用户名: 密码: 验证码:
光学自由曲面三维椭圆振动切削:刀具路径生成及对加工表面质量影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有复杂几何特征的自由曲面光学元件在工程光学、生物医学、半导体器件等重要的工业领域有着日益增加的应用需求,这些自由曲面光学元件或制造这些自由曲面光学元件的模具通常所采用的材料主要是一些切削加工性较差的难加工材料。金刚石切削被认为是一种较为高效的获得复杂几何面形的加工方法,然而由于这些难加工材料的较差切削加工性,使得金刚石切削方法主要限于加工有色金属等工件材料。为了扩展金刚石可切削的工件材料范围、提高加工表面质量,论文结合国家自然科学基金项目,针对光学自由曲面三维椭圆振动切削,着重研究刀具路径生成及对加工表面质量的影响。论文主要包括如下五个部分的研究内容。
     1、介绍了现行的三维椭圆振动驱动方程Ⅰ,但此方程的幅值和初始相位参数与三维椭圆振动轨迹的形状及其在空间中的位置没有直接的依赖关系,需要通过较为复杂的推导以获得它们之间的依赖关系,因此无法研究三维椭圆振动轨迹的形状及其在空间中的位置对加工表面质量的影响。所以本文对三维椭圆振动驱动方程进行了重表示,定义了一种能够表征形状和空间位置的三维椭圆驱动方程Ⅱ,此三维椭圆驱动方程包含七个参数,其中四个参数可以表征三维椭圆的形状,另外三个参数可以表征三维椭圆的空间位置。由于三维椭圆振动驱动方程Ⅰ和三维椭圆振动驱动方程Ⅱ中包含的椭圆参数的个数与意义均不相同,所以本文利用谐波分析方法实现了两类椭圆驱动方程中的参数匹配,为研究三维椭圆形状和空间位置对表面质量的影响奠定了理论基础。
     2、三维椭圆驱动方程Ⅱ的参数变化对三维椭圆驱动方程Ⅰ的参数是有影响的,所以本文研究了两类三维椭圆驱动方程参数之间影响关系。揭示了三维椭圆驱动方程Ⅱ的平面椭圆振幅比、平面椭圆相位差以及平面椭圆绕y、 z、 x轴旋转角度对三维椭圆驱动方程Ⅰ的y向与x向之间的振幅比ba和相位差y x、z向与y向之间的振幅比cb和相位差z y以及z向与x向之间的振幅比ca和相位差z x的影响规律。
     3、研究了三维椭圆振动切削光学自由曲面的刀具路径生成算法,综合考虑了刀具几何参数、切削工艺参数、三维椭圆振动、刀具圆弧半径补偿及刀触点与刀位点之间的位置关系等因素,并阐述了如何应用此刀具路径进行切削实验,以复曲面和正弦曲面为例验证了刀具路径算法的有效性。
     4、针对正弦波面和复曲面,采用所提出的刀具路径算法,进行了加工表面残留形貌的分析。通过加工表面残高形貌的影响分析,揭示了三维椭圆振动参数(振动幅值、相位差等)和切削工艺参数(刀具进给量、刀尖圆弧半径等)对加工表面粗糙度的影响规律,对切削过程中如何选取椭圆振动参数、切削工艺参数进行了定量的分析。
     5、以三维椭圆的形状参数和空间位置参数作为优化变量,以表面粗糙度值最小作为目标函数,建立了三维椭圆振动参数优化的数学模型,应用遗传算法对三维椭圆振动参数进行了优化,为选择最优的三维椭圆振动参数进行切削实验提供了理论基础。
     本文的研究为应用三维椭圆振动切削光学自由曲面提供理论基础。
There is an increasing use of optical parts on difficult-to-cut materials in a range ofapplication areas, including optical engineering, biomedical and semiconductor products etc.However, most of these optical materials and the mold materials of processing these opticalparts are difficult-to-cut materials, which have poor machinability. Diamond turning hasbeen reviewed as a high efficient method to machine the surfaces with complex shapes,while the diamond turning method is used to fabricate the nonferrous materials for the poormachinability of the difficult-to-cut materials. In order to expand the range of the diamondmachineable materials and improve the surface quality, this paper focuses on the tool pathgeneration and the effects of the parameters to the surface quality of three-dimensionalellipse vibration cutting optical freeform surfaces under the support of National NaturalScience Foundation of China. The followings works are researched in this paper.
     Firstly, the three-dimensional (3D) ellipse driven equation (EDE) Ⅰ is introduced,which can’t represent the shape and space location of the3D ellipse. So the3D EDE Ⅰcan’t be used to research the influence of the ellipse parameters to the surface quality. The3D EDE Ⅱ is defined which can represent the shape and space location of the3D ellipsein this paper. It includes4shape parameters and3space location parameters. Because theparameters are different between these two ellipse driven equations, harmonic analysis isused to match the ellipse parameters of these two ellipse driven equations. This research canprovide the theory basis for revealing the laws of the ellipse parameters to the surfacequality.
     Secondly, the changes of the3D EDE Ⅱ parameters will affect the parameters of the3D EDE Ⅰ. So the relationships of the parameters are researched between these two typesof equations. The laws of the changes of3D EDE Ⅱ parameters to the the parameters of3D EDE Ⅰ have been revealed.
     Thirdly, the algorithm of the tool path generation is proposed, considering the tool geometry parameters, the cutting process parameters,3D ellipse vibration, tool arc radiuscompensation and the position between the cutter-contact point and the cutter-location point.At the same time, how to use the tool path to machine the optical freeform surfaces has beendescribed clearly. The examples of the toric surface and sinusoidal surface are used toverify the tool path.
