,林殿阳.激光束空间整形的研究现状[J].激光与光电子学进展,2005,42(9):2~5.
    [119]吕百达,蔡邦维,张彬.强激光的空间整形和靶面均匀辐照技术[J].红外与激光工程,1999,28(1):25~28.
    [120] B. Glushko, B. Kryzhanovsky, D. Sarkisyan. Self-phase-matchingmechanismfor efficient harmonic generation processes in a ring pump beamgeometry [J]. Phys. Rev. Lett.,1993,71(2):243~246.
    [121] W. R. Garrett, V. E. Peet. Wave-mixing effects in resonance-enhancedmultiphoton ionization of xenon in Bessel beams [J]. Phys. Rev. A,2000,61(6):063804-1~11.
    [122][121] T. Auguste, O. Gobert, B. Carre. Numerical study on high-orderharmonic generation by a Bessel-Gauss laser beam [J]. Phys. Rev. A,2008,78(3):033411-1~11.
    [123] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm. Observation of a single-beamgradient force optical trap for dielectric particles [J]. Opt. Lett.,1986,11(5):288~290.
    [124] K. Svoboda, S. M. Block. Biological applications of optical forces [J] Annu.Rev. Biophys. Biomol. Struct.,1994,23:247~285.
    [125] A. Ashkin, J. M. Dziedzic. Optical Levitation of Liquid Drops by RadiationPressure [J] Science,1975,187(4181):1073~1075.
    [126]黄慧琴,赵承良,陆璇辉,空心光束的研究进展[J].激光与红外,2007,37(4):300~303.
    [127] W. Ketterle, K. B.Davis, A Joffe, et al. High densities of cold atoms in a darkspontaneous-force optical trap [J]. Phys. Rev. Lett.,1993,70(15):2253~2256.
    [128] J. Yin, Y. Zhu, W. Wang. Optical potential for atom guidance in a dark hollowlaser beam [J]. J. Opt. Soc. Am. B.,1998,15(1):25~33.
    [129] J. Yin, Y. Zhu, W. Jhe, et al. Atom guiding and cooling in a dark hollow laserbeam [J]. Phys. Rev. A,1998,58(1):509~513.
    [130] Y. Xia, J. Yin. Generation of a focused hollow beam by a2-phase plate and itsapplication in atom or molecule optics [J]. J. Opt. Soc. Am. B,2005,3(22):529~536.
    [131] J. Yin, Y. Zhu. Dark-hollow-beam gravito-optical atom trap above an apex ofa hollow optical fiber [J]. Opt. Commun.,1998,152(4-6):421~428.
    [132] J. Yin, Y. Zhu. Doughtnut-beam-induced Sisyphus cooling in atomic guidingand collimation [J]. J. Opt. Soc. Am. B,1998,15(8):2235~2239.
    [133] J. Yin, Y. Zhu, and Y. Wang. Evanescent light-wave atomic funnel: A tandemhollow-fiber, hollow-beam approach [J]. Phys. Rev. A,1998,57(3):1957~1966.
    [134] K. L. Baker, D. Homoelle, E. Utternback, et al. Interferometric adaptive opticstested for laser pointing, wave-front control and phasing [J]. Opt. Express,2009,17(19):16696~16709.
    [135]贾伟,丁磊,李明中等. NIF注入激光系统最新进展[J].激光与光电子学进展,2005,42(4):2~6.
    [136]杨向通,范薇.利用双折射透镜组实现激光束空间整形[J].光学学报,2006,26(11):1698~1704.
    [137]丁磊,赵润昌,李明中等.反射式液晶光阀用于激光束空间整形可行性研究[J].强激光与离子束,2005,17(6):849~852.
    [138] H. T. Eyyuboglu, C. Arpali, Y. K. Baykal. Flat topped beams and theircharacteristics in turbulent media [J]. Opt. Express,2006,14(10):4196~4207.
    [139] X. Du, D. Zhao. Propagation of the decentered elliptical Gaussian beams inapertured and nonsymmetrical optical systems [J]. J. Opt. Soc. Am. A,2006,23(3):625~631.
    [140] Y. Li. Light beams with flat-topped profiles [J]. Opt. Lett.,2002,27(12):1007~1009.
    [141] Y. Li. New expressions for flat-topped light beams [J]. Opt. Commun.,2002,206(4-6):225~234.
    [142] Z. Mei, D. Zhao. Approximate method for the generalized M2factor ofrotationally symmetric hard-edged diffracted flattened Gaussian beams [J]. Appl.Opt.,2005,44(8):1381~1386.
    [143] J. Chen. Propagation and transformation of flat-topped multi-Gaussian beamsin a general nonsymmetrical apertured double-lens system [J]. J. Opt. Soc. Am. A,2007,24(1):84~92.
    [144] H. Mao, D. Zhao. Different models for a hard-aperture function andcorresponding approximate analytical propagation equation of a Gaussian beamthrough an apertured optical system [J]. J. Opt. Soc. Am. A,2005,22(4):647~653.
