用户名: 密码: 验证码:
新型硅基光子晶体调制器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅被认为是集成光电子技术重要材料的历史并不长,但在硅材料上制作光器件可以较好的和成熟的CMOS工艺相兼容,有利于将来光电子器件的单片集成。在硅基光电子技术领域中,光调制器作为重要的有源光电子器件,硅调制器却受限于硅的自由载流子色散效应,其调制速度和尺寸都受到限制。电光聚合物具有很高的线性电光系数和极高的响应速度,通过把电光聚合物填充到狭缝波导中,可以在低折射率区(聚合物区)实现高强度光场聚集,这种结构被应用到调制器中将有助于实现大带宽和低调制电压。
     传统光调制器受限于普通波导结构,很难实现亚波长级的集成。随着硅基纳米结构制造工艺的不断进步,波长量级或亚波长量级周期性结构,即光子晶体,在控制光传输方面越来越引起广泛的关注。光子晶体波导通过光子带隙对光的传输限制,通过在光子晶体中引入线缺陷或点缺陷,可以实现光的传播或局域化。
     本论文结合硅基光子晶体结构,狭缝结构和电光调制,对新型的调制器提出自己的设计和实验尝试,基于平面波展开法和三维时域有限差分法,主要在以下四个方面做出有创新意义的理论工作:
     1.提出新型基于水平狭缝平板二维光子晶体结构的调制器。器件通过控制狭缝中聚合物电光效应实现调制功能。水平狭缝平板结构用来在与光传播垂直方向限制导模,这不同于普通光子晶体结构在垂直截面利用折射率差的导光模式。光子晶体线缺陷波导利用其慢波效应,并在水平方向限制导模。
     2.提出新型的基于水平狭缝周期性介质波导谐振腔的电光调制器。谐振光模式在垂直方向通过水平狭缝结构限制,在水平方向通过光子禁带进行限制。器件通过填在狭缝中的电光聚合物实现快速高效调制功能。我们提出的谐振腔结构工作在准TM模式。分析表明采用此新结构的调制器具有极低的调制电压、超短的长度和100GHz的带宽。
     3.提出新型的基于垂直狭缝周期性介质波导谐振腔的电光调制器。我们首次提出了该纳米谐振腔结构,并对其光学特性进行较详细的分析。狭缝贯穿谐振腔和布拉格反射壁区域,研究表明其有较高的品质因数和极小的模式体积。调制器工作在准TE模式,有小的调制电压、器件尺寸和大的调制带宽。
     4.通过结合周期性介质波导、二维平板光子晶体结构和垂直、水平狭缝结构的思路,系统分析了前面提出的几种新型波导和谐振腔结构特点,为今后研究方向提出新的思路。相对于不带狭缝的周期性介质波导谐振腔,水平狭缝的加入对原来谐振腔的影响较垂直狭缝小,品质因数因此也比加入垂直狭缝的谐振腔更大。水平狭缝周期性介质波导谐振腔较大的高宽比使其对制作工艺的要求更高,而垂直狭缝周期性介质波导谐振腔的波导尺寸和制作工艺与普通脊波导类似,利用现有工艺就可以制作。
     作者的研究工作主要集中在器件设计方面,在后续工作中希望能将所构思的新型调制器进行充分的实验验证,并期待为将来的光电集成系统的发展做出贡献。
Silicon has long been the optimal material for microelectronics. Building photonic devices in silicon bears the advantage of being compatible to complementary metal-oxide-semiconductor fabrication technology, which can lead to monolithic integration of microelectronic and photonic devices on a single chip. Electrically driven optical modulation in silicon photonics typically relies on the free-carrier plasma dispersion effect of silicon materials. The achievable modulation speed, bandwidth and switching voltage are limited. By contrast, electrical-optical (EO) polymers offer very high Pockels coefficient with extremely fast response speed, and large bandwidth and low modulation voltage can be expected. Conventional polymer waveguides generally have large cross-section, and result in weak light confinement. The slottd guide mode has the highest intensity in the low-index polymer material, and this character is desirable for modulation purpose.
     However, the size of modulators is limited by conventional waveguide structures with millimeter interaction length. With the progress of nanofabrication technologies, there has been a great interest in the controlling the propagation of light in photonic crystals periodically structured at a scale comparable to, or slightly smaller than the wavelength. Photonic crystal waveguide can constrain the light due to the forbidden band. Utilizing the line defect or dot defect in the photonic crystals, we can control the propagation of light in certain directions and localizing light in the cavity.
     Combining the photonic crystals, slot waveguide, and EO modulation, we propose the new designs of optical modulators. This thesis makes innovative theoretical works mainly in the following four aspects:
     1. We proposed a new silicon modulator based on the horizontal photonic crystal slotted slab, in which the horizontal slotted slab is used to confine the beam vertically while the photonic crystal line-defect waveguide is employed to constrain the beam horizontally and slow down the group velocity of the light. The modulation is realized by controlling the EO effect of the polymer filled in the slot.
     2. We propose a new compact silicon modulator based on a slotted photonic crystal nanobeam cavity, and its optical characters are analyzed. The slot lies in both the cavity and the distributed Bragg reflectors region. This results in an ultrasmall modal volume and large quality factor. The modulator is operated in the transverse electrical (TE) like mode. The modulation is realized by controlling the EO effect of the polymer filled in the slot and holes.