     Fourthly, the machined surface residual height topography is analysed according to thetoric surface and sinusoidal surface. The laws of the ellipse parameters, cutting parametersand tool parameters to the surface quality have been revealed. This research can telldesigners how to choose the ellipse parameters, cutting parameters and tool parameters tomachine optical parts.
     Fifthly, genetic algorithm is proposed to solve the optimum ellipse parameters whichare the shape and position parameters. This research can provide theory basis for thedesigners to use optimum elliptical vibration parameters to machine optical freeformsurfaces of difficult-to-machine materials in the cutting experiments.
     This research can provide theory basis for three-dimensional ellipse vibration cuttingoptical freeform surfaces.
引文
[1] Brinksmeier E, Grimme D, Preuss W. Generation of freeform surfaces by diamondmachining, Proc. of the17th Annual ASPE Meeting[C].2002.
    [2]赵奕,周明,董申,等.脆性材料塑性域超精密加工的研究现状[J].高技术通讯,1999,4:59-62.
    [3]张元良,刘欣.黑色金属的金刚石超声振动切削[J].工具技术,1998,32(1):18-19.
    [4] Casstevens J M. Diamond turning of steel in carbon-saturated atmospheres[J]. PrecisionEngineering,1983,5(1):9-15.
    [5] Casey M, Wilks J. Some experiments to study turning tools using the scanning electronmicroscope[J]. International Journal of Machine Tool Design and Research,1976,16(1):13-22.
    [6] Brecher C, Lange S, Merz M, et al. NURBS based ultra-precision free-formmachining[J]. CIRP Annals-Manufacturing Technology,2006,55(1):547-550.
    [7]舒朝濂.现代光学制造技术[M].国防工业出版社,2008.
    [8] Bingham R G, Walker D D, Kim D H, et al. Novel automated process for asphericsurfaces, International Symposium on Optical Science and Technology[C]. InternationalSociety for Optics and Photonics,2000.
    [9] Ruckman J L, Fess E M, Dennis V G. Recent advances in aspheric and conformalgrinding at the center for optics manufacturing, SPIE's International Symposium on OpticalScience, Engineering, and Instrumentation[C]. International Society for Optics andPhotonics,1999.
    [10] Tohme Y. Trends in ultra-precision machining of freeform optical surfaces, Opticalfabrication and testing[C]. Optical Society of America,2008.
    [11] Buescher N P. Live Axis Turning[D]. Master's Thesis. North Carolina State University,2005.
    [12] Brinksmeier E, Riemer O, Osmer J. Tool path generation for ultra-precision machiningof free-form surfaces[J]. Production Engineering,2008,2(3):241-246.
    [13]赵清亮,郭兵,杨辉,等.金刚石飞切加工微结构表面的工艺参数优化[J].光学精密工程,2009,17(10):2512-2519.
    [14] Evans C, Bryan J B. Cryogenic diamond turning of stainless steel[J]. CIRPAnnals-Manufacturing Technology,1991,40(1):571-575.
    [15] Wang Z Y, Rajurkar K P, Fan J. Turning Ti-6Al-4V alloy with cryogenic cooling[J].Transactions-North American Manufacturing Research Institution of SME,1996:3-8.
    [16] Wang Z Y, Rajurkar K P, Murugappan M. Cryogenic PCBN turning of ceramic(Si3N4)[J]. Wear,1996,195(1-2):1-6.
    [17] Childs T, Maekawa K, Maulik P. Effects of coolant on temperature distribution in metalmachining[J]. Materials science and technology,1988,4(11):1006-1019.
    [18] Wang Z Y, Rajurkar K P. Cryogenic machining of hard-to-cut materials[J]. Wear,2000,239(2):168-175.
    [19] Ding Y, Hong S Y. A study of the cutting temperatures in machining processes cooledby liquid nitrogen[J]. Transactions-North American Manufacturing Research Institution ofSME,1995:115-120.
    [20] Paul E, Evans C J, Mangamelli A, et al. Chemical aspects of tool wear in single pointdiamond turning[J]. Precision Engineering,1996,18(1):4-19.
    [21] Brinksmeier E, Gl be R, Osmer J. Ultra-precision diamond cutting of steel molds[J].CIRP Annals-Manufacturing Technology,2006,55(1):551-554.
    [22] K nig W, Cronj ger L, Spur G, et al. Machining of new materials[J]. CIRPAnnals-Manufacturing Technology,1990,39(2):673-681.
    [23] Krabacher E J, Merchant M E. Basic factors in hot machining of metals[J]. Trans.ASME,1951,73(5):761-776.
    [24] Kttagawa T, Maekawa K. Plasma hot machining for new engineering materials[J].Wear,1990,139(2):251-267.
    [25] Komanduri R, Flom D G, Lee M. Highlights of the DARPA advanced machiningresearch program[J]. Journal of Engineering for Industry,1985,107(4):325-335.
    [26] Shamoto E, Suzuki N, Tsuchiya E, et al. Development of3DOF ultrasonic vibrationtool for elliptical vibration cutting of sculptured surfaces[J]. CIRP Annals-ManufacturingTechnology,2005,54(1):321-324.
    [27]刘强.光学自由曲面快速刀具伺服加工若干问题的研究[D].吉林大学,2012.
    [28]张海洋.金刚石车削光学自由曲面刀具路径规划的研究[D].吉林大学,2011.
    [29] Yankoff G K. Method and apparatus for machining:1986.