    [145] P. Wu, B. Lü, T. Chen. Fractional Fourier transform of flat-toppedmulti-Gaussian beams based on the Wigner distribution function [J]. Chin. Phys.,2005,14(6):1130~1135.
    [146] B. Lü, S. Luo. General propagation equation of flatted Gaussian beams [J]. J.Opt. Soc. Am. A,2000,17(11):2001~2004.
    [147] B. Lü, S. Luo. Approximate propagation equations of flattened Gaussianbeams passing through a paraxial ABCD system with hard-edge aperture [J]. J.Mod. Opt.,2001,48:2619~2718.
    [148] M. Ibnchaikh, A. Belafhal. Closed-term propagation expression of flattenedGaussian beams through an apertured ABCD optical system [J]. Opt. Commun.,2001,193(1-6):73~79.
    [149] Y. Cai, Q. Lin. Light beams with elliptical flat-topped profiles [J]. J. Opt. A,Pure Appl. Opt.,2004,6(4):390~395.
    [150] Y. Cai, Q. Lin. A partially coherent elliptical flattened Gaussian beam and itspropagation [J]. J. Opt. A, Pure Appl. Opt.,2004,6(12):1061~1066.
    [151] Y. Gao, B. Zhu, D. Liu, et al. Propagation of flat-topped multi-Gaussianbeams through a double-lens system with apertures [J]. Opt. Express,2009,17(15):12753~12766.
    [152] S. Zhang, G. Neil, M. Shinn. Single-element laser beam shaper for uniformflat-top profiles [J]. Opt. Express,2003,11(16):1942~1948.
    [153] S. Zhang. A simple bi-convex refractive laser beam shaper [J]. J. Opt. A: PureAppl. Opt.,2007,9(10):945~950.
    [154] C. Liu, S. Zhang. Study of singular radius and surface boundary constraints inrefractive beam shaper design [J]. Opt. Express,2008,16(9):6675~6682.
    [155] D. L. Shealy, J. A. Hoffnagle. Laser beam shaping profiles and propagation [J].Appl. Opt.,2006,45(21):5118~513.
    [156] J. A. Hoffnagle, C. M. Jefferson. Design and performance of a refractiveoptical system that converts a Gaussian to a flattop beam [J]. Appl. Opt.,2000,39(30):5488~5499.
    [157] C. Hnatovsky, V. G. Shvedov, W. Krolikowski, et al. Materials processing witha tightly focused femtosecond laser vortex pulse [J]. Opt. Lett.,2010,35(20):3417~3419.
    [158] D. Yoshitomi, J. Nees, N. Miyamoto, et al. Phase-matchedenhancements ofhigh-harmonic soft X-rays by adaptive wave-front control with a genetic algorithm[J]. Appl. Phys., B,2004,78:275~280.
    [159] D.Walter, T. Pfeifer, C. Winterfeldt. Adaptive spatial control of fiber modesand their excitation for high-harmonic generation [J]. Opt. Express,2006,14(8):3433~3442.
    [160] V. V. Strelkov, E. Mével, E. Constant, Generation of isolated attosecondpulses by spatial shaping of a femtosecond laser beam [J]. New J. Phys.2008,10(8):083040~19.
    [161]张志刚.飞秒激光技术[M].北京:科学出版社,2011.
    [162] W. S. Warren, H. Rabitz, M. Dahleh. Coherent control of chemicalreactions:The dream is alive [J]. Science,1993,259:1581~1589.
    [163] S. Shi, H. Rabitz. Optimal control of selective vibrational excitation ofharmonic molecules: Analytic solution and restricted forms for the optimal fields[J]. J. Chem. Phys.,1990,92:2927~2937.
    [164] B. Amstrup, R. J. Carlson, A. Matro, et al. The use of pulse shaping to controlthe photodissociation of a diatomic molecule: preventing the best from being theenemy of the good [J]. J. Phys. Chem.,1991,95:8019~8027.
    [165] S. Chelkowski, A. Bandrauk, P. B. Corkum. Efficient molecular dissociation bychirped ultrashort infrared laser pulse [J]. Phys. Rev. Lett.,1990,65(19):2355~2358.
    [166] P. Gross, D. Neuhanser, H. Rabitz. Optimal control of curve crossing systems[J]. J. Chem. Phys.,1992,96(4):2034~2045.
    [167] A. Bandrauk, J. M. Gauthier. Infrared multiphoton dissociation of LiF by acoupled equation method [J]. J. Chem. Phys.,1989,93:7552~7554.
    [168] D. Goswami, W. S. Warren. Control of chemical dynamics by restrictingintramolecular viberational redistribution [J]. J. Chem. Phys.,1993,99:4509~4517.
    [169] J. S. Melinger, D. Mcmorrow, C. Hillegas, et al. Selective excitation ofvibrational overtones in an anharmonic potential [J]. Phys. Rev. A,1995,51:3366~3369.