     3. We came up with a new silicon modulator utilizing horizontal slotted photonic crystal nanoridge cavities. The resonance mode is strongly constrained horizontally by the photonic mirrors and vertically by the horizontal slot. The modulator is operated in the transverse magnetic (TM) like mode. If the EO polymer filled in the slot is employed to achieve fast modulation, analysis shows that a modulator with a bandwidth of 100GHz, a low switch voltage and a tiny length can be obtained.
     4. Considering the one dimensional or two dimensional photonic crystal and horizontal or vertical slot structures, we synthetically analyze the characters of formal-proposed structures. Compared with the horizontal slotted cavity, the vertical slotted cavity shows a larger quality factor. This mostly due to that the presence of vertical slot worsens more heavily the origin performance of resonant cavities. However, the large aspect ratio of horizontal slotted waveguide makes it a challenge in fabrication process.
     The work of this thesis mostly focuses in the device proposal, design and simulation. Partial demonstration of these devices is still underway. The proposed modulator is very promising for applications in future optoelectronic systems.
引文
[1]SALIB M, LIAO L, JONES R et al. Silicon photonics[M], Intel Technology,2004,2:143.
    [2]SHACHAM A, BERGMAN K and CARLONI L P, On the design of a photonic network-on-chip[J], NOCS. Princeton, NJ, USA,2007:53-64.
    [3]KIMERLING L C, Photons to the rescue: microelectronics becomes microphotonics[J], Electrochem. Soc. Interface,2000,9,(2):28-31.
    [4]JALAII B, YEGNANARAYANAN S, YOON T, et al, Advances in silicon-on-insulator optoelectronic[J], IEEE J. Sel. Top. Quantum Electron.,1998,4(6):938-947.
    [5]BRUEL M. Silicon on insulator material technology[J], Electron. Lett,1995,31(14):1201-1202.
    [6]GREEN W M, ROOKS M J, SEKARIC L, et al, Ultra-compact, low RF power,10 Gb/s silicon Mach-Zehnder modulator[J], Opt. Express,2007,15 (25):17106-17113.
    [7]LIU A, JONES R, LING L, et al, A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor[J], Nature,2004,427(6975):615-618
    [8]XU Q, SCHMIDT B, PRADHAN S, et al, Micrometre-scale silicon electro-optic modulator[J], Nature,2005, 435(7040):325-327.
    [9]PREBLE S R, XU Q F, SCHMIDT B S, et al, Ultrafast all-optical modulation on a silicon chip[J], Optics letters, 2005,30:2891-2893.
    [10]WALLACE J, Silicon photonics-Silicon-waveguide modulator reaches 20 Gbit/s[J], Laser Focus World,2007, 43 (3):28.
    [11]LIU A S, Silicon photonic modulator transmits data at 30 Gb/s[J], Photonics Spectra,2007,41 (4):106-107.
    [12]KUO Y H, LEE Y K, GE Y S, et al, Strong quantum-confined Stark effect in germanium quantum-well structures on silicon[J], Nature,2005,437 (7063):1334-1336.
    [13]MANIPATRUNI S, XU Q and LIPSON M, PINIP based high-speed high-extinction ratio micron-size silicon electrooptic modulator[J], Optics Express,2007,15 (20):13035-13042
    [14]MANIPATRUNI S, DOKANIA R K, SCHMIDT B, et al, Wide temperature range operation of micrometer-scale silicon electro-optic modulators[J], Optics Letters,2008,33(19):2185-2187
    [15]MANIPATRUNI S, PRESTON K, CHEN L, et al, Ultra-low voltage, ultra-small mode volume silicon microring modulator[J]. Optics Express,2010,18(7):18235-18242.
    [16]ZHENG X, KOKA P, SCHWETMAN H, et al. A silicon photonic WDM network for high-performance macrochip communications:Proceedings of SPIE,2009[C]
    [17]BEAUSOLEIL R G, AHN J, BINKERT N, et al. A nanophotonic interconnect for high-performance many-core computation:High Performance Interconnects,2008. HOTI'08.16th IEEE Symposium on,2008[C]. IEEE.
    [18]KASH J A. Leveraging optical interconnects in future supercomputers and servers:High Performance Interconnects,2008. HOTI'08.16th IEEE Symposium on,2008[C]. IEEE.
    [19]SHERWOOD-DROZ N, WANG H, CHEN L, et al. Optical 4x4 hitless slicon router for optical networks-on-chip (NoC)[J]. Optics Express,2008,16(20):15915-15922.
    [20]AHN D, HONG C, LIU J, et al. High performance, waveguide integrated Ge photodetectors[J]. Optics express, 2007,15(7):3916-3921.
    [21]DEHLINGER G, KOESTER S J, SCHAUB J D, et al. High-speed germanium-on-SOI lateral PIN photodiodes[J]. Photonics Technology Letters, IEEE,2004,16(11):2547-2549.
    [22]VIVIEN L, ROUVIERE M, FEDELI J M, et al. High speed and high responsivity germanium photodetector integrated in a silicon-on-insulator microwaveguide[J]. Optics Express,2007,15(15):9843-9848.