    [30] Maity K P, Swain P K. An experimental investigation of hot-machining to predict toollife[J]. journal of materials processing technology,2008,198(1):344-349.
    [31]益子正己,隈部淳一郎.超声波振动切削的研究(第1报)[J].精密机械,1958,24(275):56-60.
    [32] Cerniway M A. Elliptical diamond milling: kinematics, force and tool wear[D].Master's Thesis. North Carolina State University,2002.
    [33] Skelton R C. Turning with an oscillating tool[J]. International Journal of Machine ToolDesign and Research,1968,8(4):239-259.
    [34] Weber H, Herberger J, Pilz R. Turning of machinable glass ceramics with anultrasonically vibrated tool[J]. CIRP Annals-Manufacturing Technology,1984,33(1):85-87.
    [35] Nategh M J, Razavi H, Abdullah A. Analytical modeling and experimentalinvestigation of ultrasonic-vibration assisted oblique turning, part I: Kinematics analysis[J].International Journal of Mechanical Sciences,2012,63(1):1-11.
    [36] Razavi H, Nategh M J, Abdullah A. Analytical modeling and experimentalinvestigation of ultrasonic-vibration assisted oblique turning, part II: Dynamics analysis[J].International Journal of Mechanical Sciences,2012,63(1):12-25.
    [37]赵继,王立江,李华.超声振动切削系统中阶梯式刀杆的变幅功能[J].自然科学进展,1993,3(1):42-47.
    [38]于劲,王立江.分离型超声波振动切削动力学模型及其稳定性分析[J].振动工程学报,1991,4(2):29-34.
    [39]王立江,王克勤.超声波振动车削的试验与理论研究[J].工具技术,1981,1:22-27.
    [40]赵继,王立江.超声振动切削系统中弯曲振动刀杆的谐振模式[J].声学学报,1992,17(1):22-29.
    [41]王立江.超声波振动切削不分离区的三种状态[J].中国科学A辑,1992,3:012.
    [42]王立江,于劲.超声波振动切削对颤振的抑制作用[J].科学通报,1989,34(2):153-155.
    [43]王立江,赵继,谭庆昌.超声波振动车削的运动学及其加工表面质量[J].兵工学报,1987,3:24-31.
    [44]董桂英,张元良.超声振动切削刀具设计[J].机械设计与制造,2012,2(2):242-244.
    [45]张元良,周志民,夏志辉.振动参数对金刚石切削不锈钢零件影响规律研究[J].大连理工大学学报,2005,45(6):819-822.
    [46]张元良,周志民,黄春英,等.天然金刚石振动与气体保护切削黑色金属技术研究[J].机械科学与技术,2004,23(3):339-340.
    [47]黄劭楠,周明.聚晶金刚石刀具振动切削不锈钢技术研究[J].工具技术,2008,42(5):6-8.
    [48] Babitsky V I, Mitrofanov A V, Silberschmidt V V. Ultrasonically assisted turning ofaviation materials: simulations and experimental study[J]. Ultrasonics,2004,42(1):81-86.
    [49] Negishi N. Elliptical vibration assisted machining with single crystal diamondTools[D]. Master's Thesis. North Carolina State University,2003.
    [50] Ma C X, Shamoto E, Moriwaki T. Study on the thrust cutting force in ultrasonicelliptical vibration cutting, Materials Science Forum[C]. Trans Tech Publ,2004.
    [51] Klocke F, Rübenach O. Ultrasonic assisted diamond turning of steel and glass,Proceedings of the International Seminar on Precision Engineering and Micro Technology,Aachen, Germany[C].2000.
    [52] Moriwaki T, Shamoto E. Ultraprecision diamond turning of stainless steel by applyingultrasonic vibration[J]. CIRP Annals-Manufacturing Technology,1991,40(1):559-562.
    [53] Gan J, Wang X, Zhou M, et al. Ultraprecision diamond turning of glass with ultrasonicvibration[J]. The International Journal of Advanced Manufacturing Technology,2003,21(12):952-955.
    [54] Ma C X, Shamoto E, Moriwaki T, et al. Suppression of burrs in turning with ultrasonicelliptical vibration cutting[J]. International Journal of Machine Tools and Manufacture,2005,45(11):1295-1300.
    [55] Shamoto E, Suzuki N, Hino R. Analysis of3D elliptical vibration cutting with thinshear plane model[J]. CIRP Annals-Manufacturing Technology,2008,57(1):57-60.
    [56] Shamoto E, Suzuki N, Hino R. Simulation of elliptical vibration cutting process withthin shear plane model, Proc ASPE[C].2007.
    [57] Suzuki N, Yokoi H, Shamoto E. Micro/nano sculpturing of hardened steel bycontrolling vibration amplitude in elliptical vibration cutting[J]. Precision Engineering,2011,35(1):44-50.
    [58] Ma C, Shamoto E, Moriwaki T, et al. Suppression of burrs in turning with ultrasonicelliptical vibration cutting[J]. International Journal of Machine Tools and Manufacture,2005,45(11):1295-1300.
    [59] Ma C X, Ma J, Shamoto E, et al. Analysis of regenerative chatter suppression withadding the ultrasonic elliptical vibration on the cutting tool[J]. Precision Engineering,2011,35(2):329-338.
    [60] Wang Y L, Suzuki N, Shamoto E, et al. Investigation of tool wear suppression inultraprecision diamond machining of die steel[J]. Precision Engineering,2011,35(4):677-685.