    [170] B. Kohler, V. Yakolev, J. Che, et al. Quantum control of wave packet evolutionwith tailored femtosecond pulses [J]. Phys. Rev. Lett.,1995,74(17):3360~3363.
    [171] D. W. Schumacher, J. H. Hoogenrad, D. Pinkos, et al. Programmable cesiumRydberg wave packets [J]. Phys. Rev. A,52(6):4719~4726.
    [172] A. M. Weiner, D. E. Leaired, G. P. Weiderrecht, et al. Femtosecond pulsesequences used for optical control of molecular motion [J]. Science,1990,247:1317~1319.
    [173] A. Monmayrant, S. Weber, B. Chatel. A newcomer’s guide to ultrashort pulseshaping and characterization [J]. J. Phys. B: At. Mol. Opt. Phys.,2010,43:103001~103034.
    [174] M. E. Fermann, V. Silva, D. A. Smith, et al. Shaping of ultrashort optical pulsesby using an integrated acousto-optic tunable filter [J]. Opt. Lett.,1993,18(18):1505~1507.
    [175] F. Verluise, V. Laude, Z. Cheng, et al. Amplitude and phase control of ultrashortpulses by use of an acousto-optic programmable dispersive filter: pulsecompression and shaping [J]. Opt. Lett.,2000,25(8):575~577.
    [176] R. Szipocs and A. Kohazi-Kis. Theory and design of chirped dielectric lasermirrors [J]. Appl. Phys. B: Lasers Opt.,1997,65(2):115~135.
    [177] G. Steinmeyer. A review of ultrafast optics and optoelectronics [J]. J. Opt. A:Pure Appl. Optics,2003,5: R1~R15.
    [178] I. Will, G. Klemz. Generation of flat-top picosecond pulses by coherent pulsestacking in a multicrystal birefringent filter [J]. Optical Express,2008,16(9):14922~14937.
    [179] C. W. Siders, J. L. W. Siders, A. J. Taylor. Efficient high-energy pulse-traingeneration using a2n-pulse Michelson interferometer [J]. Opt. Appl.,1998,37(22):5302~5305.
    [180] H. Shen, M. H. Khan, Y. Xuan, et al. Arrayed microring filter with tunableresonance wavelength, extinction ratio and bandwidth [C]. CLEO, Baltimore, MD,2009.
    [181] M. S. Nawrocka, T. Liu, X. Wang, et al. Tunable silicon microring resonatorwith wide free spectral range [J]. Appl. Phys. Lett.,2006,89(7):071110~3.
    [182] D. J. Kane, R. Trebino. Characterization of arbitrary femtosecond pulses usingfrequency—resolved optical gating [J]. IEEE, Quantum Electronics,1993,29:571~579.
    [183] C. laconis, I. A. Walmsley. Spectral phase interferometry for directelectric—field reconstruction of ultra—short optical pulses [J]. Opt. Lett.,1998,23:792~794.
    [184] J. C. M. Diels, J. J. Fontaine, I. C. McMichael, et al. Control and measurementof ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy [J].Appl. Opt.,1985,24(9):1270~1282.
    [185]王兆华,魏志义,张杰.飞秒脉冲测量技术[J].实验技术,2002,31(10):259~266.
    [186] D. J. Kane, R. Trebino. Single-shot measurement of the intensity and phase ofan arbitrary ultrashort pulse by using frequency-resolved optical gating [J]. Opt.Lett.,1993,18(10):823~825.
    [187] D. J. Kane, R. Trebino. Characterization of arbitrary femtosecond pulses usingfrequency resolved optical gating [J]. IEEE, Journal of Quantum Electronics,1993,29(2):571~579.
    [188] R. Trebino, D. J. Kane. Using phase retrieval to measure the intensity andphase of ultrashort pulses: frequency-resolved optical gating [J]. J. Opt. Soc. Am. A,1993,10(5):1101~1111.
    [189] Y. Mairesse, F. Quere. Frequency-resolved optical gating for completereconstruction of attosecond bursts [J]. Phys. Rev. A,2005,71(1):011401.
    [190] G. Sansone, E. Benedetti, C. Vozzi, et al. Attosecond metrology in thefew-optical-cycle regime [J]. New J. Phys.,2008,10(2):025006.
    [191] R. Trebino,D. J. Kane.Using retrieval to measure the intensity and phase ofultrashort pulses: frequency—resolved optical gating [J]. J Opt. Soc. Am A,1993,10(5):1101~1111.
    [192]龙井华,高继华,巨养锋等.用SHG-FROG方法测量超短光脉冲的振幅和相位[J].光子学报,2002,31(10):1292-1296.
    [193] R. Trebino, K. W. DeLong, D. N. Fittinghoff, et al. Measuring ultrashort laserpulses in the time-frequency domain using frequency-resolved optical gating [J].Rev. Sci. Instrum.,1997,68(9):3277~3295.