    [23]YIN T, COHEN R, MORSE M M, et al.31 GHz Ge nip waveguide photodetectors on Silicon-on-Insulator substrate[J]. Opt. Express,2007,15(21):13965-13971.
    [24]MASINI G, SAHNI S, CAPELLINI G, et al. Ge photodetectors integrated in CMOS photonic circuits:Proceedings of SPIE,2008 [C].
    [25]KANG Y, LIU H D, MORSE M, et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product[J]. Nature Photonics,2008,3(1):59-63.
    [26]CHEN L, and LIPSON M, Integrated silicon wavelength division demultiplaexer with 45 GHz germanium photodetectors, CLEO 2009[C].
    [27]MARRIS-MORINI D, VIVIEN L, FEDELI J M, et al. Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure [J]. Optics express,2008,16(1):334-339
    [28]WATTS M R, TROTTER D C, YOUNG R W, et al. Ultralow power silicon microdisk modulators and switches: Group IV Photonics,2008 5th IEEE International Conference on,2008[C]. IEEE.
    [29]CELLER G K, CRISTOLOVEANU S. Frontiers of silicon-on-insulator[J]. Journal of Applied Physics, 2003,93:4955.
    [30]ORCUTT J S, KHILO A, POPOVIC M A, et al. Demonstration of an electronic photonic integrated circuit in a commercial scaled bulk CMOS process:Conference on Lasers and Electro-Optics,2008[C]. Optical Society of America.
    [31]PRESTON K, MANIPATRUNI S, GONDARENKO A, et al. Deposited silicon high-speed integrated electro-optic modulator[J]. Optics Express,2009,17(7):5118-5124.
    [32]RONG H, JONES R, LIU A, et al. A continuous-wave Raman silicon laser[J]. Nature,2005,433(7027):725-728.
    [33]BOYRAZ O, JALALI B. Demonstration of a silicon Raman laser[J]. Optics Express,2004,12(21):5269-5273.
    [34]PARK H, FANG A W, KODAMA S, et al. Hybrid silicon evanescent laser fabricated with a silicon waveguide and Ⅲ-Ⅴ offset quantum well[J]. Optics Express,2005,13(23).
    [35]FANG A W, PARK H, COHEN O, et al. Electrically pumped hybrid AlGalnAs-silicon evanescent laser[J]. Opt. Express,2006,14(20):9203-9210.
    [36]ROELKENS G, VAN THOURHOUT D, BAETS R, et al. Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit[J]. Optics Express, 2006,14(18):8154-8159.
    [37]LEVY J, GONDARENKO A, FOSTER M A, et al, On-chip multiple wavelength CMOS compatible optical source, CLEO,2009[C].
    [38]BOGAERTS W, BAETS R, DUMON P, et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology[J]. Lightwave Technology, Journal of,2005,23(1):401-412.
    [39]DUMON P, BOGAERTS W, WIAUX V, et al. Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography[J]. Photonics Technology Letters, IEEE,2004,16(5):1328-1330.
    [40]GNAN M, THORNS S, MACINTYRE D S, et al. Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist[J]. Electronics Letters
    [41]LEE K K, Lim D R, KIMERLING L C, et al. Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction[J]. Optics Letters,2001,26:1888-1890.
    [42]TSUCHIZAWA T, YAMADA K, FUKUDA H, et al. Microphotonics devices based on silicon microfabrication technology [J]. Selected Topics in Quantum Electronics, IEEE Journal of,2005,11(1):232-240.
    [43]TSUCHIZAWA T, YAMADA K, FUKUDA H, et al. Low-loss Si wire waveguides and their application to thermooptic switches[J]. Japanese journal of applied physics,2006,45(8B):6658-6662.
    [44]XIA F, SEKARIC L, VLASOV Y. Ultracompact optical buffers on a silicon chip[J]. Nature Photonics, 2006,1(1):65-71.
    [45]GARDES F Y, REED G T, KNIGHTS A P, et al. Sub-micron optical waveguides for silicon photonics formed via the local oxidation of silicon (LOCOS):Proceedings of SPIE,2008[C].
    [46]PAFCHEK R, TUMMIDI R, LI J, et al. Low-loss silicon-on-insulator shallow-ridge TE and TM waveguides formed using thermal oxidation[J]. Applied optics,2009,48(5):958-963.
    [47]ROWE L K, ELSEY M, TARR N G, et al. CMOS-compatible optical rib waveguides defined by local oxidation of silicon[J]. Electronics Letters,2007,43(7):392-393.
    [48]ROWE L K, ELSEY M, TARR N G, et al. CMOS-compatible optical rib waveguides defined by local oxidation of silicon[J]. Electronics Letters,2007,43(7):392-393.
    [49]SOREF R A, LORENZO J P. Single-crystal silicon: a new material for 1.3 and 1.6 μm integrated-optical components[J]. Electronics Letters,1985,21(21):953-954.
    [50]LIU A, JONES R, LIAO L, et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor[J]. Nature,2004,427(6975):615-618.
    [51]周海峰,新型硅基集成光子器件的研究[博士学位论文],浙江大学博士学位论文,2009:6.
    [52]ZHANG H M, MA C S, QIN Z K, et al. Thermo-optic tunable polymer arrayed waveguide grating[J]. Optical Engineering,2007,46:54601.