    [61] Ma C X, Shamoto E, Moriwaki T, et al. Study of machining accuracy in ultrasonicelliptical vibration cutting[J]. International Journal of Machine Tools and Manufacture,2004,44(12):1305-1310.
    [62] Shamoto E, Suzuki N, Hino R, et al. A new method to machine sculptured surfaces byapplying ultrasonic elliptical vibration cutting, Micro-NanoMechatronics and HumanScience,2005IEEE International Symposium on[C]. IEEE,2005.
    [63] Suzuki N, Nakamura A, Shamoto E, et al. Ultraprecision micromachining of hardenedsteel by applying ultrasonic elliptical vibration cutting, Micromechatronics and HumanScience2003(MHS2003)[C]. IEEE,2003.
    [64] Shamoto E, Moriwaki T. Ultaprecision diamond cutting of hardened steel by applyingelliptical vibration cutting[J]. CIRP Annals-Manufacturing Technology,1999,48(1):441-444.
    [65] Shamoto E, Suzuki N. Development of elliptical vibration cutting technology and itsapplication to ultraprecision/micro machining of hard/brittle materials[J]. AdvancedMaterials Research,2009,69:133-137.
    [66] Shamoto E, Suzuki N, Moriwaki T, et al. Development of ultrasonic elliptical vibrationcontroller for elliptical vibration cutting[J]. CIRP annals-manufacturing technology,2002,51(1):327-330.
    [67] Shamoto E, Ma C, Moriwaki T. Elliptical Vibration Cutting (3rd Report)-Applicationto Three-dimensional Cutting and Investigation of Practical Effects[J]. Jounal-Japan Societyfor Precision Engineering,1999,65:586-591.
    [68] Shamoto E, Song Y C, Sassa K, et al. Proposal of oblique type of elliptical vibrationcutting and its basic performance[J]. Jounal-Japan Society for Precision Engineering,2003,69(7):970-975.
    [69] Shamoto E. Ultraprecision micromachining of hardened die steel by applying ellipticalvibration cutting[J]. JSME News,2005,4:2-4.
    [70] Shamoto E, Ienaga K, Moriwaki T. Ductile mode machining of sintered carbide byapplying ultrasonic elliptical vibration cutting[J]. Journal of the Japan Society for AbrasiveTechnology,2003,47(2):83.
    [71] Shamoto E, Song Y, Yoshida H, et al. Development of elliptical vibration cuttingmachine by utilizing mechanical vibrator[J]. Jounal-Japan Society for Precision Engineering,2003,69(4):542-548.
    [72] Shamoto E, Moriwaki T. Fundamental Study on Elliptical Vibration Cutting, Proc. ofthe8th Annual Meeting[C].1993.
    [73] Shamoto E, Suzuki N, Moriwaki T, et al. Elliptical Vibration Cutting (4thReport)-Development of Tool Vibration Control System and Its Application toUltraprecision Cutting[J]. Jounal-Japan Society for Precision Engineering,2001,67(11):1871-1877.
    [74] Suzuki N, Hino R, Shamoto E. Development of3DOF ultrasonic elliptical vibrationsystem for elliptical vibration cutting, Proceedings of ASPE Spring Topical Meeting onVibration Assisted Machining Technology[C].2007.
    [75] Shamoto E, Suzuki N, Tsuchiya E, et al. Sculptured Surface Machining of Die Steel byApplying Elliptical Vibration Cutting (1st Report)-Proposal of a New Machining Methodand Development of4-Axis Controlled Precision Machine Tool[J]. Journal of the JapanSociety for Precision Engineering (CD-ROM),2006,72(9):1139-1145.
    [76] Suzuki N, Yan Z M, Hino R, et al. Ultraprecision Micro-Machining of Single CrystalGermanium by Applying Elliptical Vibratlon Cutting, Micro-NanoMechatronics and HumanScience[C]. IEEE,2006.
    [77] Zhang X Q, Kumar A S, Mustafizur R. A study on surface generation along nominalcutting direction in elliptical vibration cutting[J]. Advanced Materials Research,2011,314:1851-1856.
    [78] Suzuki N, Hino R, Masuda S, et al. Ultraprecision Cutting of Sintered TungstenCarbide by Applying Elliptical Vibration Cutting-Study on Ductile Cutting Mechanics[J].Journal of the Japan Society for Precision Engineering (CD-ROM),2006,72(4):539-545.
    [79] Ma C X, Shamoto E, Moriwaki T. A study on the improvement of machining systemstability by applying ultrasonic elliptical vibration cutting[J]. Acta Armamentarii,2004,25(6):752-756.
    [80] Shamoto E, Yoshiyuki M, Moriwaki T. Elliptical Vibration Cutting (1st Report).Cutting Principle and Basic Performance[J]. International Journal of the Japan Society forPrecision Engineering,1996,62(8):1127-1131.
    [81] Shamoto E, Morimoto Y, Moriwaki T. Elliptical Vibration Cutting (2nd Report)-Studyon Effects of Vibration Conditions[J]. International Journal of the Japan Society forPrecision Engineering,1999,65(3):411-417.
    [82] Kim H S, Kim S I, Lee K I, et al. Development of a programmable vibration cuttingtool for diamond turning of hardened mold steels[J]. The International Journal of AdvancedManufacturing Technology,2009,40:26-40.
    [83] Brinksmeier E, Gl be R. Elliptical vibration cutting of steel with diamond tools, Proc.of the14th Annual ASPE Meeting, Monterey, California, USA[C].1999.
