用户名: 密码: 验证码:
新型光子晶体光纤及面向其应用的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体光纤凭借其优异的光学特性和灵活的设计自由度,自1996年问世至今,一直受到国内外科研人员的广泛关注,在短短十几年间取得了突飞猛进的进展。目前,其相关研究已经深入到光纤通信、光传感、非线性光学、光电子学等众多领域,展现出广阔的应用前景。本论文结合国家自然科学基金项目、国家863计划项目及教育部重大项目,针对新型光子晶体光纤光子晶体光纤实用化进程中亟待解决的光纤制作、熔接等问题进行了深入的理论和实验研究,获得的主要创新成果如下:
     1.基于流体力学的相关理论建立起包含气压控制参数的光子晶体光纤拉制模型。数值分析了气压控制参数与其它工艺参数之间的相互影响,掌握了各参数间的协调控制机制,量化分析了工艺参数配置与最终光纤结构之间的对应关系,并将理论研究成果应用于实际光子晶体光纤拉制实验中,实现由同一预制棒采用不同的参数配置成功拉制出具有不同孔径孔距比的光子晶体光纤
     2.在制作包含非均匀孔径的光子晶体光纤方面,面对缺乏孔间分压控制技术的现状,提出一套以反向计算为核心的等压控制拉丝方案。在此基础上,成功研制出双模光子晶体光纤、共轴双芯色散补偿型光子晶体光纤以及超平坦色散光子晶体光纤等多种结构,光纤横、纵向均匀性均达到当前国际水平。
     3.设计和研制出一种双模光子晶体光纤,利用数字图像处理技术对其实物进行结构参数提取,实现了对实际光纤传输特性的准确分析。结果显示,研制的光纤在500-1900nm波段仅支持LP01模和LP11偶模两个模式,双模带宽接近椭圆芯双模光纤的十倍。基于该光纤制作双模光纤干涉仪,获得稳定的干涉谱输出。研究表明该双模光纤干涉仪在干涉型传感、选择性滤波等方面均具有应用潜力。
     4.基于谐振耦合理论设计两种新型单偏振单模光子晶体光纤,讨论了设计要点。分析表明,两种结构均可获得1000nm左右的单偏振单模带宽,输出模场呈近高斯型分布,更易于与普通单模光纤实现模场匹配。综合性能较现有的单偏振单模光纤具有更大优势。
     5.提出了通用的光子晶体光纤低损耗电弧熔接方案,以实验测量结合理论计算,确定出最佳熔接功率,进而实现了熔接参数的优化配置,解决了以往难以设定合理熔接参数的问题。实现了光子晶体光纤与普通单模光纤之间、不同光子晶体光纤之间的低损耗、高强度熔接。
ABSTRACT:Ever since 1996, photonic crystal fibers (PCFs) have been attracting worldwide interest owing to their unique optical properties and design flexibility. Great progress has been made over the past ten years, and PCFs have been found applicable in a wide range of areas, such as fiber communication, fiber sensor, fiber optics, optoelectronics and so on. Supported by national nature science foundation, national 863 high technology research project and key project of Chinese Ministry of Education, this dissertation is devoted to the theoretical and experimental investigations on novel PCFs and the fabrication and splicing technique of PCFs. The main achievements of this dissertation are listed below:
     1. A fluid-mechanics model in which the pressure term is included is built for modeling the fabrication of PCFs. The interplays among all the fabrication parameters are numerically analyzed for the purpose of cooperative control. Relationships between parametric configuration and the final fiber's geometry are quantitatively assessed, and are used as guidelines for practical fabricating. With different sets of parameter configuration, several PCFs with different d/A are drawn from a same preform.
     2. Due to the lack of seperate pressure injection system, a solution for simultaneous control with equal pressure is proposed based on an inverse design model to meet the requirement of maintaining different hole-sizes in PCFs with uneven-sized holes. A variety of PCFs are successfully fabricated consequently, including two-mode PCF, dispersion compensating PCFs, and flattened dispersion PCFs.
     3. A novel two-mode PCF is designed and fabricated. The holey geometry of the real fiber is extracted using digital image processing method, based on which the properties of the actual PCF can be modeled. The results show that the two-mode PCF supports only the fundamental mode, LP01, and the second-order even mode, LP11 (even), over the wavelength range 500 to 1900nm, which approaches ten times the bandwidth of elliptical-core two-mode fiber. A compact interferometer is constructed based on this two-mode PCF, and stable and sinusoidal transmission spectrum is acquired, exhibiting potentials for fiber sensor and wavelength selective filter applications.
     4. Based on resonant coupling effect, two kinds of single-polarization single-mode (SPSM) PCF are proposed. Key design points are discussed in detail. Both SPSM PCFs exhibit the advantages of ultrabroad SPSM bandwidth (1000nm or so), Gaussian-like field distribution, and large mode area matchable with conventional single mode fiber over other SPSM fibers reported.