    [53]AALTO T T, KAPULAINEN M, YLINIEMI S, et al. Fast thermo-optical switch based on SOI waveguides: Proceedings of SPIE,2003 [C].
    [54]SOHMA S, GOH T, OKAZAKI H, et al. Low switching power silica-based super high delta thermo-optic switch with heat insulating grooves[J]. Electronics Letters,2002,38(3):127-128.
    [55]PAVESI L, LOCKWOOD D J. Silicon photonics[M]. Springer Verlag,2004.
    [56]DINU M, QUOCHI F, GARCIA H. Third-order nonlinearities in silicon at telecom wavelengths[J]. Applied physics letters,2003,82(18):2954-2956.
    [57]ALMEIDA V R, XU Q, BARRIOS C A, et al. Guiding and confining light in void nanostructure[J]. Optics letters, 2004,29(11):1209-1211.
    [58]XU Q, ALMEIDA V R, PANEPUCCI R R, et al. Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material[J]. Optics letters,2004,29(14):1626-1628.
    [59]FOUBERT K, LALOUAT L, CLUZEL B, et al. Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides[J]. Applied Physics Letters,2008,93:251103.
    [60]BARRIOS C A, SANCHEZ B, GYLFASON K B, et al. Demonstration of slot-waveguide structures on silicon nitride/silicon oxide platform[J]. Optics Express,2007,15(11):6846-6856.
    [61]Lee J. M., Kim D. J., Kim G. H., Controlling temperature dependence of silicon waveguide using slot structure[J]. Opt. Express,2008,16:1645-1652.
    [62]DING R, BAEHR-JONES T, KIM W, et al. Low-loss strip-loaded slot waveguides in?Silicon-on-Insulator[J]. Optics Express,2010,18(24):25061-25067.
    [63]SUN R, DONG P, FENG N, et al. Horizontal single and multiple slot waveguides:optical transmission at λ= 1550 nm[J]. Opt. Express,2007,15(26):17967-17972.
    [64]JORDANA E, FEDELI J M, LYAN P, et al. Deep-UV lithography fabrication of slot waveguides and sandwiched waveguides for nonlinear applications: Group IV Photonics,2007 4th IEEE International Conference on, 2007[C]. IEEE.
    [65]LIPSON K. Slot waveguides with polycrystalline silicon for electrical injection[J]. Opt. Express, 2009,17:1527-1534.
    [66]GUIDER R, DALDOSSO N, PITANTI A, et al. NanoSi low loss horizontal slot waveguides coupled to high Q ring resonators[J]. Opt. Express,2009,17:20762-20770.
    [67]MARTI NEZ A, BLASCO J, SANCHIS P, et al. Ultrafast All-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths[J]. Nano Letters,2010:1196.
    [68]BARRIOS C A, LIPSON M. Electrically driven silicon resonant light emitting device based on slot-waveguide[J]. Opt. Express,2005,13(25):10092-10101.
    [69]JUN Y C, BRIGGS R M, ATWATER H A, et al. Broadband enhancement of light emission in silicon slot waveguides[J]. Opt. Express,2009,17(9):7479-7490.
    [70]MCLAUCHLAN K K, DUNHAM S T. Analysis of a compact modulator incorporating a hybrid silicon/electro-optic polymer waveguide[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006,12(6 Part 2):1455-1460.
    [71]WANG G, BAEHR-JONES T, HOCHBERG M, et al. Design and fabrication of segmented, slotted waveguides for electro-optic modulation[J]. Applied Physics Letters,2007,91(14):143109.
    [72]BAEHR-JONES T, HOCHBERG M, WANG G, et al. Optical modulation and detection in slotted Silicon waveguides[J]. Opt. Express,2005,13:5216-5226.
    [73]HOCHBERG M, BAEHR-JONES T, WANG G, et al. Towards a millivolt optical modulator with nano-slot waveguides[J]. Opt. Express,2007,15:8401-8410.
    [74]DELL'OLIO F, PASSARO V M. Optical sensing by optimized silicon slot waveguides[J]. Optics Express, 2007,15(8):4977-4993.
    [75]BARRIOS C A, BANULS M J, GONZALEZ-PEDRO V, et al. Label-free optical biosensing with slot-waveguides[J]. Optics letters,2008,33(7):708-710.
    [76]ROBINSON J T, CHEN L, LIPSON M. On-chip gas detection in silicon optical microcavities: Lasers and Electro-Optics,2008 and 2008 Conference on Quantum Electronics and Laser Science. CLEO/QELS 2008. Conference on,2008[C]. IEEE.
    [77]BARRIOS C A, GYLFASON K B, SANCHEZ B, et al. Slot-waveguide biochemical sensor[J]. Optics letters, 2007,32(21):3080-3082.
    [78]ZHOU L, OKAMOTO K, YOO S. Towards athermal slotted silicon microring resonators with UV-trimmable PMMA upper-cladding:Lasers and Electro-Optics,2009 and 2009 Conference on Quantum electronics and Laser Science Conference. CLEO/QELS 2009. Conference on,2009[C]. IEEE.
    [79]YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical review letters,1987,58(20):2059-2062.
    [80]JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987,58(23):2486-2489.