    [84] Dow T A, Cerniway M, Sohn A, et al. Vibration assisted diamond turning usingelliptical tool motion, Proc. of the2001ASPE Annual Meeting[C].2001.
    [85] Brocato B C. Micromachining Using EVAM (Elliptical Vibration AssistedMachining)[D]. North Carolina State University,2005.
    [86] Guo P, Ehmann K F. An analysis of the surface generation mechanics of the ellipticalvibration texturing process[J]. International Journal of Machine Tools and Manufacture,2013,64:85-95.
    [87] Guo P, Ehmann K F. Development of a tertiary motion generator for elliptical vibrationtexturing[J]. Precision Engineering,2013,37:364-371.
    [88] Kim G D, Loh B G. Characteristics of elliptical vibration cutting in micro-V groovingwith variations in the elliptical cutting locus and excitation frequency[J]. Journal ofMicromechanics and Microengineering,2008,18(2):025002.
    [89] Kim G D, Loh B G. An ultrasonic elliptical vibration cutting device for micro V-groovemachining: Kinematical analysis and micro V-groove machining characteristics[J]. Journalof Materials Processing Technology,2007,190:181-188.
    [90] Kim G D, Loh B G. Machining of micro-channels and pyramid patterns using ellipticalvibration cutting[J]. The International Journal of Advanced Manufacturing Technology,2010,49:961-968.
    [91] Kim G D, Loh B G, Hwang K. Micro Ultrasonic Elliptical Vibration Cutting (II)Ultrasonic Micro V-grooving Using Elliptical Vibration Cutting[J]. Journal-Korean Societyof Precision Engineering,2005,22(12):198.
    [92] Kim G D, Loh B G. Direct machining of micro patterns on nickel alloy and mold steelby vibration assisted cutting[J]. International journal of precision engineering andmanufacturing,2011,12(4):583-588.
    [93] Nath C, Rahman M, Neo K S. A study on the effect of tool nose radius in ultrasonicelliptical vibration cutting of tungsten carbide[J]. Journal of Materials ProcessingTechnology,2009,209(17):5830-5836.
    [94] Nath C, Rahman M, Neo K S. Machinability study of tungsten carbide using PCD toolsunder ultrasonic elliptical vibration cutting[J]. International Journal of Machine Tools andManufacture,2009,49(14):1089-1095.
    [95] Nath C, Rahman M, Neo K S. Enhancing the performance of polycrystalline diamondtools for machining WC by ultrasonic elliptical vibration cutting method[J]. Journal ofVacuum Science&Technology B: Microelectronics and Nanometer Structures,2009,27(3):1241-1246.
    [96] Nath C, Rahman M, Neo K S. A study on ultrasonic elliptical vibration cutting oftungsten carbide[J]. Journal of Materials Processing Technology,2009,209(9):4459-4464.
    [97] Nath C. A study on ultrasonic vibration cutting of difficult-to-cut materials[D]. PhDDissertation. National University of Singapore,2009.
    [98] Nath C, Rahman M. Effect of machining parameters in ultrasonic vibration cutting[J].International Journal of Machine Tools and Manufacture,2008,48(9):965-974.
    [99] Zhang X Q, Kumar A S, Rahman M, et al. An analytical force model for orthogonalelliptical vibration cutting technique[J]. Journal of Manufacturing Processes,2012,14(3):378-387.
    [100]季远,李勋,张德远.超声椭圆振动精密切削[J].航空制造技术,2005,4:92-95.
    [101]李华,张德远.新型单激励椭圆超声振动切削系统的研究[J].中国机械工程,2005,16(22):1983-1990.
    [102]李勋,张德远.超声椭圆振动切削表面形貌形成机理的研究[J].中国机械工程,2009,20(7):807-811.
    [103]李勋,季远,张德远.基于有限元分析的椭圆振动切削换能器[J].北京航空航天大学学报,2005,3(2):153-156.
    [104]张德远.振动切削的精密微细切削特性[J].北京航空航天大学学报,1993,(4):61-68.
    [105]李勋,张德远.不分离型超声椭圆振动切削试验研究[J].机械工程学报,2010,46(19):177-182.
    [106] Li X, Zhang D. Ultrasonic elliptical vibration transducer driven by single actuator andits application in precision cutting[J]. Journal of materials processing technology,2006,180(1):91-95.
    [107] Zhang W Q, Li X, Jiang X G, et al. Research on the thin-walled workpiece boring byapplying ultrasonic elliptical vibration cutting, International Technology and InnovationConference2006(ITIC2006)[C].2006.
    [108]马春翔,胡德金.超声波椭圆振动切削技术[J].机械工程学报,2003,39(12):67-70.
    [109]马春翔.超声波椭圆振动切削提高加工系统稳定性的研究[J].兵工学报,2004,25(6):752-756.
    [110]马春翔,王艳,社本英二,等.超声波振动金刚石刀具对脆性材料临界切削深度的影响[J].机械工程学报,2005,41(6)
    [111]马春翔,潘铭跃,王海丽.弱刚度零件的超声波椭圆振动切削加工[J].南京航空航天大学学报,2005,31(1):121-123.
    [112]康仁科,马付建,董志刚,等.难加工材料超声辅助切削加工技术[J].航空制造技术,2012,16:44-49.
    [113]冯冬菊,赵福令,徐占国,等.超声波加工工具对复合变幅杆谐振性能影响[J].大连理工大学学报,2004,44(5):685-688.
    [114]董颖怀,张晓锋,房丰洲,等.硬脆材料超声辅助复合加工机床及其工艺研究[J].华中科技大学学报(自然科学版),2012,40:113-116.