    [194] D. L. Shealya, J. A. Hoffnagle. Beam shaping profiles and propagation [J].Proc. SPIE,2005,5876:99~109.
    [195] C. Iaconis, I. A. Walmsley. Spectral phase interferometry for directelectric-field reconstruction of ultrashort optical pulses [J]. Opt. Lett.,1998,23(10):792~791.
    [196] T. M. Shuman, M. E. Anderson, J. Bromage. Real-time SPIDER: ultrashortpulse characterization at20Hz [J]. Opt. Express,1999,5(6):134~143.
    [197] W. Kornelis, J. Biegert, J. W. G. Tisch. Single-shot kilohertz characterization ofultrashort pulses by spectral phase interferometry for direct electric-fieldreconstruction [J]. Opt. Lett.,2003,28(4):281~283.
    [198]吴祖斌,王颖,曹士英等.用改进的光谱相位相干直接电场重构法装置测量飞秒激光脉冲的相位[J].中国激光,2006,33(1):21~25.
    [199] C. laconis, I. A. Walmsley. Self-referencing spectral interferometry formeasuring ultrashort optical pulses [J]. IEEE J.Quantum Electron.,1999,35(4):501~509.
    [200]柴路,高峰,王清月等.飞秒脉冲测量技术的新进展[J].光电子·激光,2002,13(6):647~651.
    [201] G. Steinmeyer, D. H. Sutter, L. Gallmann, et a1. Frontier in ultrashort pulsegeneration: pushing the limits in linear and nonlinear optics [J]. Science,1999,286(5444):1507~1512.
    [202] T. M. Shuman,M. E. Anderson, J. Bromage, et a1. Real-time SPIDER:ultrashort pulse characterization at20Hz [J]. Optics Express,1999,5(6):134~143.
    [203] L. Gallmann, D. H. Sutter, N. M atuschek, et al. Techniques for thecharacterization of sub-10fs optical pulses:a comparison [J]. App1. Phy. B,2000,70(suppl):67~75.
    [204] D. Meshulach, D. Yelin, Y. Silberberg. Adaptive real-time femtosecond pulseshaping [J]. J. Opt. Soc. Am. B,1998,15(5):1615~1619.
    [205] F. M. Dickey, L. S. Weichman, R. N. Shagam. Laser beam shaping techniques
    [C]. Proc. of SPIE,2000,4065:338~348.
    [206] C. C. Aleksoff, K. K. Ellis, B. D. Neagle. Holographic conversion of aGaussian beam to a near-field uniform beam [J]. Opt. Eng.,1991,30(5):537~543.
    [207]吕乃光.傅里叶光学(第二版)[M].北京:机械工业出版社,2006.
    [208]林勇,胡家升.激光光束的整形技术[J].激光杂志,2008,29(6):1~4.
    [209]林勇.用于激光光束整形的衍射光学元件设计[D].大连:大连理工大学,2009.
    [210] M. Miler, I. Aubrecht, J. Pala. Holographic Gaussian to flat-top beam shaping[J]. Opt. Eng.,2003,42(11):3114~3122.
    [211] B. R. Frieden. Lossless conversion of a plane laser wave to a plane wave ofuniform irradiance [J]. Appl. Opt.,1965,4(11):1400~1403.
    [212] J. L. Kreuzer. Coherent light optical system yielding an output beam of desiredintensity distribution at a desired equiphase surface [P]. U.S. patent,3476463,1969.
    [213] K. Kamon. Fly-eye lens device and lighting system including same [P]. U.S.Patent,5251067,1993.
    [214] S. L. Zhou, X. J. Jiang, Z. Q. Lin, et al. Improving irradiation uniformity bylens array with beam spectral dispersion [J]. Chin. Opt. Lett.,2007,5(S1): s5-s8.
    [215] X. M. Deng, X. C. Liang, Z. Z. Chen, et al. Uniform illumination of largetargets using a lens array [J]. Appl. Opt.,1986,25(3):377~381.
    [216] C. Kopp, L. Ravel, P. Meyrueis. Efficient beamshaper homogenizer designcombining diffractive optical elements, microlens array and random phase plate [J].J. Opt. A: Pure Appl. Opt.,1999,1(3):398~403.
    [217] S. bollanti, P. di lazzaro1, D. murra, et al. Edge steepness and plateauuniformity of a nearly flat-top-shaped laser beam [J]. Appl. Phys. B,2004,78(2):195~198.
    [218] F. Wippermann, Uwe-D. Zeitner, P. Dannberg, et al. Beam homogenizers basedon chirped microlens arrays [J]. Opt. Express,2007,15(10):6218~6231.
    [219] K. Nemoto K, T. Fujii, N. Goto, et al. Transformation of a laser beam intensityprofile by a deformable mirror [J]. Opt. Lett.,1996,21(3):168~170.
    [220]曾志革,凌宁,姜文汉. He-Ne激光束的焦斑形态控制[J].强激光与粒子束,1998,10(4):581~586.