    [81]何赛灵,戴道锌,微纳光子集成[M],科学出版社,2010:197-201.
    [82]赵鲲,二维光子晶体波导耦合器开关特性的FDTD研究[硕士学位论文],北京化工大学,2009:10-11.
    [83]JOHNSON S G, FAN S, VILLENEUVE P R, et al. Guided modes in photonic crystal slabs[J]. Physical Review B, 1999,60(8):5751-5758.
    [84]WHITE T P, O'FAOLAN L, LI J, et al. Silica-embedded silicon photonic crystal waveguides[J]. Opt. Express, 2008,16:17076-17081.
    [85]WANG F, MA J, JIANG C. Dispersionless Slow Wave in Novel 2-D Photonic Crystal Line Defect Waveguides[J]. Journal of Lightwave Technology,2008,26(11):1381-1386.
    [86]ATABAKI A H, HOSSEINI E S, MOMENI B, et al. Enhancing the guiding bandwidth of photonic crystal waveguides on silicon-on-insulator[J]. Optics letters,2008,33(22):2608-2610.
    [87]RAWAL S, SINHA R, DE LA RUE R M. Slow light miniature devices with ultra-flattened dispersion in silicon-on-insulator photonic crystal[J]. Optics Express,2009,17(16):13315-13325.
    [88]HADZIALIC S, KIM S, SUDBO A S, et al. Two-Dimensional Photonic Crystals Fabricated in Monolithic Single-Crystal Silicon[J]. Photonics Technology Letters, IEEE,2010,22(2):67-69.
    [89]GHAFFARI A, HOSSEINI A, XU X, et al. Transfer of micro and nano-photonic silicon nanomembrane waveguide devices on flexible substrates[J]. Optics Express,2010,18(19):20086-20095.
    [90]MEKIS A, FAN S, JOANNOPOULOS J D. Bound states in photonic crystal waveguides and waveguide bends[J]. Physical Review B,1998,58(8):4809-4817.
    [91]JOHNSON S G, VILLENEUVE P R, FAN S, et al. Linear waveguides in photonic-crystal slabs[J]. Physical Review B,2000,62(12):8212-8222.
    [92]FAN S, JOANNOPOULOS J D, WINN J N, et al. Guided and defect modes in periodic dielectric waveguides[J]. Journal of the Optical Society of America B,1995,12(7):1267-1272.
    [93]JOANNOPOULOS J D. Photonic crystals:molding the flow of light[M]. Princeton Univ Pr,2008.
    [94]FORESI J S, VILLENEUVE P R, FERRERA J, et al. Photonic-bandgap microcavities in optical waveguides[J]. Nature,1997,390(6656):143-145.
    [95]KUHLOW B, PRZYREMBEL G, SCHLUTER S, et al. Photonic crystal microcavities in SOI photonic wires for WDM filter applications[J]. Journal of Lightwave Technology,2007,25(1):421-431
    [96]SAUVAN C, LECAMP G, LALANNE P, et al. Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities[J]. Optics Express,2005,13:245.
    [97]VELHA P, RODIER J C, LALANNE P, et al. Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide[J]. New Journal of Physics,2006,8:204.
    [98]VELHA P, PICARD E, CHARVOLIN T, et al. Ultra-high Q/V Fabry-Perot microcavity on SOI substrate[J]. Opt. Express,2007,15(24):16090-16096.
    [99]ZAIN A, JOHNSON N P, SOREL M, et al. Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI)[J]. Opt. Express,2008,16:12084-12089.
    [100]ZAIN A, GNAN M, CHONG H, et al. Tapered photonic crystal microcavities embedded in photonic wire waveguides with large resonance quality-factor and high transmission[J]. IEEE Photonics Technology Letters, 2008,20(1):6-8.
    [101]ZAIN A R, JOHNSON N P, SOREL M, et al. Coupling strength control in photonic crystal/photonic wire multiple cavity devices[J]. Electronics Letters,2009,45(5):283-284.
    [102]ZAIN M, RIFQI A, JOHNSON N P, et al. High Quality-Factor 1-D-Suspended Photonic Crystal/Photonic Wire Silicon Waveguide Micro-Cavities[J]. IEEE Photonics Technology Letters,2009,21:1789-1791.
    [103]DEOTARE P B, MCCUTCHEON M W, FRANK I W, et al. High quality factor photonic crystal nanobeam cavities[J]. Applied Physics Letters,2009,94:121106.
    [104]FOUBERT K, LALOUAT L, CLUZEL B, et al. An air-slotted nanoresonator relying on coupled high Q small V Fabry-Perot nanocavities[J]. Applied Physics Letters,2009,94:251111.
    [105]DEOTARE P B, MCCUTCHEON M W, FRANK I W, et al. Coupled photonic crystal nanobeam cavities[J]. Applied Physics Letters,2009,95:31102.
    [106]HARET L D, TANABE T, KURAMOCHI E, et al. Extremely low power optical bistability in silicon demonstrated using ID photonic crystal nanocavity[J]. Opt. Express,2009,17:21108-21117.
    [107]BELOTTI M, GALLI M, GERACE D, et al. All-optical switching in silicon-on-insulator photonic wire nano-cavities[J]. Opt. Express,2010,18:1450-1461.