     5. A universal low-loss arc-fusion scheme for PCF splicing is proposed. Combining experimental measurements with theoretical calculations, the optimal fusion power can be deduced for optimizing the configuration of fusion parameters. Low-loss high-strength splice between PCF and conventional single mode fiber, or between two PCFs can be implemented with the proposed scheme.
引文
[1]E. Yablonovitch, "Photonic band-gap structure", J. Opt. Soc. Am. B:Optical Physics,1993, vol. 10, no.2, pp.283-295.
    [2]S. John, "Localization of light:Theory of photonic band gap materials", Photonic Band Gap Materials,1996, vol.315, pp.536-666.
    [3]E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics", Phys. Rev. Lett.,1987, vol.58, no.20, pp.2059-2062.
    [4]S. John, "Strong localization of photons in certain disordered dielectric superlattices", Phys Rev. Lett.1987, vol.58, no.23, pp.2486-2489.
    [5]E. Yablonovitch, T. J. Gmitter, "Photonic band structure:the face-centered-cubic case", Phys. Rev. Lett.1989, vol.63, no.18, pp.1950-1953.
    [6]H. Y. Ryu, S. H. Kwon, Y. J. Lee, et al., "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs", Appl. Phys. Lett.,2002, vol.89, no.19, pp. 3476-3478.
    [7]R. Colombelli, K. Srinivasan, M. Troccoli, et al. "Quantum cascade surface-emitting photonic crystal laser", Science,2003, vol.302, pp.1374-1377.
    [8]S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "High extraction efficiency of spontaneous emission from slabs of photonic crystal", Phys. Rev. Lett.,1997, vol.78, pp.3294-3297.
    [9]S. Y. Lin, E. Chow, V. Hietala, et al., "Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal", Science,1998, vol.282, pp.274-276.
    [10]D. L. Bullock, C. Shih and R. S. Margulies, "Photonic band structure investigation of two-dimensional Bragg reflector mirrors for semiconductor laser mode control", J. Opt. Soc. Am. B,1993, vol.10, no.2, pp.399-403.
    [11]J. C. Knight, T. A. Birks, D. M. Atkin, and P. S. J. Russell, "Pure silica single-mode fibre with hexagonal photonic crystal cladding", in OFC'96, San Diego,1996, vol.2, pp.1-4.
    [12]J. C. Knight, "Photonic crystal fibres", Nature,2003, vol.424, pp.847-851.
    [13]T. A. Birks, J. C. Knight, P. St. Russell, et al., "Endlessly single-mode photonic crystal fiber", Opt. Lett.,1997, vol.22, no.13, pp.961-963.
    [14]J. C. Knight, J. Arriaga, T. A. Birks et al., "Anomalous dispersion in photonic crystal fiber", IEEE Photon. Technol. Lett.,2000, vol.12, no.7, pp.807-809.
    [15]A. Ferrando, E. Silvestre, J. J. Miret, et al., "Nearly zero ultraflattened dispersion in photonic crystal fibers", Opt. Lett.,2000, vol.25, no.12, pp.790-792.
    [16]S. Yang, Y. Zhang, L. He, and S. Xie, "Broadband dispersion-compensating photonic crystal fiber", Opt. Lett.,2006, vol.31, no.19, pp.2830-2832.
    [17]W. Chen, J. Y. Li, S. Y. Li, et.al., "High nonlinear photonic crystal fiber and its supercontinuum", Frontiers of Optoelectronics in China,2008, vol.1, no.1-2, pp.75-78.
    [18]K. Saitoh, M. Koshiba, "Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window", Opt. Express,2004, vol.12, no. 10, pp.2027-2032.
    [19]M. J. Steel, P. M. Osgood. Jr, "Elliptical-hole photonic crystal fibers", Opt. Lett.,2001, vol.26, no.4, pp.229-231.
    [20]P. R. Chaudhuri, V. Paulose, C. Zhao et al., "Near-elliptic core polarization-maintaining photonic crystal fiber:modeling birefringence characteristics and realization", IEEE Photon. Technol. Lett.,2004, vol.16, no.5, pp.1301-1303.
    [21]K. Saitoh and M. Koshiba, "Single-polarization single-mode photonic crystal fibers", IEEE Photon. Technol. Lett.,2003, vol.15, no.10, pp.1384-1386.
    [22]H. Kubota, S. Kawanishi, S. Koyanagi et al., "Absolutely single polarization photonic crystal fiber", IEEE Photon. Technol. Lett.,2004, vol.16, no.1, pp.182~184
    [23]W. Jin, Z. Wang, and J. Ju, "Two-mode photonic crystal fibers", Opt. Express,2005, vol.13, no. 6, pp.2082-2088.
