用户名: 密码: 验证码:
铌基超导隧道结太赫兹直接检测器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从上个世纪八十年代以来,太赫兹科学与技术逐渐突破了源和检测器的瓶颈得以迅速发展,世界各地的科学家都争先在此领域开发这一新的电磁资源。几乎在同一时期,超导隧道结平面制备工艺也取得重大进展,从而促进了超导电子学的发展。本文就铌基超导隧道结太赫兹直接检测器的设计、制备工艺和测试技术三个方面做了一系列相关的研究工作。主要工作和创新点总结如下:
     1.在做超导隧道结太赫兹直接检测器的设计时,采用一种新的分析思路找到所有可能的结配置参数,从而建立起分布式结阵列的设计方法。
     2.根据太赫兹直接检测器的需求特点,结合我们现有的实验设备和条件,在传统工艺的基础上发展出来的一套独特的Nb/Al/AlOx/Al/Nb结制备工艺,包括双层胶剥离工艺、PECVD低温生长SiOz、压控恒压源阳极氧化系统等。
     3.对于如何降低Nb/Al/AlOx/Al/Nb结漏电流的问题,通过考察单位面积和单位周长漏电流来判断漏电流的来源,从而有针对性地采取措施的去解决问题,分别从薄膜应力、薄膜平整度以及改变结构等方面分析实验,来优化势垒层制备工艺,并使用阳极氧化谱实时检测势垒层的质量。
     4.设计了一种低温半导体读出电路与超导太赫兹直接检测器集成化方案来降低测试系统噪声。
     5.在3He杜瓦工作温度0.3K下,使用650GHz源辐照太赫兹直接检测器,其1-V曲线上出现多个准粒子台阶,在1mV处漏电流为100nA, NEP为约10-15W/Hz1/2。
Since the1980s, Terahertz(Thz) science and technology have been breaking through the bottleneck of sources and detectors gradually, and developed rapidly. Scientists all over the world have been striving for this new electromagnetic resource. At the same time, the major breakthrough of fabrication of superconducting tunnel junction(STJ) promoted the development of superconducting electronics. Under this scientific background, we designed, prepared and tested THz direct detectors with Nb-based STJs. In this thesis, we focus on these issues as following:
     ⅰ. We propose a new analytical approach to find possible junction configuration from all parameter space, and then establish a design method of these distributed junction arrays.
     ⅱ. According to the requirement of the THz direct detectors and the existing equipment and conditions in our laboratory, we developed the fabrication process of Nb/AI/AlOx/AI/Nb, including LOR lift-off, SNEP and so on.
     ⅲ. The leakage current per unit area and per unit perimeter indicate the leakage current comes from barrier layer. Therefore, we find the optimized parameters for high quality of Nb STJ by systematically analyzing the thin film stress, surface morphology and modified junction structures.
     ⅳ. In order to reduce the measurement system noise, we propose a concept of integration of the THz direct detector with Nb STJs and the cryogenic readout with GaAs JFETs.
     ⅴ. Finally, the detectors were measured at0.3K, and the quasiparticle steps on its I-V cureve implied the good response to650GHz irradiation. The leakage current at1mV is about100nA, and NEP is about10-15W/Hz1/2
引文
1. Withayachumnankul, W., et al., T-ray sensing and imaging. Proceedings of the Ieee,2007.95(8):p.1528-1558.
    2. Siegel, P.H., Terahertz technology. Ieee Transactions on Microwave Theory and Techniques,2002.50(3):p.910-928.
    3. Rubens, H. and B.W. Snow, II. On the refraction of rays of great wave-length in rock-salt, sylvite, and fluorite. Philosophical Magazine Series 5,1893. 35(212):p.35-45.
    4. Kimm itt, M.F., Restrahlen to T-Rays-100 Years of Terahertz Radiation. Journal of Biological Physics,2003.29(2-3):p.77-85.
    5. Wiltse, J.C., History of Millimeter and Submillimeter Waves. Ieee Transactions on Microwave Theory and Techniques,1984.32(9):p.1118-1127.
    6. Chan, W.L., J. Deibel, and D.M. Mittleman, Imaging with terahertz radiation. Reports on Progress in Physics,2007.70(8):p.1325-1379.
    7. Ferguson, B. and X.C. Zhang, Materials for terahertz science and technology. Nature Materials,2002.1(1):p.26-33.
    8. Tonouchi, M., Cutting-edge terahertz technology. Nature Photonics,2007.1(2): p.97-105.
    9. Ariyoshi, S., et al., Terahertz imaging with a direct detector based on superconducting tunnel junctions. Applied Physics Letters,2006.88(20):p. 203503-3.