    [108]GONG Y, VU KOVI J. Photonic crystal cavities in silicon dioxide[J]. Applied Physics Letters,2010,96:31107.
    [109]MD ZAIN A R, JOHNSON N P, SOREL M, et al. Design and Fabrication of High Quality-Factor 1-D Photonic Crystal/Photonic Wire Extended Microcavities[J]. Photonics Technology Letters, IEEE,2010,22(9):610-612.
    [110]MEISTER S, AL-SAADI A, FRANKE B A, et al. Photonic crystal microcavities in SOI waveguides produced in a CMOS environment: Proceedings of SPIE,2010[C].
    [111]RICHARDS B C, HENDRICKSON J, OLITZKY J D, et al. Characterization of 1D photonic crystal nanobeam cavities using curved microfiber[J]. Optics Express,2010,18(20):20558-20564.
    [112]KURAMOCHI E, TANIYAMA H, TANABE T, et al. Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings[J]. Optics Express, 2010,18(15):15859-15869.
    [113]MCCUTCHEON M W, DEOTARE P B, ZHANG Y, et al. Demonstration of high-Q TE-TM photonic crystal nanobeam cavities[J]. Arxiv preprint arXiv:1011.2739,2010.
    [114]QIMIN Q, PARAG B D, MARKO L. Deterministic Design of Ultrahigh Q and Small Mode Volume Photonic Crystal Nanobeam Cavity: Conference on Lasers and Electro-Optics,2010[C]. Optical Society of America.
    [115]MARKO L, P. B D, I. W F, et al. Photonic Crystal Nanobeam Cavities and Their Applications:Conference on Lasers and Electro-Optics,2010[C]. Optical Society of America.
    [116]NOTOMI M, YAMADA K, SHINYA A, et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs[J]. Physical Review Letters,2001,87(25):253902.
    [117]SOLJA I M, JOHNSON S G, FAN S, et al. Photonic-crystal slow-light enhancement of nonlinear phase sensitivity[J]. JOSA B,2002,19(9):2052-2059.
    [118]JIANG Y, JIANG W, GU L, et al.80-micron interaction length silicon photonic crystal waveguide modulator[J]. Applied Physics Letters,2005,87:221105.
    [119]TANABE T, NISHIGUCHI K, KURAMOCHI E, et al. Low power and fast electro-optic silicon modulator with lateral pin embedded photonic crystal nanocavity[J]. Optics Express,2009,17(25):22505-22513.
    [120]BARRIOS C A, ALMEIDA V R, PANEPUCCI R, et al. Electrooptic modulation of silicon-on-insulator submicrometer-size waveguide devices[J]. Journal of Lightwave Technology,2003,21(10):2332.
    [121]SCHMIDT B, XU Q, SHAKYA J, et al. Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes[J]. Optics Express,2007,15(6):3140-3148.
    [122]BROSI J M, KOOS C, ANDREANI L C, et al. High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide[J]. Opt. Express,2008,16:4177-4191.
    [123]W LBERN J H, PETROV A, EICH M. Electro-optical modulator in a polymerinfiltrated silicon slotted photonic crystal waveguide heterostructure resonator[J]. Opt. Express,2009,17:304-313.
    [124]WOLBERN J H, HAMPE J, PETROV A, et al. Electro-optic modulation in slotted resonant photonic crystal heterostructures[J]. Applied Physics Letters,2009,94:241107.
    [125]WOLBERN J H, PROROK S, HAMPE J, et al.40 GHz electro-optic modulation in hybrid silicon?organic slotted photonic crystal waveguides[J]. Optics Letters,2010,35(16):2753-2755.
    [126]LIN C Y, WANG X, CHAKRAVARTY S, et al. Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement[J]. Applied Physics Letters,2010,97:93304.
    [1]LIU A, JONES R, LIAO L, et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor[J]. Nature,2004,427(6975):615-618.
    [2]LIAO L, LIU A, BASAK J, et al.40 Gbit/s silicon optical modulator for highspeed applications[J]. Electronics Letters,2007,43(22).
    [3]ZHOU H, ZHAO Y, WANG W, et al. Performance influence of carrier absorption to the Mach-Zehnder-interference based silicon optical switches[J]. Optics Express,2009,17(9):7043-7051.
    [4]HOCHBERG M, BAEHR-JONES T, WANG G, et al. Towards a millivolt optical modulator with nano-slot waveguides[J]. Opt. Express,2007,15:8401-8410.
    [5]ALMEIDA V R, Xu Q, BARRIOS C A, et al. Guiding and confining light in void nanostructure[J]. Optics letters, 2004,29(11):1209-1211.
    [6]GUIDER R, DALDOSSO N, PITANTI A, et al. NanoSi low loss horizontal slot waveguides coupled to high Q ring resonators[J]. Opt. Express,2009,17:20762-20770.
    [7]SUN R, DONG P, FENG N, et al. Horizontal single and multiple slot waveguides: optical transmission at λ= 1550 nm[J]. Opt. Express,2007,15(26):17967-17972.
    [8]PRESTON K, LIPSON M. Slot waveguides with polycrystalline silicon for electrical injection[J]. Optics Express, 2009,17(3):1527-1534.