    [24]N. A. Mortensen, J. R. Folkenberg, P. M. W. Skovgaard, and J. Broeng, "Numerical aperture of single-mode photonic crystal fibers", IEEE Photon. Technol. Lett.,2002, vol.14, no.8, pp. 1094-1096.
    [25]N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg et al., "Improved large-mode-area endlessly single-mode photonic crystal fibers", Opt. Lett.,2003, vol.28, no.6, pp.393-395.
    [26]J. Olszewski, M. Szpulak, T. Martynkien et al., "Analytical evaluation of bending loss oscillations in photonic crystal fibers", Opt. Commun.,2007, vol.269, no.2, pp.261-270.
    [27]Y. Tsuchida, K. Saitoh, M. Koshiba, "Large-Mode-Area Single-Mode Holey Fiber with Low Bending Losses:Towards High Power Beam Delivery Systems", in OFC'07, OSA Technical Digest Series (CD),2007, paper OThAl.
    [28]M. D. Nielsen, C. Jacobsen, N. A. Mortensen et al., "Low-loss photonic crystal fibers for transmission systems and their dispersion properties", Opt. Express,2004, vol.12, no.7, pp. 1372-1376.
    [29]K. Kurokawa, K. Ieda, K. Tajima et al., "Visible high-speed optical transmission over photonic crystal fiber", Opt. Express,2007, vol.15, no.2, pp.397-401.
    [30]J. E. Sharping, M. Fiorentino, P. Kumar et al., "Optical parametric oscillator based on four-wave mixing in microstructure fiber", Opt. Lett.,2002, vol.27, no.19, pp.1675-1677.
    [31]D. G. Ouzounov, F. R. Ahmad, D. Muller et al., "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers", Science,2003, vol.301, no.564, pp.1702-1704.
    [32]E. Takahashi, S. Kato, Y. Matsumoto et al., "Ultra broadband UV generation by stimulated Raman scattering of two-color KrF laser in deuterium confined in a hollow fiber", Opt. Express, 2007, vol.15, no.5, pp.2535-2540.
    [33]A. D. Aguirre, N. Nishizawa, J. G. Fujimoto et al., "Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm", Opt. Express,2006, vol.14, no.3, pp.1145-1160.
    [34]I. Hartl, X. D. Li, C. Chudoba et al., "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber", Opt. Lett.,2001, vol.26, no. 9, pp.608-610.
    [35]L. Fu, A. Jain, H. Xie et al., "Nonlinear optical endoscopy based on a double clad photonic crystal fiber and a MEMS mirror", Opt. Express,2006, vol.14, no.3, pp.1027-1032.
    [36]L. Rindorf, J. B. Jensen, M. Dufva et al., "Photonic crystal fiber long-period gratings for biochemical sensing", Opt. Express,2006, vol.14, no.18, pp.8224-8231.
    [37]H. Y. Choi, M. J. Kim, B. H. Lee, "All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber", Opt. Express,2007, vol.15, no.9, pp.5711-5720.
    [38]A. Hassani, M. Skorobogatiy, "Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics", Opt. Express,2006, vol.14, no.24, pp.11616-11621.
    [39]B. Gauvreau, A. Hassani, M. Fehri et al., "Photonic bandgap fiber-based surface plasmon resonance sensors", Opt. Express,2007, vol.15, no.18, pp.11413-11426.
    [40]J. C. Knight, T. A. Birks, P. St. J. Russell, et al., "All-silica single-mode optical fiber with photonic crystal cladding", Opt. Lett.1996, vol.21, no.19, pp.1547-1549.
    [41]T. M. Monro, P. J. Bennett, N. G. R. Broderick et al., "Holey fibers with random cladding distributions", Opt. Lett.,2000, vol.25, no.4, pp.206-208.
    [42]J. C. Knight, J. Brong, T. A. Birks et al. "Photonic band gap guidance in optical fiber", Science, 1998, vol.282, pp.399-402.
    [43]J. Laegsgaard, N. A. Mortensen, A. Bjarklev, "Mode areas and field-energy distribution in honeycomb photonic bandgap fibers", J. Opt. Soc. Am. B,2003, vol.20, pp.2037-2045.
    [44]L. Vincetti, "Confinement losses in honeycomb fibers", IEEE Photon. Technol. Lett.,2004, vol. 16, pp.2048-2050.
    [45]R. F. Cregan, B. J. Mangan, J. C. Knight et al., "Single-mode photonic band gap guidance of light in air", Science,1999, vol.285, no.5433, pp.1537-1539.
    [46]J. Broeng, S. E. Barkou, T. Sondergaard, and A. Bjarklev, "Analysis of air-guiding photonic bandgap fibers", Opt. Lett.,2000, vol.25, pp.96-98.
    [47]S. E. Barkou, J. Broeng, A. Bjarklev, "Leakage-free, guidance of light in hollow core optical fibers", Proc. CLEO, Technical Digest,2000, pp.318-319.