    [115] Ahn J H, Lim H S, Son S M. Improvement of micro-machining accuracy by2-dimensional vibration cutting, Proc ASPE[C].1999.
    [116] Zhang X Q, Kumar A S, Rahman M, et al. Experimental study on ultrasonic ellipticalvibration cutting of hardened steel using PCD tools[J]. Journal of Materials ProcessingTechnology,2011,211(11):1701-1709.
    [117] Song Y C, Nezu K, Park C H, et al. Tool wear control in single-crystal diamondcutting of steel by using the ultra-intermittent cutting method[J]. International Journal ofMachine Tools and Manufacture,2009,49(3):339-343.
    [118] Peng Y, Liang Z, Wu Y, et al. Effect of vibration on surface and tool wear in ultrasonicvibration-assisted scratching of brittle materials[J]. The International Journal of AdvancedManufacturing Technology,2012,59(1-4):67-72.
    [119] Ammouri A H, Hamade R F. BUEVA: a bi-directional ultrasonic elliptical vibrationactuator for micromachining[J]. The International Journal of Advanced ManufacturingTechnology,2012,58(9-12):991-1001.
    [120] Song Y C, Park C H, Moriwaki T. Mirror finishing of Co–Cr–Mo alloy using ellipticalvibration cutting[J]. Precision Engineering,2010,34(4):784-789.
    [121] Fujisaki K, Yokota H, Nakatsuchi H, et al. Observation of three-dimensional internalstructure of steel materials by means of serial sectioning with ultrasonic elliptical vibrationcutting[J]. Journal of Microscopy,2010,237(1):89-95.
    [122] Fan X R, Miller M H. Force Modeling in Vibration Assisted Cutting, Proc. of the2001ASPE Annual Meeting[C].2007.
    [123] Wang H, To S, Chan C Y, et al. A theoretical and experimental investigation of thetool-tip vibration and its influence upon surface generation in single-point diamondturning[J]. International Journal of Machine Tools and Manufacture,2010,50(3):241-252.
    [124] Overcash J L, Cuttino J F. Tunable Ultrasonic Vibration Assisted Diamond Turning,Proceedings ASPE Annual Meeting[C].2006.
    [125] Overcash J L, Cuttino J F. Tunable ultrasonic vibration-assisted diamond turning ofsteel, American Society for Precision Engineering2004Annual Meeting[C].2004.
    [126] Jin M, Murakawa M. Development of a practical ultrasonic vibration cutting toolsystem[J]. Journal of materials processing technology,2001,113(1):342-347.
    [127] Lee J S, Lee D W, Jung Y H, et al. A study on micro-grooving characteristics ofplanar lightwave circuit and glass using ultrasonic vibration cutting[J]. Journal of materialsprocessing technology,2002,130:396-400.
    [128] Karube S, Hoshino W, Soutome T, et al. The non-linear phenomena in vibrationcutting system: The establishment of dynamic model[J]. International journal of non-linearmechanics,2002,37(3):541-564.
    [129] Amini S, Soleimanimehr H, Nategh M J, et al. FEM analysis ofultrasonic-vibration-assisted turning and the vibratory tool[J]. Journal of materialsprocessing technology,2008,201(1):43-47.
    [130] Ostasevicius V, Gaidys R, Rimkeviciene J, et al. An approach based on tool modecontrol for surface roughness reduction in high-frequency vibration cutting[J]. Journal ofSound and Vibration,2010,329(23):4866-4879.
    [131] Liu K, Li X P, Rahman M, et al. Study of ductile mode cutting in grooving of tungstencarbide with and without ultrasonic vibration assistance[J]. The International Journal ofAdvanced Manufacturing Technology,2004,24(5-6):389-394.
    [132] Liu K, Li X P, Rahman M. Characteristics of ultrasonic vibration-assisted ductilemode cutting of tungsten carbide[J]. The International Journal of Advanced ManufacturingTechnology,2008,35(7-8):833-841.
    [133] Xiao M, Wang Q M, Sato K, et al. The effect of tool geometry on regenerativeinstability in ultrasonic vibration cutting[J]. International Journal of Machine Tools andManufacture,2006,46(5):492-499.
    [134] Moriwaki T. Development of2DOF ultrasonic vibration cutting device forultraprecision elliptical vibration cutting[J]. Key Engineering Materials,2010,447:164-168.
    [135] Harada K, Sasahara H. Effect of dynamic response and displacement/stress amplitudeon ultrasonic vibration cutting[J]. Journal of Materials Processing Technology,2009,209(9):4490-4495.
    [136] Liang Y, Li D, Bai Q, et al. Molecular Dynamics Simulation of Elliptical VibrationCutting, Nano/Micro Engineered and Molecular Systems2006(NEMS'06)[C]. IEEE,2006.
    [137] Mitrofanov A V, Babitsky V I, Silberschmidt V V. Finite element analysis ofultrasonically assisted turning of Inconel718[J]. Journal of materials processing technology,2004,153:233-239.
    [138] Overcash J, Cuttino J. Development of a tunable ultrasonic vibration-assisteddiamond turning instrument, ASPE Proceedings2003Annual Meeting[C].2003.
    [139] Shimizu J, Zhou L, Eda H. Molecular dynamics simulation of vibration-assistedcutting: influences of vibration, acceleration and velocity[J]. International Journal ofNanomanufacturing,2006,1(1):105-116.