    [9]Chu T., Yamada H., Ishida S., Thermooptic switch based on photonic-crystal line-defect waveguides[J]. IEEE Photonics Technology Letters,2005,17(10):2083-2085.
    [10]JIANG Y, JIANG W, GU L, et al.80-micron interaction length silicon photonic crystal waveguide modulator[J]. Applied Physics Letters,2005,87:221105.
    [11]BROSI J M, KOOS C, ANDREANI L C, et al. High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide[J]. Opt. Express,2008,16:4177-4191.
    [12]LUO J, LIU S, HALLER M A, et al. Recent progress in developing highly efficient and thermally stable nonlinear optical polymers for electro-optics:Proceedings of SPIE,2004[C].
    [13]PANEPUCCI T. Confined waveguide modes in slot photonic crystal slab[J]. Opt. Express,2007,15:4304-4309.
    [14]TANABE T, NISHIGUCHI K, KURAMOCHI E, et al. Low power and fast electro-optic silicon modulator with lateral pin embedded photonic crystal nanocavity[J]. Optics Express,2009,17(25):22505-22513.
    [15]JOHNSON S G, VILLENEUVE P R, FAN S, et al. Linear waveguides in photonic-crystal slabs[J]. Physical Review B,2000,62(12):8212-8222.
    [16]W LBERN J H, PETROV A, EICH M. Electro-optical modulator in a polymerinfiltrated silicon slotted photonic crystal waveguide heterostructure resonator[J]. Opt. Express,2009,17:304-313.
    [17]DIONNE J A, DIEST K, SWEATLOCK L A, et al. PlasMOStor: A Metal- Oxide- Si Field Effect Plasmonic Modulator[J]. Nano letters,2009,9(2):897-902.
    [18]VELHA P, PICARD E, CHARVOLIN T, et al. Ultra-high Q/V Fabry-Perot microcavity on SOI substrate[J]. Opt. Express,2007,15(24):16090-16096.
    [19]DEOTARE P B, MCCUTCHEON M W, FRANK I W, et al. High quality factor photonic crystal nanobeam cavities[J]. Applied Physics Letters,2009,94:121106.
    [1]LIU A, JONES R, LIAO L, et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor[J]. Nature,2004,427(6975):615-618.
    [2]BARRIOS C A, ALMEIDA V R, PANEPUCCI R, et al. Electrooptic modulation of silicon-on-insulator submicrometer-size waveguide devices[J]. Journal of Lightwave Technology,2003,21 (10):2332.
    [3]SCHMIDT B, XU Q, SHAKYA J, et al. Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes[J]. Optics Express,2007,15(6):3140-3148.
    [4]DEOTARE P B, MCCUTCHEON M W, FRANK I W, et al. High quality factor photonic crystal nanobeam cavities[J]. Applied Physics Letters,2009,94:121106.
    [5]ALMEIDA V R, XU Q, BARRIOS C A, et al. Guiding and confining light in void nanostructure[J]. Optics letters, 2004,29(11):1209-1211.
    [6]HOCHBERG M, BAEHR-JONES T, WANG G, et al. Towards a millivolt optical modulator with nano-slot waveguides[J]. Opt. Express,2007,15:8401-8410.
    [7]ROBINSON J T, MANOLATOU C, CHEN L, et al. Ultrasmall mode volumes in dielectric optical microcavities[J]. Physical review letters,2005,95(14):143901.
    [8]SCHRIEVER C, BOHLEY C, SCHILLING J. Designing the quality factor of infiltrated photonic wire slot microcavities[J]. Optics Express,2010,18(24):25217-25224.
    [9]MCLAUCHLAN K K, DUNHAM S T. Analysis of a compact modulator incorporating a hybrid silicon/electro-optic polymer waveguide[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006,12(6 Part 2):1455-1460.
    [10]W LBERN J H, PETROV A, EICH M. Electro-optical modulator in a polymerinfiltrated silicon slotted photonic crystal waveguide heterostructure resonator[J]. Opt. Express,2009,17:304-313.
    [11]LIN C Y, WANG X, CHAKRAVARTY S, et al. Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement[J]. Applied Physics Letters,2010,97:93304.
    [12]LIPSON K. Slot waveguides with polycrystalline silicon for electrical injection[J]. Opt. Express, 2009,17:1527-1534.
    [13]MARTI NEZ A, BLASCO J, SANCHIS P, et al. Ultrafast All-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths[J]. Nano Letters,2010:1196.
    [14]ZHANG Y, MCCUTCHEON M W, BURGESS I B, et al. Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities[J]. Optics letters,2009,34(17):2694-2696.
    [15]SAUVAN C, LECAMP G, LALANNE P, et al. Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities[J]. Optics Express,2005,13:245.
    [16]KIM T D, KANG J W, LUO J, et al. Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses[J]. Journal of the American Chemical Society,2007,129(3):488-489.
    [17]DIONNE J A, DIEST K, SWEATLOCK L A, et al. PlasMOStor: A Metal- Oxide- Si Field Effect Plasmonic Modulator[J]. Nano letters,2009,9(2):897-902.
    [1]LIU A, JONES R, LIAO L, et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor[J]. Nature,2004,427(6975):615-618.