    10. Ariyoshi, S., et al., Terahertz detector with transmission-line type superconducting tunnel junctions. Superconductor Science & Technology,2012. 25(7).
    11. Shi, S.C., Development of superconducting mixers for THz astronomy. Science China-Information Sciences,2012.55(1):p.120-126.
    12. Jin, B., et al., Low loss and magnetic field-tunable superconducting terahertz metamaterial. Opt. Express,2010.18(16):p.17504-17509.
    13.许景周and张希成,太赫兹科学技术和应用.2007.北京:北京大学出版 社.
    14. Zhang, C.H., et al., Low-loss terahertz metamaterial from superconducting niobium nitride films. Optics Express,2012.20(1):p.42-47.
    15. Dmitriev, P.N., et al., High quality Nb-based tunnel junctions for high frequency and digital applications. Ieee Transactions on Applied Superconductivity,2003. 13(2):p.107-110.
    16. Shi, S.C., Development of THz Superconducting Mixers and Detectors. Apmc: 2009 Asia Pacific Microwave Conference. Vols 1-5,2009:p.179-182
    17. Otani, C., et al., Terahertz detector using a Nb-based superconducting tunnel junction. Conference Digest of the 2004 Joint 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronics,2004:p.243-244
    18. Otani, C., et al., Detection of direct and indirect terahertz waves using a Nb-based superconducting tunnel junction. IRMMW-THz2005:The Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, Vols 1 and 2,2005:p.263-264.
    19. Otani, C., et al., A broad-band THz radiation detector using a Nb-based superconducting tunnel junction. Ieee Transactions on Applied Superconductivity,2005.15(2):p.591-594.
    20. Ariyoshi, S., et al., THz imaging with a linear array detector based on superconducting tunnel junctions. Conference Digest of the 2006 Joint 31st International Conference on Infrared and Millimeter Waves and 14th International Conference on Terahertz Electronics,2006:p.395-395
    21. Ariyoshi, S., et al., Superconducting detector array for terahertz imaging applications. Japanese Journal of Applied Physics Part 2-Letters & Express Letters,2006.45(37-41):p. L1004-L1006.
    22. Fischer, B.M., M. Walther, and P.U. Jepsen, Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy. Physics in Medicine and Biology,2002.47(21):p.3807-3814.
    23. Grade, J., P. Haydon, and D. van der Weide, Electronic terahertz antennas and probes for spectroscopic detection and diagnostics. Proceedings of the Ieee, 2007.95(8):p.1583-1591.
    24. Zandonella, C., Terahertz imaging:T-ray specs. Nature,2003.424(6950):p. 721-722.
    25. Azad, A.K., Y. Zhao, and W. Zhang, Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array. Applied Physics Letters, 2005.86(14):p.
    26. Hargreaves, S. and R.A. Lewis, Terahertz imaging:materials and methods. Journal of Materials Science-Materials in Electronics,2007.18:p. S299-S303.
    27. Ariyoshi, S., et al., Terahertz Imaging with a Two-dimensional Array Detector Based on Superconducting Tunnel Junctions.2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves, Vols 1 and 2,2008:p. 618-618
    28. Fan, W.H., Broadband terahertz spectroscopy. Chinese Optics Letters,2011. 9(11).
    29.刘盛纲,太赫兹科学技术的新发展.中国基础科学,2006.8(1).
    30. Berry, E., Risk perception and safety issues. Journal of Biological Physics,2003. 29(2-3):p.263-267.
    31. Redo-Sanchez, A. and Z. Xi-Cheng, Terahertz Science and Technology Trends. Selected Topics in Quantum Electronics. IEEE Journal of,2008.14(2):p.260-269.
    32. Naruse, M., et al. Design of SIS imaging array for terahertz astronomy. in Infrared, Millimeter, and Terahertz Waves,2009. IRMMW-THz 2009.34th International Conference on.2009.
    33. Shen, X.F., et al., Comparison of the THz direct-detection Behaviors of Nb and NbN superconducting tunnel junctions. 2008 Global Symposium on Millimeter Waves, 2008: p. 94-97
    34.Sizov, F., THz radiation sensors. Opto-Electronics Review, 2010. 18(1): p. 10-36.
    35.Jiang, Y., et al., Terahertz detectors based on superconducting hot electron bolometers. Science China-Information Sciences, 2012. 55(1): p. 64-71.