    [140] Nategh M J, Amini S, Soleimanimehr H, et al. A Machining Force Model Developedfor Ultrasonic Vibration-assisted Turning, through Statistical Analysis of InfluentialParameters[J]. Mech.&Aerospace Eng. J.,2009,
    [141] Brinksmeier E, Schmütz J. Dynamic forces and energy dissipation in vibrationdiamond cutting of copper, Proceedings of the15th ASPE Annual Meeting[C].2000.
    [142] Shamoto E, Moriwaki T. Study on elliptical vibration cutting[J]. CIRPAnnals-Manufacturing Technology,1994,43(1):35-38.
    [143] Brehl D E, Dow T A. Review of vibration-assisted machining[J]. PrecisionEngineering,2008,32(3):153-172.
    [144] Zhou X Q, Zhao S X, Zhu Z W, et al. A Study on Elliptical Vibration Cutting byFinite Element Analysis[J]. Advanced Materials Research,2011,230:1029-1033.
    [145]王刚.一种三维椭圆振动金刚石切削装置的研制[D].吉林大学,2012.
    [146]刘培会.一种三维椭圆振动切削装置的研制[D].吉林大学,2013.
    [147]赵绍昕.椭圆振动切削机理的研究[D].吉林大学,2012.
    [148] Jin Y, Lin J Q, Gao X P, et al. Development of Movement Crosstalk Removal Methodfor3D Elliptical Vibration Cutting[J]. Applied Mechanics and Materials,2013,331:254-259.
    [149] Lin J Q, Liu J H, Gao X P, et al. Modeling and Analysis of Machining Force inElliptical Vibration Cutting[J]. Advanced Materials Research,2013,690:2464-2469.
    [150] Ludwick S J. A rotary fast tool servo for diamond turning of asymmetric optics[D].Massachusetts Institute of Technology,1999.
    [151] Gao W, Araki T, Kiyono S, et al. Precision nano-fabrication and evaluation of a largearea sinusoidal grid surface for a surface encoder[J]. Precision Engineering,2003,27(3):289-298.
    [152] Rakuff S. Development of a precision long-range fast tool servo system for diamondturning[D]. University of North Carolina at Charlotte,2004.
    [153] Panusittikorn W. Error compensation using inverse actuator dynamics[D]. NorthCarolina State University,2004.
    [154]吴丹,孙京海,王先逵.非轴对称车削成型方法探讨[J].清华大学学报(自然科学版),2006,46(11):1832-1835.
    [155]李荣彬,张志辉,杜雪,等.自由曲面光学元件的设计,加工及面形测量的集成制造技术[J].机械工程学报,2010,46(11):137-148.
    [156] Lee W B, Gao D, Cheung C F, et al. An NC tool path translator for virtual machiningof precision optical products[J]. Journal of Materials Processing Technology,2003,140(1):211-216.
    [157] Yu D P, Gan S W, Wong Y S, et al. An optimization approach for tool path generationof micro-structured surfaces in FTS-based diamond turning, The3rd internationalconference of Asian Society for precision engineering and nanotechnology[C].2009.
    [158]罗丹.自由光学曲面等切屑载荷车削方法的研究[D].吉林大学,2012.
    [159]窦建利.光学自由曲面车削等残高刀具路径规划的研究[D].吉林大学,2012.
    [160] Tohme Y, Murray R, ALLAIRE E. Principles and applications of the slow slideservo[J]. Moore Nanotechnology Systems White Paper,2005,
    [161] Yi A Y, Li L. Design and fabrication of a microlens array by use of a slow toolservo[J]. Optics letters,2005,30(13):1707-1709.
    [162]章万国,蔡力钢,高亮,等.基于三维的定量化CAPP及其关键技术研究[J].中国机械工程,2003,14(22):1926-1929.
    [163] Jones J R. A Review of Crucial Developments in the Design of High SpeedMachinery for Manufacturing Applications Over the Last Half Century, Proc.11thConf.Mechanism and Machine Science[C].2004.
    [164] Hitomi K. Optimization of multistage machining system: analysis of optimalmachining conditions for the flow-type machining system[J]. Journal of Engineering forIndustry,1971,93:498-506.
    [165] Field M, Zlatin N, Williams R, et al. Computerized Determination and Analysis ofCost and Production Rates for Machining Operations. Part1—Turning[J]. Journal ofEngineering for Industry,1968,90:455-466.
    [166] Petropoulos P G. Optimal selection of machining rate variables by geometricprogramming[J]. The International Journal of Production Research,1973,11(4):305-314.
    [167] Ermer D S. Optimization of the constrained machining economics problem bygeometric programming[J]. Journal of Engineering for Industry,1971,93:1067-1072.
    [168] Ermer D S, Kromodihardjo S. Optimization of multipass turning with constraints[J]. J.Eng. Ind.(Trans. ASME),1981,103(4):462-468.
    [169] Okushima K, Hitomi K. A Study of Economical Machining: An Analysis of theMaximum-Profit Cutting Speed[J]. The International Journal of Production Research,1964,3(1):73-78.
    [170] Iwata K, Murotsu Y, Iwatsubo T, et al. A probabilistic approach to the determinationof the optimum cutting conditions[J]. Journal of Engineering for Industry,1972,94:1099-1107.
    [171] Iwata K, Murotsu Y, Oba F. Optimization of cutting conditions for multi-passoperations considering probabilistic nature in machining processes[J]. Journal ofEngineering for Industry,1977,99:210-217.
    [172] Duffuaa S O, Shuaib A N, Alam M. Evaluation of optimization methods formachining economics models[J]. Computers&operations research,1993,20(2):227-237.