    [2]BARRIOS C A, ALMEIDA V R, PANEPUCCI R, et al. Electrooptic modulation of silicon-on-insulator submicrometer-size waveguide devices[J]. Journal of Lightwave Technology,2003,21(10):2332.
    [3]SCHMIDT B, XU Q, SHAKYA J, et al. Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes[J]. Optics Express,2007,15(6):3140-3148.
    [4]DEOTARE P B, MCCUTCHEON M W, FRANK I W, et al. High quality factor photonic crystal nanobeam cavities[J]. Applied Physics Letters,2009,94:121106.
    [5]HOCHBERG M, BAEHR-JONES T, WANG G, et al. Towards a millivolt optical modulator with nano-slot waveguides[J]. Opt. Express,2007,15:8401-8410.
    [6]ALMEIDA V R, XU Q, BARRIOS C A, et al. Guiding and confining light in void nanostructure[J]. Optics letters, 2004,29(11):1209-1211.
    [7]FOUBERT K, LALOUAT L, CLUZEL B, et al. Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides[J]. Applied Physics Letters,2008,93:251103.
    [8]BROSI J M, KOOS C, ANDREANI L C, et al. High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide[J]. Opt. Express,2008,16:4177-4191.
    [9]W LBERN J H, PETROV A, EICH M. Electro-optical modulator in a polymerinfiltrated silicon slotted photonic crystal waveguide heterostructure resonator[J]. Opt. Express,2009,17:304-313.
    [10]LIN C Y, WANG X, CHAKRAVARTY S, et al. Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement[J]. Applied Physics Letters,2010,97:93304.
    [11]ROBINSON J T, MANOLATOU C, CHEN L, et al. Ultrasmall mode volumes in dielectric optical microcavities[J]. Physical review letters,2005,95(14):143901.
    [12]ROBINSON J T, LIPSON M. Far-Field Control of Radiation from an Individual Optical Nanocavity: Analogue to an Optical Dipole[J]. Physical review letters,2008,100(4):43902.
    [13]SCHRIEVER C, BOHLEY C, SCHILLING J. Designing the quality factor of infiltrated photonic wire slot microcavities[J]. Optics Express,2010,18(24):25217-25224.
    [14]MCLAUCHLAN K K, DUNHAM S T. Analysis of a compact modulator incorporating a hybrid silicon/electro-optic polymer waveguide[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006,12(6 Part 2):1455-1460.
    [15]SAUVAN C, LECAMP G, LALANNE P, et al. Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities[J]. Optics Express,2005,13:245.
    [16]TAKAHASHI Y, TANANKA Y, HAGINO H, et al. Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration[J]. Optics Express,2009,17(20):18093-18102.
    [17]LUO J, LIU S, HALLER M A, et al. Recent progress in developing highly efficient and thermally stable nonlinear optical polymers for electro-optics: Proceedings of SPIE,2004[C].
    [18]CAI W, WHITE J S, BRONGERSMA M L. Compact, high-speed and power-efficient electrooptic plasmonic modulators[J]. Nano letters,2009,9(12):4403-4411.
    [19]KIM T D, KANG J W, LUO J, et al. Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses[J]. J. Am. Chem. Soc,2007,129(3):488-489.
    [20]JIANG Y, JIANG W, GU L, et al.80-micron interaction length silicon photonic crystal waveguide modulator[J]. Applied Physics Letters,2005,87:221105.
    [21]QI B, YU P, LI Y, et al. Ultracompact Electrooptic Silicon Modulator With Horizontal Photonic Crystal Slotted Slab[J]. Photonics Technology Letters, IEEE,2010,22(10):724-726.
    [22]PSALTIS D, QUAKE S R, YANG C. Developing optofluidic technology through the fusion of microfluidics and optics[J]. Nature,2006,442(7101):381-386.
    [23]MONAT C, DOMACHUK P, EGGLETON B J. Integrated optofluidics:A new river of light[J]. Nature Photonics, 2007,1 (2):106-114.
    [24]TOPOL AN IK J, BHATTACHARYA P, SABARINATHAN J, et al. Fluid detection with photonic crystal-based multichannel waveguides[J]. Applied physics letters,2003,82:1143.
    [25]KITA S, NOZAKI K, BABA T. Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration.[J]. Optics express,2008,16(11):8174.
    [26]DORFNER D F, HURLIMANN T, ZABEL T, et al. Silicon photonic crystal nanostructures for refractive index sensing[J]. Applied Physics Letters,2008,93(18):181103.
    [27]NUNES P S, MORTENSEN N A, KUTTER J P, et al. Photonic crystal resonator integrated in a microfluidic system[J]. Optics letters,2008,33(14):1623-1625.
    [28]DI FALCO A, O FAOLAIN L, KRAUSS T F. Chemical sensing in slotted photonic crystal heterostructure cavities[J]. Applied Physics Letters,2009,94:63503.
    [29]KIM S, LEE J, JEON H, et al. Fiber-coupled surface-emitting photonic crystal band edge laser for biochemical sensor applications[J]. Applied Physics Letters,2009,94:133503.
    [30]DUNDAR M A, RYCKEBOSCH E CI, N TZEL R, et al. Sensitivities of InGaAsP photonic crystal membrane nanocavities to hole refractive index[J]. Optics Express,2010,18(5):4049-4056.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700