    [48]T. P. Hansen, J. Broeng, C. Jakobsen et al., "Air-Guiding Photonic Bandgap Fibers:Spectral Properties, Macrobending Loss, and Practical Handling", J. Lightwave Technol.,2004, vol.22, pp.11-15.
    [49]Y. Xu, A. Yariv, "Loss analysis of air-core photonic crystal fibers", Opt. Lett.,2003, vol.28, pp. 1885-1887.
    [50]N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen et al., "Modal cutoff and the V parameter in photonic crystal fibers", Opt. Lett.,2003, vol.28, no.20, pp.1879-1881.
    [51]M. Midrio, M. P. Singh, C. G. Someda, "Space filling mode of holey fibers:An analytical vectorial solution", J. Lightwave Technol.,2000, vol.18, pp.1031-1032.
    [52]Y. F. Li, C. Y. Wang, M. L. Hu, "A fully vectorial effective index method for photonic crystal fibers:Application to dispersion calculation", Opt. Commun.,2004, vol.238, pp.29-33.
    [53]S. G. Johnson, J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis", Opt. Express,2001, vol.8, pp.173-190.
    [54]S. P. Guo, S. Albin, "Simple plane wave implementation for photonic crystal calculations", Opt. Express,2003, vol.11, pp.167-175.
    [55]A. Ferrando, E. Silvestre, "Full-vector analysis of a realistic photonic crystal fibers", Opt. Lett., 1999, vol.24, no.5, pp.276-278.
    [56]R. Cherif, M. Zghal, R. Chatta, C. B. Neila, "Full vector beam propagation method modeling of dual core photonic crystal fibre couplers", Proc. SPIE,2006, vol.6182, paper 6182-84.
    [57]F. Fogli, L. Saccomandi, P. Bassi et al., "Full vectorial BPM modeling of index-guiding photonic crystal fibers and couplers", Opt. Express,2002, vol.10, pp.54-59.
    [58]T. M. Monro, D. J. Richardson, N. G. Broderick, P. J. Bennett, "Modeling large air fraction holey optical fibers", J. Lightwave Technol.,2000, vol.18, pp.50-56.
    [59]Z. Wang, G. B. Ren, S. Q. Lou, S. S. Jian, "Supercell lattice method for photonic crystal fibers", Opt. Express,2003, vol.11, pp.980-991.
    [60]C. M. De Sterke, T. P. White, B. T. Kuhlmey et al., "Multipole method for microstructured optical fibers. I:Formulation", J. Opt. Soc. Am. B,2002, vol.19, pp.2322-2330.
    [61]B. T. Kuhlmey, T. P. White, G. Renversez et al., "Multipole method for microstructured optical fibers. II:Implementation and results", J. Opt. Soc. Am. B,2002, vol.19, pp.2331-2340.
    [62]A. Nicolet, S. Guenneau, F. Zolla, S. Lasquellec, "Modeling of photonic crystal optical fibers with finite elements", IEEE Transactions on Magnetics,2002, vol.38, pp.1261-1264.
    [63]S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, "Accurate finite element modal solution of photonic crystal fibres", IEE Proc. Optoelectronics,2005, vol.152, pp.241-246.
    [64]W. Jiang, L. Shen, D. Chen, and H. Chi, "An extended FDTD method with inclusion of material dispersion for the full-vectorial analysis of photonic crystal fibers", J. Lightwave Technol.,2006, vol.24, pp.4417-4423.
    [65]Y. Zhu, Y. Chen, P. Huray, X. Dong, "Application of a 2D-CFDTD algorithm to the analysis of photonic crystal fibers (PCFs)", Microwave. Opt. Technol. lett.,2002, vol.35, no.l, pp.215-219.
    [66]J. Limpert, N. D. Robin, I. M. Honninger et al., "High-power rod-type photonic crystal fiber laser", Opt. Express,2005, vol.13, no.4, pp.1055-1058.
    [67]J. Limpert, O. Schmidt, J. Rothhardt et al., "Extended single-mode photonic crystal fiber lasers", Opt. Express,2006, vol.14, no.7, pp.2715-2720.
    [68]M. Hildebrandt, M. Frede, P. Kwee et al., "Single-frequency master-oscillator photonic crystal fiber amplifier with 148 W output power", Opt. Express,2006, vol.14, no.23, pp.11071-11076.
    [69]A. Cucinotta, F. Poli, S. Selleri, "Design of erbium-doped triangular photonic crystal fiber based amplifiers", IEEE Photon. Technol. Lett.,2004, vol.16, no.9, pp.2027-2029.
    [70]F. Poli, L. Rosa, M. Bottacini et al., "Multipump Flattened-Gain Raman Amplifiers Based on Photonic-Crystal Fibers", IEEE Photon. Technol. Lett.,2005, vol.17, no.12, pp.2556-2558.