    [221]曾志革,凌宁,姜文汉.用能动光学技术控制激光焦线形态的方法研究与仿真计算[J].强激光与粒子束,2000,12(1):39~42.
    [222] O. Boyko, T. A. Planchon, P. Merce`re et al. Adaptive shaping of a focusedintense laser beam into a doughnut mode [J]. Opt. Commun.,2005,246(1-3):131~140.
    [223] H. Ma, P. Zhou, X. Wang, et al. Near-diffraction-limited annular flattop beamshaping with dual phase only liquid crystal spatial light modulators [J]. Opt.Express,2010,18(8):8251~8260.
    [224] H. Ma, H. Zhao, P. Zhou, et al. Adaptive conversion of multimode beam tonear-diffraction-limited flattop beam based on dual phase-only liquid-crystal spatiallight modulators [J]. Opt. Express,2010,18(26):27723~27730.
    [225] H. Ma, Z. Liu, H. Wu, et al. Adaptive correction of vortex laser beam in aclosed-loop system with phase only liquid crystal spatial light modulator [J]. Opt.Commun.,2012,285:859~863.
    [226] G. Li, S. Zhang, L. Isenhower, et al. Crossed vortex bottle beam trap forsingle-atom qubits [J]. Opt. Lett.,2012,37(5):851~853.
    [227] S. A. Eastwood, A. I. Bishop, T. C. Petersen, et al. Phase measurement using anoptical vortex lattice produced with a three-beam interferometer [J]. Opt. Express,2012,20(13):13947~13957.
    [228] G. Foo, D. M. Palacios, G. A. Swartzlander et al. Optical vortex coronagraph [J].Opt. Lett.,2005,30(24):3308~3310.
    [229] D. G. Grier. A revolution in optical manipulation [J]. Nature,2003,424:810~816.
    [230] G. Gbur, T. D. Visser, E. Wolf. Anomalous behavior of spectra near phasesingularities of focused waves [J]. Phys. Rev. Lett.,2002,88(1):013901.
    [231] M. A. Bandres, J. C. Gutierrez-Vega. Ince–Gaussian beams [J]. Opt. Lett.,2004,29(2):144~146.
    [232] D. N. Neshev, A. Dreischuh, G. Maleshkov, et al. Supercontinuum generationwith optical vortices [J]. Opt. Express,2010,18(17):18368~18373.
    [233] O. Khasanov, T. Smirnova, O. Fedotova, et al. High-intensive femtosecondsingular pulses in Kerr dielectrics [J]. Appl. Opt.,2012,51(10):198~206.
    [234] A. Vincotte, L. Berge. Femtosecond optical vortices in air [J]. Phys. Rev. Lett.,2005,95(19):193901.
    [235] F. A. Bovino, M. Braccini, M. Giardina, et al. Orbital angular momentum innoncollinear second-harmonic generation by off-axis vortex beams [J]. J. Opt. Soc.Am. B,2011,28(11):2806~2811.
    [236] M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, et al.Helical-wavefront laser beam produced with a spiral phase plate [J]. Opt. Commun.,1994,112(5):321~327.
    [237] Z. S. Sacks, D. Rozas, G. A. Swartzlander. Holographic formation ofoptical-vortex filaments [J]. J. Opt. Soc. Am. B,1998,15(8):2226~2234.
    [238] K. Bezuhanov, A. Dreischuh, G. G. Paulus, et al. Spatial phase dislocations infemtosecond laser pulses [J]. J. Opt. Soc. Am. B,2006,21(6):26~35.
    [239] K. Bezuhanov, A. Dreischuh, G. G. Paulus, et al. Vortices in femtosecond laserfields [J]. Opt. Lett.,2004,29(2):1942~1944.
    [240] D. Ganic, X. Gan, M. Gu, et al. Generation of doughnut laser beams by use of aliquid–crystal cell with a conversation efficiency near100%[J]. Opt. Lett.,2002,27(15):1351~1353.
    [241] V. G. Shvedov, C. Hnatovsky, W. Krolikowski, et al. Efficient beam converterfor the generation of high-power femtosecond vortices [J]. Opt. Lett.,2010,35(15):2660~2662.
    [242] B. Chen, J. Pu1, O. Korotkova. Focusing of a femtosecond vortex light pulsethrough a high numerical aperture objective [J]. Opt. Express,2010,18(10):10822~10827.
    [243] Z. Bor, Z. L. Horvath. Distortion of femtosecond pulses in lenses wave opticaldescription [J]. Opt. Commun.,1992,94(4):249~258.
    [244] J. Vickers, M. Burch, R. Vyas, et al. Phase and interference properties of opticalvortex beams [J]. J. Opt. Soc. Am. A,2008,25(3):823~827.
    [245] S. Kirkpatrick, C. D. Gelatt. Optimization by simulated annealing [J]. Science,1983,220:671~680.
    [246]杨慧珍,陈波,李新阳等.自适应光学系统随机并行梯度下降控制算法实验研究[J].光学学报,2008,28(2):205~210.