    36.Blain, A.W., et al., Submillimeter galaxies. Physics Reports-Review Section of Physics Letters, 2002.369(2): p. 111-176.
    37.Hibi,Y., et al.,The Cryogenic Multi-Channel Readout Systemfor Submillimeter/Terahertz Cameras. Journal of Low Temperature Physics, 2012. 167(5): p. 684-688.
    38.Karasik, B.S., et al., Record-low NEP in hot-electron titanium nanobolometers. Applied Superconductivity, IEEE Transactions on, 2007. 17(2): p. 293-297.
    39.Dobroiu, A., et al.,Terahertz imaging system based on a backward-wave oscillator. Applied Optics, 2004. 43(30): p. 5637-5646.
    40.Lee, A. W.M., et al., Real-time terahertz imaging over a standoff distance (> 25 meters). Applied Physics Letters, 2006. 89(14).
    41.Lee, A.W.M., et al., Real-time imaging using a 4.3-THz quantum cascade laser and a 320 x 240 microbolometer focal-plane array. leee Photonics Technology Letters, 2006. 18(13-16): p. 1415-1417.
    42.Kinch, M.A. and B.V. Rollin, Detection of millimetre and sub-millimetre wave radiation by free carrier absorption in a semiconductor.British Journal of Applied Physics, 1963. 14(10): p. 672.
    43.Nakagawa,Y. and H. Yoshinaga, Characteristics of High-SensitivityGe Bolometer. Japanese Journal of Applied Physics, 1970. 9(1): p. 125.
    44.Padman,R.,et al.,Adual-polarization InSb receiver for 461/492GHz. International Journal of Infrared and Millimeter Waves, 1992. 13(10): p. 1487-1513.
    45.Huffman, J.E., Infrared detectors for 2- to 220-μn astronomy. Proc. SPIE, 1994. 2274:p.157-169.
    46. Hwang, T.-L., S.E. Schwarz, and D.B. Rutledge, Microbolometers for infrared detection. Applied Physics Letters,1979.34(11):p.773-776.
    47. Grossman, E.N. and A.J. Miller, Active millimeter-wave imaging for concealed weapons detection. Proc. SPIE,2003.5077:p.62-70.
    48. Perera, A.G.U., et al., Far infrared photoelectric thresholds of extrinsic semiconductor photocathodes. Applied Physics Letters,1992.60(25):p.3168-3170.
    49. Richards, P.L., Bolometers for infrared and millimeter waves. Journal of Applied Physics,1994.76(1):p.1-24.
    50. Mather, J.C., Bolometer noise:nonequilibrium theory. Appl. Opt.,1982.21(6): p.1125-1129.
    51. Preu, S., Continuous-wave, Tunable THz Ni-pn-ip Superlattice Photomixers and Applications.2009:Erlangen Scientific Press, Friedrich Alexander Univ.
    52. Wei, J., et al., Ultrasensitive hot-electron nanobolometers for terahertz astrophysics. Nature Nanotechnology,2008.3(8):p.496-500.
    53. Zmuidzinas, J. and P.L. Richards, Superconducting detectors and mixers for millimeter and submillimeter astrophysics. Proceedings of the IEEE,2004. 92(10):p.1597-1616.
    54. Kenyon, M., et al. Progress on background-limited membrane-isolated TES bolometers for far-IR/submillimeter spectroscopy. in Proc. SPIE.2006.
    55. Rogalski, A. and F. Sizov, Terahertz detectors and focal plane arrays. Opto-Electronics Review,2011.19(3):p.346-404.
    56. Onnes, H.K., The superconductivity of mercury. Comm. Phys. Lab. Univ. Leiden,1911,122:p.124.
    57. Cooper, L.N., Bound Electron Pairs in a Degenerate Fermi Gas. Physical Review,1956.104(4):p.1189-1190.
    58. Bardeen, J., L.N. Cooper, and J.R. Schrieffer, Theory of Superconductivity. Physical Review,1957.108(5):p.1175-1204.
    59. Esaki, L., New Phenomenon in Narrow Germanium p-n Junctions. Physical Review, 1958, 109(2): p. 603-604.
    60.Giaever, I., Energy Gap in Superconductors Measured by Electron Tunneling. Physical Review Letters. 1960. 5(4): p. 147.
    61.Tucker, J.R. and M.F. Millea, Photon detection in nonlinear tunneling devices. Applied Physics Letters, 1978. 33(7): p. 611-613.