    [71]P. Petropoulos, T. M. Monro, W. Belardi et al., "A highly nonlinear holey fiber and its application in a regenerative optical switch", in OFC'01, OSA Technical Digest Series (Optical Society of America,2001), paper TuC3.
    [72]P. Petropoulos, T. M. Monro, W. Belardi et al., "2R-regenerative all-optical switch based on a highly nonlinear holey fiber", Opt. Lett.,2001, vol.26, pp.1233-1235.
    [73]S. K. Varshney, K. Saitoh, N. Saitoh et al., "Strategies for realizing photonic crystal fiber bandpass filters", Opt. Express,2008, vol.16, no.13, pp.9459-9467.
    [74]N. Chen, S. Chi, "Evanescent Wave Photonic Crystal Fiber Tunable Filter Using Dispersive Optical Polymers", in OFC and NFOEC,2005, Technical Digest (CD), paper OWD3.
    [75]M. A. Terrel, M. Digonnet, S. Fan, "A Polarization Controller for Air-Core Photonic-Bandgap Fiber", in OFC and NFOEC,2006, Technical Digest (CD), paper OWI56.
    [76]S. Kobtsev, S. Kukarin, N. Fateev et al., "Dual-core air-clad fiber for supercontinuum polarization control", Proc. Nonlinear Guided Waves and Their Applications, Technical Digest on CD (Optical Society of America,2004), paper WC8.
    [77]L. Rindorf, O. Bang, "Sensitivity of photonic crystal fiber grating sensors:biosensing, refractive index, strain, and temperature sensing", J. Opt. Soc. Am. B,2008, vol.25, no.3, pp. 310-324.
    [78]J. H. Lim, K. S. Lee, J. C. Kim, B. H. Lee, "Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure", Opt. Lett.,2004, vol.29, no.4, pp.331-333.
    [79]Y. P. Yatsenko, A. F. Kosolapov, A. E. Levchenko et al., "Broadband wavelength conversion in a germanosilicate-core photonic crystal fiber" Opt. Lett.,2009, vol.34, no.17, pp.2581-2583.
    [80]P. A. Andersen, T. Tokle, Y. Geng et al., "Wavelength Conversion of a 40-Gb/s RZ-DPSK Signal Using Four-Wave Mixing in a Dispersion-Flattened Highly Nonlinear Photonic Crystal Fiber", IEEE Photon. Technol. Lett.,2005, vol.17, no.9, pp.1908-1910.
    [81]B. H. Lee, J. B. Eom, J. Kim et al., "Photonic crystal fiber coupler," Opt. Lett.,2002, vol.27, pp. 812-814.
    [82]B. H. Lee, J. B. Eom, D. S. Moon et al., "Fabrication and transmission characteristics of couplers using photonic crystal fibers", in OFC'02, paper ThK2.
    [83]J. Villatoro, M. P. Kreuzer, R. Jha et al., "Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity", Opt. Express,2009, vol.17, no.3, pp.1447-1453.
    [84]D. Kacik, I. Turek, I. Martincek et al., "Intermodal interference in a photonic crystal fibre", Opt. Express,2004, vol.12, no.15, pp.3465-3470.
    [85]J. H. Lim, H. S. Jang, K. S. Lee et al., "Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings", Opt. Lett.,2004, vol.29, no.4, pp. 346-348.
    [86]J. C. W. Corbett, J. R. Allington-Smith, "Coupling starlight into single-mode photonic crystal fiber using a field lens", Opt. Express,2005, vol.13, pp.6527-6540.
    [87]Y. Kato, T. Tanifuji, N. Kashima, R. Arioka, "Arc-fusion splicing of single-mode fibers.3:A highly efficient splicing technique", Appl. Opt.,1984, vol.23, no.15, pp.2654-2659.
    [88]P. St. Russell, "Photonic-Crystal Fibers", J. Lightwave Technol.,2006, vol.24, no.12, pp. 4729-4749.
    [89]W. Guo, G Y. Zhou, L. T. Hou et al., "The fabrication of micro-structure fiber with the improved stacking-capillary method", Proc. SPIE, International Conference on Advanced Laser Technologies, Tianjin, China,2006, vol.6344, pp.15.
    [90]W. Guo, G. Y. Zhou, Y. J. Ni, L. T. Hou, "Fabrication of micro-structure fiber by improved stacking-capillary method", Journal of Optoelectronics Laser,2006, vol.17, pp.1035-1038.
    [91]T. Y. Guo, S. Q. Lou, H. L. Li, S. S. Jian, "Control of the fabrication parameters during the fabrication of Photonic Crystal Fibers", Acta. Physica. Sinica,2009, vol.58, no.9, pp. 6308-6315.