    [247] P. Adam, J. L. Shapire. Analysis of genetical gorithms using statisticalmechanics [J]. Phys. Rev. Lett.,1994,72(9):1305~1309.
    [248]刘力,邓学功,李永平.应用于光束均匀化整形的全局优化算法[J].计算物理,1998,15(6):692~696.
    [249] E. L. Attshuler, T. J. Williams, E. R. Ratner. Method for constrain edglobaloptimization [J]. Phys. Rev. Lett.,1994,72(17):2671~2674.
    [250] J. A. Davis, D. E. McNamara, D. M. Cottrell, et al. Two-dimensionalpolarization encoding with a phase-only liquid-crystal spatial light modulator [J].Appl. Opt.,2000,39(10):1549~1554.
    [251] K. S. Youngworth, T. G. Brown. Focusing of high numerical aperturecylindrical vector beams [J]. Opt. Express,2000,7(2):77~87.
    [252] W. D. Kimura, G. H. Kim, R. D. Romea, et al. Laser acceleration of relativisticelectrons using the inverse cherenkov effect. Phys. Rev. Lett.,1995,74(4):546~549.
    [253] L. Novotny, M. R. Beversluis, K. S. Youngworth,et al. Longitudinal fieldmodes probed by single molecules [J]. Phys. Rev. Lett.,2001,86(23):5251~5254.
    [254] D. P. Biss, T. G. Brown. Cylindrical vector beam focusing through a dielectricinterface [J]. Opt. Express,2001,9(10):490~497.
    [255] S. Quabis, R. Dorn, M. Eberler, et al. The focus of light-theoretical calculationand experimental tomographic reconstruction [J]. Appl. Phys. B,2001,72(1):109~113.
    [256] Q. Zhan, J. R. Leger. Focus shaping using cylindrical vector beams [J]. Opt.Express,2002,10(7):324~331.
    [257] R. Dorn, S. Quabis, G. Leuchs. Sharper focus for a radially polarized lightbeam. Phys. Rev. Lett.,2003,91:233901~233904.
    [258] T. Kuga, Y. Torii, N. Shiokawa, et al. Novel optical trap of atoms with adoughnut beam [J]. Phys. Rev. Lett.,1997,78(25):4713~4716.
    [259] C. Varin, M. Piche. Acceleration of ultra-relativistic electrons usinghigh-intensity TM01laser beams [J]. Appl. Phys. B,2002,74: S83~S88.
    [260] Q. Zhan. Trapping metallic rayleigh particles with radial polarization [J]. Opt.Express,2004,12(15):3377~3382.
    [261] V. Niziev, A. Nesterov. Influence of beam polarization on laser cuttingefficiency [J]. J. Phys. D,1999,32(13):1455~1461.
    [262] M. Meier, V. Romano, T. Feurer. Material processing with pulsed radially andazimuthally polarized laser radiation [J]. Appl. Phys. A,2007,86(3):329~334.
    [263] W. Kim, N. Park. Investigation of near-field imaging characteristics of radialpolarization for application to optical data storage [J]. Opt. Rev.,2007,14(4):236~242.
    [264] E. Descrovi, L. Vaccaro, L. Aeschimann, et al. Optical properties ofmicrofabricated fully-metal coated near-field probes in collection mode [J]. J. Opt.Soc. Am. A,2005,22(7):1432~1441.
    [265] S. Quabis, R. Dorn, M. Eberler, et al. Focusing light into a thighter spot [J]. Opt.Commun.,2000,179:1~7.
    [266] S. C. Tidwell, D. H. Ford, W. D. Kimura. Generating radially polarized beamsinterferometrically [J]. Appl. Opt.,1990,29(15):2234~2239.
    [267] N.Passilly, R.D. S. Denis, K. A. Ameur, et al. Simple interferometric techniquefor generation of a radially polarized light beam [J]. J. Opt. Soc. Am. A,2005,22(5):984~991.
    [268] C. F. Phelan, J. F. Donegan, J. G. Lunney. Generation of a radially polarizedlight beam using internal conical diffraction [J]. Opt. Express,2011,19(22):21793~21802.
    [269] G. Machavariani, Y. Lumer, I. Moshe, et al. Efficient extracavity generation ofradially and azimuthally polarized beams [J]. Opt. Lett.,2007,32(11):1468~1470.
    [270] W. J. Lai, B. C. Lim, P. B. Phua, et al. Generation of radially polarized beamwith a segmented spiral varying retarder [J]. Opt. Express,2008,16(20):15694~15699.
    [271] M. R. Beversluis, L. Novotny, S. J. Stranick. Programmable vectorpoint-spread function engineering [J]. Opt. Express,2006,14(7):2650~2656.
    [272] M. Bashkansky, D. Park, F. K. Fatemi. Azimuthally and radially polarized lightwith a nematic SLM [J]. Opt. Express,2010,18(1):212~217.