    [173]徐德安.运用正交试验法优化切削参数[J].机械工人:冷加工,2000,9:13-14.
    [174]姜彬,郑敏利,李振加.数控车削的切削用量多目标优化[J].哈尔滨理工大学学报,2001,2:43-46.
    [175]沈浩,谢黎明,韩莹.数控车削中切削用量的多目标优化[J].兰州理工大学学报,2005,31(5):47-49.
    [176] Shin Y C, Joo Y S. Optimization of machining conditions with practical constraints[J].The International Journal of Production Research,1992,30(12):2907-2919.
    [177] Gupta R, Batra J, Lal G. Determination of optimal subdivision of depth of cut inmultipass turning with constraints[J]. International Journal of Production Research,1995,33(9):2555-2565.
    [178] Vijayakumar K, Prabhaharan G, Asokan P, et al. Optimization of multi-pass turningoperations using ant colony system[J]. International Journal of Machine Tools andManufacture,2003,43(15):1633-1639.
    [179] Chen M C, Tsai D M. A simulated annealing approach for optimization of multi-passturning operations[J]. International Journal of Production Research,1996,34(10):2803-2825.
    [180] Chen M C, Su C T. Optimization of machining conditions for turning cylindricalstocks into continuous finished profiles[J]. International journal of production research,1998,36(8):2115-2130.
    [181] Amiolemhen P, Ibhadode A. Application of genetic algorithms—determination of theoptimal machining parameters in the conversion of a cylindrical bar stock into a continuousfinished profile[J]. International Journal of Machine Tools and Manufacture,2004,44(12):1403-1412.
    [182] Asokan P, Saravanan R, Vijayakumar K. Machining parameters optimisation forturning cylindrical stock into a continuous finished profile using genetic algorithm (GA)and simulated annealing (SA)[J]. The International Journal of Advanced ManufacturingTechnology,2003,21(1):1-9.
    [183] Saravanan R, Asokan P, Sachithanandam M. Comparative analysis of conventionaland non-conventional optimisation techniques for CNC turning process[J]. TheInternational Journal of Advanced Manufacturing Technology,2001,17(7):471-476.
    [184]张双德.基于改进型模拟退火算法的数控加工切削参数优化[J].煤矿机械,2004,4:76-78.
    [185]姚小群,姚锡凡,王卫平,等.基于熵测度的加工过程模糊控制的参数优化[J].机械制造,2004,42(7):19-21.
    [186]彭观,陈统坚.切削加工参数多目标优化的神经网络方法[J].机械工艺师,1999,(2):11-12.
    [187] Cus F, Balic J. Optimization of cutting process by GA approach[J]. Robotics andComputer-Integrated Manufacturing,2003,19(1):113-121.
    [188] Zuperl U, Cus F. Optimization of cutting conditions during cutting by using neuralnetworks[J]. Robotics and Computer-Integrated Manufacturing,2003,19(1):189-199.
    [189] Bhaskara Reddy S V, Shunmugam M S, Narendran T T. Optimal sub-division of thedepth of cut to achieve minimum production cost in multi-pass turning using a geneticalgorithm[J]. Journal of Materials Processing Technology,1998,79(1):101-108.
    [190]吴志远,吴新余.基于遗传算法的退火精确罚函数非线性约束优化方法[J].控制与决策,1998,13(2):136-140.
    [191]刘海江,黄炜.基于粒子群算法的数控加工切削参数优化[J].同济大学学报(自然科学版),2008,6:803-806.
    [192] Suzuki N, Haritani M, Yang J B, et al. Elliptical vibration cutting of tungsten alloymolds for optical glass parts[J]. CIRP Annals-Manufacturing Technology,2007,56(1):127-130.
    [193] Kim G D, Loh B G. Characteristics of chip formation in micro V-grooving usingelliptical vibration cutting[J]. Journal of Micromechanics and Microengineering,2007,17(8):1458.
    [194] Lin J Q, Li Y C, Zhou X Q. Tool path generation for fabricating optical parts ondifficult-to-cut materials by non-resonant3D elliptical vibration cutting[J]. Proceedings ofthe ImechE Part C: Journal of Mechanical Engineering Science,2014,228(7):1208-1222.
    [195]吴道全,万光珉,林树兴.金属切削原理及刀具[M].重庆大学出版社,1994.
    [196] Suresh K, Yang D. Constant scallop-height machining of free-form surfaces[J].Journal of Engineering for Industry,1994,116(2):253-259.
    [197]罗松保.金刚石超精密切削刀具技术概述[J].航空精密制造技术,2007,43(1):1-4.
    [198] Lin J Q, Zhou X Q, Li Y C. Tool path generation for fabricating optical freeformsurfaces by non-resonant3D elliptical vibration cutting[J]. Proceedings of the Institution ofMechanical Engineers, Part C: Journal of Mechanical Engineering Science,2014,228(7):1208-1222.
    [199]蒋向前, Blunt L.三维表面测量的发展[J].工程设计(Konstrukion),2000:98-100.
    [200] Xu T, Zuo W J, Xu T S, et al. An adaptive reanalysis method for genetic algorithmwith application to fast truss optimization[J]. Acta Mechanica Sinica,2010,26(2):225-234.
    [201] Gen M, Cheng R. Genetic algorithm and Engineering Optimization[M].USA:Wiley-Interscience,1999.
    [202] Giri B K, Pettersson F, Saxén H, et al. Genetic Programming Evolved throughBi-Objective Genetic Algorithms Applied to a Blast Furnace[J]. Materials andManufacturing Processes,2013,28:776-782.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700