    [92]M. C. J. Large, S. Ponrathnam, A. Argyros et al., "Microstructured polymer optical fibres:New opportunities and challenges," Mol. Cryst. Liq. Cryst.,2006, vol.446, pp.219-231.
    [93]M. van Eijkelenborg, M. C. J. Large, A. Argyros et al., "Microstructured polymer optical fibre", Opt. Express,2001, vol.9, no.7, pp.319-327.
    [94]M. van Eijkelenborg, "Imaging with microstructured polymer fibre", Opt. Express,2004, vol. 12, no.2, pp.342-346.
    [95]P. Petropoulos, H. E. Heidepriem, V. Finazzi et al., "Highly nonlinear and anomalously dispersive lead silicate glass holey fibers", Opt. Express,2003, vol.11, no.26, pp.3568-3573.
    [96]V. V. Ravi Kanth Kumar, A. K. George, W. H. Reeves et al., "Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation", Opt. Express,2002, vol.10, no.25, pp. 1520-1525.
    [97]K. M. Kiang, K. Frampton, T. M. Monro et al., "Extruded single-mode non-silica glass holey optical fibers", Electron. Lett.,2002, vol.38, no.12, pp.546-547.
    [98]V. V. Ravi Kanth Kumar, A. K. George, J. C. Knight, P. St. J. Russell, "Tellurite photonic crystal fiber", Opt. Express,2003, vol.11, no.20, pp.2641-2645.
    [99]X. Feng, A. K. Mairaj, D. W. Hewak, T. M. Monro, "Nonsilica Glasses for Holey Fibers", J. Lightwave Technol.,2005, vol.23, no.6, pp.2046-2054.
    [100]R. T. Bise, D. J. Trevor, "Sol-gel derived microstructured fiber:Fabrication and characterization", in OFC and NFOEC 2005, Technical Digest (CD), paper OWL6.
    [101]G. R. Pickrell, D. Kominsky, R. H. Stolen et al., "Novel techniques for the fabrication of holey optical fibers", Proc. SPIE:Fiber Optic Sensor Technology and Applications,2001, vol.4578, pp.271-282.
    [102]J. Mrazek, V. Matejec, I. Kasik et al., "Application of the Sol-Gel Method at the Fabrication of Microstructure Fibers", J. Sol-Gel. Sci. Tech.,2004, vol.31, no.1-3, pp.175-178.
    [103]P. Falkenstein, C. D. Merritt, B. L. Justus, "Fused preforms for the fabrication of photonic crystal fibers", Opt. Lett.,2004, vol.29, no.16, pp.1858-1860.
    [104]L. Wang, Y. Zhang, L. Ren et al., "New approach to mass fabrication technology of microstructured polymer optical fiber preform", Chin. Opt. Lett.,2005, vol.3, pp.94-95.
    [105]Y. Zhang, K. Li, L. Wang et al., "Casting preforms for microstructured polymer optical fibre fabrication", Opt. Express,2006, vol.14, pp.5541-5547.
    [106]A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, "Modeling the Fabrication of Hollow Fibers:Capillary Drawing", J. Lightwave Technol.,2001, vol.19, no.12, pp.1924-1931.
    [107]A. D. Fitt, C. P. Please, K. Furusawa, T. M. Monro, "Modeling fiber drawing:capillary manufacture", IEEE CLEO'02, Technical Digest,2002, pp.20-21.
    [108]S. C. Xue, R. I. Tanner, G. W. Barton, R. Lwin, M. C. J. Large, and L. Poladian, "Fabrication of Microstructured Optical Fibers-Part I:Problem Formulation and Numerical Modeling of Transient Draw Process", J. Lightwave Technol.,2005, vol.23, no.7, pp.2245-2254.
    [109]S. C. Xue, R. I. Tanner, G. W. Barton, R. Lwin, M. C. J. Large, and L. Poladian, "Fabrication of Microstructured Optical Fibers-Part II:Numerical Modeling of Steady-State Draw Process", J. Lightwave Technol.,2005, vol.23, no.7, pp.2255-2266.
    [110]S. C. Xue, M. C. J. Large, G. W. Barton, R. I. Tanner, L. Poladian, and R. Lwin, "Role of Material Properties and Drawing Conditions in the Fabrication of Microstructured Optical Fibers", J. Lightwave Technol.,2006, vol.24, no.2, pp.853-860.
    [111]S. Yang, Y. Zhang, X. Peng et al., "Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field", Opt. Express,2006, vol. 14, pp.3015-3023.
    [112]G. Ren, P. Shum, L. Zhang, X. Yu, W. Tong, and J. Luo, "Low-loss all-solid photonic bandgap fiber", Opt. Lett.,2007, vol.32, pp.1023-1025.
    [113]K. Tajima, "Low loss PCF by reduction of hole surface imperfection", in ECOC'07 PD 2.1, Dresden, Germany,2007, pp.73-74.