    62.Richards, P.L., et al., Superconductor-insulator-superconductor quasiparticle junctions as microwave photon detectors. Applied Physics Letters, 1980.36(6): p. 480-482.
    63.Taino, T., et al., A broadband terahertz detector using a superconducting tunnel junction. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, 2006.559(2): p. 751-753.
    64.Astafiev, O., et al., Single-photon detector in the microwave range. Applied Physics Letters, 2002.80(22): p. 4250-4252.
    65.Karasik, B.S., et al., Photon-noise-limited direct detector based on disorder-controlled electron heating. Journal of Applied Physics, 2000. 87(10): p. 7586-7588.
    66.Karasik,B.S. and R. Cantor, Demonstration of high optical sensitivity in far-infrared hot-electron bolometer. Applied Physics Letters, 2011. 98(19).
    67.Day, P.K., et al., A broadband superconducting detector suitable for use in large arrays. Nature, 2003. 425(6960): p. 817-821.
    68.Dressel, M., et al.,THz spectroscopy of superconductors.leee Journal of Selected Topics in Quantum Electronics, 2008. 14(2): p. 399-406.
    69.Ariyoshi, S., et al., Terahertz detector based on a superconducting tunnel junction coupled to a thin superconductor film. Applied Physics Letters, 2009. 95(19): p.-
    70.Karpov, A., et al., Development of Low Noise THz SIS Mixer Using an Array of Nb/AI-AlN/NbTiN Junctions. leee Transactions on Applied Superconductivity, 2009.19(3): p. 305-308.
    71.Dayem, A.H. and R.J. Martin, Quantum Interaction of Microwave Radiation with Tunneling Between Superconductors. Physical Review Letters,1962.8(6): p.246.
    72. Tien, P.K. and J.P. Gordon, Multiphoton Process Observed in Interaction of Microwave Fields with Tunneling between Superconductor Films. Physical Review.1963.129(2):p.647-&.
    73. Sheng-Cai, S., et al., Experimental results of SIS mixers with distributed junction arrays. Microwave and Guided Wave Letters, IEEE,1998.8(11):p. 381-383.
    74. Sheng-Cai, S., et al., Characterization of the bandwidth performance of distributed junction arrays. Applied Superconductivity, IEEE Transactions on, 1999.9(2):p.3777-3779.
    75. Giaever, I. and K. Megerle, The superconducting tunnel junction as an active device. Electron Devices, IRE Transactions on,1962.9(6):p.459-461.
    76. Gare, P., et al., Recent Developments in High-Resolution Super Conducting Tunneling Junctions and Their Application in X-Ray Astrophysics. Euv, X-Ray, and Gamma-Ray Instrumentation for Astronomy and Atomic Physics,1989. 1159:p.433-450.
    77. Rando, N., et al., The Properties of Niobium Superconducting Tunneling Junctions as X-Ray-Detectors. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment,1992.313(1-2):p.173-195.
    78. Clarke, J., et al., Superconductive Bolometers for Submillimeter Wavelengths. Journal of Applied Physics,1977.48(12):p.4865-4879.
    79. Tinkham, M., Far infrared absorption in superconductors, in Far-Infrared Properties of Solids.1970, Springer, p.223-246.
    80. Palmer, L.H. and M. Tinkham, Far-Infrared Absorption in Thin Superconducting Lead Films. Physical Review,1968.165(2):p.588-595.
    81. Verhoeve, P., et al., High-resolution x-ray spectra measured using tantalum superconducting tunnel junctions. Applied Physics Letters,1998.72(25):p. 3359-3361.
    82. Hettl, P., et al., High-resolution x-ray spectroscopy with superconducting tunnel junctions. X-Ray Spectrometry,1999.28(5):p.309-311.
    83. Mattis, D.C. and J. Bardeen, Theory of the Anomalous Skin Effect in Normal and Superconducting Metals. Physical Review,1958.111(2):p.412-417.
    84. Noguchi, T., S.C. Shi, and J. Inatani, Parallel Connected Twin Sis Junctions for Millimeter and Submillimeter-Wave Mixers-Analysis and Experimental-Verification, leice Transactions on Electronics,1995. E78c(5):p.481-489.
    85. Tong. C.Y.E., et al.. Quantum Limited Heterodyne-Detection in Superconducting Nonlinear Transmission-Lines at Submillimeter Wavelengths. Applied Physics Letters, 1995. 67(9): p. 1304-1306.
    86.Shi, S.-C, T. Noguchi, and J. Inatani. Analysis of the bandwidth performance of SIS mixers with distributed junction arrays, in Proc. 8th Int. Symp. on Space Terahertz Tech. 1997.