    [273] R. Slavik, Park, J. Azana. Long-period fiber-grating-based filter for generationof picosecond and subpicosecond transform-limited flat-top pulses [J]. IEEEPonton. Technol. Lett.,2008,20(10):806~808.
    [274] H. Rabitz, R. Vivieriedle, M. Motzkus, et al. Chemistry-whither the future ofcontrolling quantum phenomena?[J]. Science,2000,288(5467):824~828.
    [275] Z. Jiang, D. E. Leaird, A. M. Weiner. Line-by-line pulse shaping control foroptical arbitrary waveform generation [J]. Opt. Express,2005,13(25):10431~10439.
    [276] J. C. Vaughan, T. Feurer, K. A. Nelson. Automated two-dimensionalfemtosecond pulse shaping [J]. J. Opt. Soc. Am. B,2002,19(10):2489-2495.
    [277]邹华,朱卫华,王国栋.4f结构间距失调对达曼类滤波器输出脉冲特性的影响[J].强激光与粒子束,2007,19(7):1121~1124.
    [278]陈瑜婷,张诗按,孙真荣等.4f结构脉冲整形器失调对光场空间分布的影响[J].量子光子学报,2004,10(2):73~76.
    [279] A. M. Weiner. Femtosecond pulse shaping using spatial light modulators [J].Rev. Sci. Instrum.,2000,71(5):1929~1960.
    [280] V. R. Supradeepa1, C. Huang, D. E. Leaird, et al. Femtosecond pulse shapingin two dimensions: Towards higher complexity optical waveforms [J]. Opt. Express,2008,16(16):11878~11887.
    [281] T. Hornung, J. C. Vaughan, T. Feurer, et al. Degenerate four-wave mixingspectroscopy based on two-dimensional femtosecond pulse shaping [J]. Opt. Lett.,2004,29(17):2052~2054.
    [282] R. P. Scott, W. Cong, V. J. Hernandez, et al. An Eight-User Time-SlottedSPECTS O-CDMA Testbed: Demonstration and Simulations [J]. J. LightwaveTechnol.,2005,23(10):3232.
    [283] E. Frumker, Y. Silberberg. Femtosecond pulse shaping using a two-dimensionalliquid-crystal spatial light modulator [J]. Opt. Lett.,2007,32(11):1384~1386.
    [284] A. V. Smith. Group-velocity-matched three-wave mixing in birefringentcrystals [J]. Opt. Lett.,2001,26(10):719~721.
    [285] O. E. Martinez. Achromatic phase matching for second harmonic generationoffemtosecond pulses [J]. IEEE J. Quantum Electron.,1989,25(12):2464~2468.
    [286] B. A. Richman, S. E. Bisson, R. Trebino, et al. Achromatic phase matching fortunable second-harmonic generation by use of a prism [J]. Opt. Lett.,1997,22(16):1223~1225.
    [287] B. A. Richman, S. E. Bisson, R. Trebino, et al. Efficient broadbandsecond-harmonic generation by dispersive achromatic nonlinear conversion usingprisms [J]. Opt. Lett.,1998,23:497~499.
    [288] G. Szabo, Z. Bor. Broadband frequency doubler for femtosecond pulses [J].Appl. Phys. B,1990,50(1):51~54.
    [289] M. B. Danailov, I. P. Christov. Time-space shaping of light pulses by Fourieroptical processing [J]. J. Mod. Opt.,1989,36(6):725~731.
    [290] M. M. Wefers, K. A. Nelson. Space-time profiles of shaped ultrafast opticalwaveforms [J]. IEEE J. Quantum Electron.,1996,32(1):161~172.
    [291] J. Paye, A. Migus. Space–time Wigner functions and their application to theanalysis of a pulse shaper [J]. J. Opt. Soc. Am. B,1995,12(8):1480~1490.
    [292] B. J. Sussman, R. Lausten, A. Stolow. Focusing of light following a4f pulseshaper: Considerations for quantum control [J]. Phys. Rev. A,2008,77(4):043416-11.
    [293] T. Tanabe, H. Tanabe, Y. Teramura, et al. Spatiotemporal measurements basedon spatial spectral interferometry for ultrashort optical pulses shaped by a Fourierpulse shaper [J]. J. Opt. Soc. Am. B,2002,19(11):2795~2802.
    [294] T. Tanabe, F. Kannari, F. Korte, et al. Influence of laser pulse shaper on afocused beam profile [J]. Appl. Opt.,2005,44(6):1092~1098.
    [295] F. Frei, A. Galler, T. Feurer. Space-time coupling in femtosecond pulse shapingand its effects on coherent control [J]. J. Chem. Phys.2009,130(13):034302~14.
    [296] S. Akturk, X. Gu, P. Bowlan, et al. Spatio-temporal couplings in ultrashort laserpulses [J]. J. Opt.,2010,12(9):093001~20.
    [297] O. E. Martinez. Grating and prism compressors in the case of finite beam size[J]. J. Opt. Soc. Am. B,1986,3(7):929~934.