    [114]A. Podlipensky, P. Szarniak, N. Y. Joly, C. G. Poulton, and P. St. J. Russell, "Bound soliton pairs in photonic crystal fiber", Opt. Express,2007, vol.15, no.4, pp.1653-1662.
    [115]F. Luan, D. V. Skryabin, A. V. Yulin, J. C. Knight, "Energy exchange between colliding solitons in photonic crystal fibers", Opt. Express,2006, vol.14, no.21, pp.9844-9853.
    [116]J. H. Chong, M. K. Rao, "Development of a system for laser splicing photonic crystal fiber", Opt. Express,2003, vol.11, pp.1365-1370.
    [117]J. H. Chong, Y. Zhu, and P. Shum, "An effective splicing method on photonic crystal fiber using CO2 laser", IEEE Photon. Technol. Lett.,2003, vol.15, pp.942-944.
    [118]B. Bourliaguet, C. Pare, F. Emond, A. Croteau, A. Proulx, and R. Vallee, "Microstructured fiber splicing", Opt. Express,2003, vol.11, no.25, pp.3412-3417.
    [119]S. G. Leon-Saval, A. K. George, G Kakarantzas, T. A. Birks, and P. S. J. Russell, "Splice-less interfacing of conventional fibers to photonic crystal fibers", in CLEO/QELS 2004, Technical Digest (CD), paper CThCC7.
    [120]S. G. Leon-Saval, T. A. Birks, N. Y. Joly et al., "Splice-free interfacing of photonic crystal fibers", Opt. Lett.,2005, vol.30, no.13, pp.1629-1631.
    [121]A. D. Yablon, R. Bise, "Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses", in OFC'04, Technical Digest (CD),2004, paper MF14.
    [122]A. D. Yablon, R. Bise, "Low-Loss High-Strength Microstructured Fiber Fusion Splices Using GRIN Fiber Lenses", IEEE Photon. Technol. Lett.,2005, vol.17, no.1, pp.118-120.
    [123]L. M. Xiao, W. Jin, M. S. Demokan, "Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges", Opt. Lett.,2007, vol.32, no.2, pp.115-117.
    [124]J. N. Blake, B. Y. Kim, H. J. Shaw, "Fiber-optic modal coupler using periodic microbending", Opt. Lett.,1986, vol.11, no.3, pp.177-179.
    [125]K. Y. Song, I. K. Hwang, S. H. Yun, B.Y. Kim, "High performance fused-type mode-selective coupler using elliptical core two-mode fiber at 1550nm", IEEE Photon. Technol. Lett.,2002, vol. 14, pp.501-503.
    [126]W. V. Sorin, B. Y. Kim, H. J. Shaw, "Highly selective evanescent modal filter for two-mode optical fibers", Opt. Lett.,1986, vol.11, no.9, pp.581-583.
    [127]S. H. Yun, I. K. Hwang, and B.Y. Kim, "All-fiber tunable filter and laser based on two-mode fiber", Opt. Lett.,1996, vol.21, pp.27-29.
    [128]B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, "All-fiber acousto-optic frequency shifter", Opt. Lett.,1986, vol.11, no.6, pp.389-391.
    [129]H. S. Park, K. Y. Song, S. H. Yun et al., "All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers", J. Lightwave Tech.,2002, vol.20, pp.1864-1868.
    [130]J. N. Blake, S. Y. Huang, B. Y. Kim, and H. J. Shaw, "Strain effects on highly elliptical core two-mode fibers", Opt. Lett.,1987, vol.12, no.9, pp.732-734.
    [131]K. A. Murphy, M. S. Miller, A. M. Vengsarkar et al., "Elliptical-core two-mode optical-fiber sensor implementation methods", J. Lightwave Technol.,1990, vol.8, pp.1688-1696.
    [132]A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, R. O. Claus, "Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature", J. Lightwave Technol.,1994, vol.12, pp.170-177.
    [133]B. Y. Kim, J. N. Blake, S. Y. Huang, H. J. Shaw, "Use of highly elliptical core fibers for two-mode fiber devices", Opt. Lett.,1987, vol.12, no.9, pp.729-731.
    [134]Z. Wang, J. Ju, and W. Jin, "Properties of elliptical-core two-mode fiber", Opt. Express,2005, vol.13, no.11, pp.4350-4357.
    [135]J. Villatoro, V. Finazzi, V. Pruneri et al., "Two-mode photonic crystal fiber interferometer for sensing applications", in CLEO/IQEC 2007, Conference Digest, paper CH3_1.
    [136]J. Ju, W. Jin, M. S. Demokan, "Two-Mode Operation in Highly Birefringent Photonic Crystal Fiber", IEEE Photon. Technol. Lett.,2004, vol.16, no.11, pp.2472-2474.