    87.Takeda, M., T. Noguchi, and S.-C. Shi. Predicted Performance of Superconductor-Insulalor-Superconductor Mixers with Inhomogeneous Distributed Junction Arrays.Japanese Journal of AppliedPhysics,2000. 39(Copyright (C) 2000 The Japan Society of Applied Physics): p. 5095.
    88.Takeda, M. and T. Noguchi, A 200-285-GHz waveguide SIS mixer with an inhomogeneous distributed junction array.leee Transactions on Microwave Theory and Techniques. 2002. 50(11): p. 2618-2623.
    89.Balanis, C.A., Modern Antenna Handbook. 2008: John Wiley & Sons.
    90.Zmuidzinas. J., et al., Two-junction tuning circuits for submillimeter SIS mixers. Microwave Theory and Techniques, IEEE Transactions on, 1994. 42(4): p. 698-706.
    91. Qin-Yin, X. and et al., Fabrication of High-Quality Niobium Superconducting Tunnel Junctions. Chinese Physics Letters,2011.28(8):p.087403.
    92. Kroger, H., L.N. Smith, and D.W. Jillie, Selective Niobium Anodization Process for Fabricating Josephson Tunnel-Junctions. Applied Physics Letters,1981. 39(3):p.280-282.
    93. Gurvitch, M., et al., PREPARATION AND PROPERTIES OF NB JOSEPHSON-JUNCTIONS WITH THIN AL LAYERS. Ieee Transactions on Magnetics,1983. 19(3):p.791-794.
    94. Dang, H. and M. Radparvar, A Process for Fabricating Submicron All-Refractory Josephson Tunnel Junction Circuits. Ieee Transactions on Magnetics, 1991.27(2):p.3157-3160.
    95. Morohashi, S., S. Hasuo, and T. Yamaoka, Self-Aligned Contact Process for Nb/Al-Alox/Nb Josephson-Junctions. Applied Physics Letters,1986.48(3):p. 254-256.
    96. Imamura, T. and S. Hasuo, A Sub micrometer Nb/Alox/Nb Josephson Junction Journal of Applied Physics,1988.64(3):p.1586-1588.
    97. Ketchen, M.B., et al., Sub-Mu-M, Planarized. Nb-Alox-Nb Josephson Process for 125-Mm Wafers Developed in Partnership with Si Technology. Applied Physics Letters,1991.59(20):p.2609-2611.
    98. Bao, Z., et al., Fabrication of High-Quality, Deep-Submicron Nb/Alox/Nb Josephson-Junctions Using Chemical-Mechanical Polishing. Ieee Transactions on Applied Superconductivity.1995.5(2):p.2731-2734.
    99. Morohashi. S. and S. Hasuo, Experimental Investigations and Analysis for High-Quality Nb/Al-Alox/Nb Josephson-Junctions. Journal of Applied Physics, 1987.61(10):p.4835-4849.
    100. Miller, R.E., et al., Niobium Trilayer Josephson Tunnel-Junctions with Ultrahigh Critical-Current Densities. Applied Physics Letters,1993.63(10):p. 1423-1425.
    101.Berggren, K.K., et al., Evaluation of critical current density of Nb/Al/AlOx/Nb Josephson junctions using test structures at 300 K. Ieee Transactions on Applied Superconductivity, 1999. 9(2): p. 3236-3239.
    102.Meng, X.F., et al., Micron and sub micron Nb/Al-AlOx/Nb tunnel junctions with high critical current densities, leee Transactions on Applied Superconductivity, 2001. 11(1): p. 365-368.
    103.Kerber, G.L., et al., Fabrication of high current density Nb integrated circuits using a self-aligned junction anodization process. Ieee Transactions on Applied Superconductivity, 2003. 13(2): p. 82-86.
    104.Chen, W., V. Patel, and J.E. Lukens, Fabrication of high-quality Josephson junctionsforquantumcomputationusingaself-aligned process. Microelectronic Engineering, 2004. 73-74: p. 767-772.
    105.Dolata, R., et al., Single-charge devices with ultrasmall Nb/AlOx/Nb trilaycr Josephson junctions. Journal of Applied Physics, 2005. 97.
    106.Lumley, J., et al., High quality all refractory Josephson tunnel junctions for SQUID applications. Magnetics, IEFE Transactions on, 1985. 21(2): p. 539-542.