    [298] D. Strickland, G. Mourou. Compression of amplified chirped optical pulses [J].Opt. Commun.,1985,56(3):219~221.
    [299] M. Pessot, P. Maine, G. Mourou.1000times expansion/compression of opticalpulses for chirped pulse amplification [J]. Opt. Commun.,1987,62(6):419~421.
    [300] Z. Bor. Distortion of femtosecond laser pulses in lenses and lens systems [J]. J.Mod. Opt.,1988,35(12):1907–1918.
    [301] Z. Bor, Z. L. Horvath. Distortion of femtosecond pulses in lenses. Wave-opticaldescription [J]. Opt. Commun.,1992,94(4):249~258.
    [302] Z. L. Horvath, Z. Bor. Focusing of femtosecond pulses having gaussian spatialdistribution [J]. Opt. Commun.,1993,100(1-4):6~12.
    [303] M. Kempe, U. Stamm, B. Wilhelmi, et al. Spatial and temporal transformationof femtosecond laser pulses by lenses and lens systems [J]. J. Opt. Soc. Am. B,1992,9(7):1158~1165.
    [304] M. Kempe, W. Rudolph. Femtosecond pulses in the focal region of lenses [J].Phys. Rev. A,1993,48(6):4721~4729.
    [305] A. Federico, O. Martinez. Distortion of femtosecond pulses due to chromaticaberration in lenses [J]. Opt. Commun.,1992,91(1-2):104~110.
    [306] Z. L. Horvath, Z. Bor. Diffraction of short pulses with boundary diffractionwave theory [J]. Phys. Rev. E,2001,63(2):1~11.
    [307] Z. L. Horvath, J. Klebniczki, G. Kurdi, et al. Experimental investigation of theboundary wave pulse [J]. Opt. Commun.,2004,239(4-6):243~250.
    [308] L. A. Lugiato. Spatio-temporal structures [J]. Part I Phys. Rep.,1992,219(3-6):293~310.
    [309] J. Hebling. Derivation of the pulse front tilt caused by angular dispersion [J].Opt. Quantum Electron.,1996,28(12):1759~1763.
    [310] S. Akturk, X. Gu, P. Gabolde, et al. The general theory of first-orderspatio-temporal distortions of Gaussian pulses and beams [J]. Opt. Express,2005,13(21):8642~8661.
    [311] M. Born, E. Wolf. Principles of Optics [M]. Cambridge: Cambridge UniversityPress,1999.
    [312] X. Gu, S. Akturk, R. Trebino. Spatial chirp in ultrafast optics [J]. Opt.Commun.,2004,242(4-8):599~604.
    [313]王仕璠,朱自强.现代光学原理[M].成都:电子科技大学出版社,2006.
    [314] J. C. Vaughan, T. Feurer, K. W. Stone, et al. Analysis of replica pulses infemtosecond pulse shaping with pixelated devices [J]. Opt. Express,2006,14(3):1314~1328.
    [315] R. Trebino, K. W. DeLong, D. N. Fittinghoff, et al. Measuring ultrashort laserpulses in the time-frequency domain using frequency-resolved optical gating [J].Rev. Sci. Instrum.,1997,68(9):3277~3295.
    [316] P. O'Shea, M. Kimmel, X. Gu, et al. Highly simplified device for ultra-shortmeasurement [J]. Opt. Lett.,2001,26(12):932~934.
    [317] S. Akturk, M. Kimmel, P. O'Shea, et al. Measuring spatial chirp in ultrashortpulses using single-shot Frequency-Resolved Optical Gating [J]. Opt. Express,2003,11(1):68~78.
    [318] S. Akturk, M. Kimmel, P. O'Shea, et al. Measuring pulse-front tilt in ultrashortpulses using GRENOUILLE [J]. Opt. Express,2003,11(5):491~501.
    [319] C. Dorrer, E. M. Kosik, I. A. Walmsley. Spatio-temporal characterization of theelectric field of ultrashort pulses using two-dimensional shearing interferometry [J].Applied Physics B,2002,74(Suppl.): S209~S217.
    [320] C. Dorrer, I. A. Walmsley. Simple linear technique for the measurement ofspace-time coupling in ultrashort optical pulses [J]. Opt. Lett.,2002,27(21):1947~1949.
    [321] K. Varju, A. P. Kovacs, G. Kurdi, et al. High-precision measurement of angulardispersion in a CPA laser [J]. Appl. Phys. B,2002,74(Suppl.): S259~S263.
    [322] P. Gabolde, D. Lee, S. Akturk, et al. Describing first-order spatio-temporaldistortions in ultrashort pulses using normalized parameters [J]. Opt. Express,2007,15(1):242~251.
    [323] A. G. Kostenbauder. Ray-Pulse Matrices: A Rational Treatment for DispersiveOptical Systems [J]. IEEE J. Quantum Electron.,1990,26(6):1148~1157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700