    107.Kosaka, S.. et al., An Integration of All Refractory Josephson Logic Lsi Circuit. Ieee Transactions on Magnetics, 1985. 21(2): p. 102-109.
    108.Lehnert. T, et al.. Nb-Al Oxide - Nb Junctions for 3 Mm Sis Receivers. Superconductor Science & Technology. 1991. 4(9): p. 419-422.
    109.Yu. Y., et al., Coherent temporal oscillations of macroscopic quantum states in a Josephson junction. Science. 2002. 296(5569): p. 889-892.
    110.Tucker. J.R. and M.J. Feldman. Quantum Detection at Millimeter Wavelengths. Reviews of Modern Physics, 1985. 57(4): p. 1055-1113.
    111.Nakamura, Y., Y.A. Pashkin, and J.S. Tsai, Coherent control of macroscopic quantum stales in a single-Cooper-pair box. Nature. 1999. 398(6730): p. 786-788.
    112.Muller, K.H., Stress and Microstructure of Sputter-Deposited Thin-Films Molecular-Dynamics Investigations. Journal of Applied Physics,1987.62(5):p. 1796-1799.
    113. Imamura, T., T. Shiota, and S. Hasuo, Fabrication of high quality Nb/AlOx-Al/Nb Josephson junctions. I. Sputtered Nb films for junction electrodes. Applied Superconductivity, IEEE Transactions on,1992. 2(1):p.1-14.
    114. Imamura, T. and S. Hasuo, Fabrication of high quality Nb/AlOx-Al/Nb Josephson junctions. Ⅱ. Deposition of thin Al layers on Nb films. Applied Superconductivity, IEEE Transactions on,1992.2(2):p.84-94.
    115.刘必荣,约瑟夫森结Alx-Al隧道势垒的实验研究.物理学报,1997.46(1).
    116. Kohlstedt, H., K.H. Gundlach, and A. Schneider, Investigation of the Tunnel Barrier in Nb-Based Junctions Prepared by Sputtering and Electron-Beam Evaporation. Ieee Transactions on Magnetics,1991.27(2):p.3149-3152.
    117. Gurvitch, M., M.A. Washington, and H.A. Huggins, HIGH-QUALITY REFRACTORY JOSEPHSON TUNNEL-JUNCTIONS UTILIZING THIN ALUMINUM LAYERS. Applied Physics Letters,1983.42(5):p.472-474.
    118. Morohashi, S., et al., High-Quality Nb/Al-Alox/Nb Josephson Junction. Applied Physics Letters,1985.46(12):p.1179-1181.
    119. Meng, X.F., A. Bhat, and T. Van Duzer, Very small critical current spreads in Nb/Al-AlOx/Nb integrated circuits using low-temperature and low-stress ECR PECVD silicon oxide films. Ieee Transactions on Applied Superconductivity, 1999.9(2):p.3208-3211.
    120. Kleinsasser, A.W., R.E. Miller, and W.H. Mallison, Dependence of Critical-Current Density on Oxygen Exposure in Nb-Alox-Nb Tunnel-Junctions. Ieee Transactions on Applied Superconductivity,1995.5(1):p.26-30.
    121. Likharev, K.K., Superconducting weak links. Reviews of Modern Physics,1979. 51(1):p.101-159.
    122. Anders, S., et al., Sub-micrometer-sized, cross-type Nb-AlOx-Nb tunnel junctions with low parasitic capacitance. Superconductor Science and Technology,2009.22(6):p.064012.
    123. Joynson, R.E., C.A. Neugebauer. and J.R. Rairden, Thin Films of Niobium for Cryotron Ground Planes. Journal of Vacuum Science and Technology,1967. 4(4):p.171-178.
    124. Ventura, G. and L. Risegari, The art of cryogenics:low-temperature experimental techniques.2010:Elsevier Science.
    125. Neikirk, D.P., et al., Far-Infrared Imaging Antenna-Arrays. Applied Physics Letters,1982.40(3):p.203-205.
    126.许钦印,et al.,半导体读出电路与超导体太赫兹检测器的集成化.中国科技论文,2013.8(4):p.291-294.
    127. Dierickx, B., et al., Anomalous kink-related excess noise in MOSFETs at 4.2 K. IEEE Transactions on Electron Devices,1991.38(4):p.907-912.
    128. Hibi, Y., et al., The cryogenic multiplexer and shift register for submillimeter-wave digital camera. Cryogenics,2009.49(11):p.672-675.
    129.吕昊 and 刘爱梅,球透镜耦合效率研究.光学精密工程,2006.14(3):p.386-390.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700