    [137]J. Ju, W. Jin, M. S. Demokan, "Design of Single-Polarization Single-Mode Photonic Crystal Fiber at 1.30 and 1.55 μm", J. Lightwave Technol.,2006, vol.24, no.2, pp.825-830.
    [138]M. J. Messerly, J. R. Onstott, and R. C. Mikkelson, "A broadband single polarization optical fiber", J. Lightwave Technol.,1991, vol.9, no.7, pp.817-820
    [139]M. Eguchi, Y. Tsuji, "Single-mode single-polarization holey fiber using anisotropic fundamental space-filling mode", Opt. Lett.,2007, vol.32, no.15, pp.2112-2114.
    [140]F. D. Zhang, M. Zhang, X. Y. Liu, P. D. Ye, "Design of Wideband Single-Polarization Single-Mode Photonic Crystal Fiber", J. Lightwave Technol.,2007, vol.25, no.5, pp. 1184-1189.
    [141]X. H. Zheng, "Single-mode single-polarisation fibre using resonant absorbing effect", Electron. Lett.,1987, vol.23, no.1, pp.14-15.
    [142]X. Y. Liu, F. D. Zhang, M. Zhang, and P. D. Ye, "Numerical investigation on single-mode single-polarization photonic crystal fiber using resonant absorption effect", Acta. Physica. Sinica, 2007, vol.56, no.1, pp.301-307.
    [143]Y. Tsuchida, K. Saitoh, M. Koshiba, "A Design Method for Single-Polarization Holey Fibers With Improved Beam Quality Factor", J. Lightwave Technol.,2008, vol.26, no.14, pp. 2162-2167.
    [1]J. C. Knight, T. A. Birks, P. S. Russel et al., "All-silica single-mode optical fiber with photonic crystal cladding", Opt. Lett.,1996, vol.21, no.19, pp.1547-1549.
    [2]J. C. Knight and P. S. Russell, "Photonic crystal fibers:New way to guide light," Science,2002, vol.296, no.5566, pp.276-277.
    [3]R. F. Cregan, B. J. Mangan, J. C. Knight et al., "Single-mode photonic band gap guidance of light in air", Science,1999, vol.285, no.5433, pp.1537-1539.
    [4]T. A. Birks. J. C. Knight, and P. S. Russell, "Endlessly single-mode photonic crystal fiber", Opt. Lett.,1997, vol.22, no.13, pp.961-963.
    [5]A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, "Nearly zero ultraflattened dispersion in photonic crystal fibers", Opt. Lett.,2000, vol.25, no.11, pp.790-792.
    [6]W. H. Reeves, J. C. Knight, P. S. J. Russell, and P. J. Roberts, "Demonstration of ultra-flattened dispersion in photonic crystal fibers", Opt. Express,2002, vol.10, no.14, pp.609-613.
    [7]M. J. Steel, P. M. Osgood. Jr, "Ellipitical-hole photonic crystal fibers", Opt. Lett.,2001, vol.26, no.4, pp.229-231.
    [8]S. Yang, Y. Zhang, L. He, and S. Xie, "Broadband dispersion-compensating photonic crystal fiber", Opt. Lett.,2006, vol.31, no.19, pp.2830-2832.
    [9]N. A. Mortensen, J. R. Folkenberg, P. M. Skovgaard et al., "Numerical aperture of single-mode photonic crystal fibers", IEEE Photon. Technol. Lett.,2002, vol.14, no.8, pp.1094-1096.
    [10]N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg et al., "Improved large-mode-area endlessly single-mode photonic crystal fibers", Opt. Lett.,2003, vol.28, no.6,393-395.
    [11]S. Guo and S. Albin, "Simple plane wave implementation for photonic crystal calculations", Opt. Express,2003, vol.11, no.2, pp.167-175.
    [12]B. T. Kuhlmey, T. P. White, G. Renversez et al., "Multipole method for microstructured optical fibers. II. Implementation and results", Journal of the Optical Society of America B:Optical Physics,2002, vol.19, no.10, pp.2331-2340.
    [13]F. Fogli, L. Saccomandi, P. Bassi et al., "Full vectorial BPM modeling of index-guiding photonic crystal fibers and couplers", Opt. Express,2002, vol.10, no.1, pp.54-59.
    [14]W. Jiang, L. Shen, D. Chen, and H. Chi, "An extended FDTD method with inclusion of material dispersion for the full-vectorial analysis of photonic crystal fibers", J. Lightwave Technol.,2006, vol.24, pp.4417-4423.
    [15]Y. J. Zhu, Y. Ch. Chen, P. Huray, and X. P. Dong, "Application of a 2D-CFDTD algorithm to the analysis of photonic crystal fibers (PCFs)", Microwave. Optical. Technol. Lett.,2002, vol.35, no.1, pp.10-14.
    [16]V. H. Aristizabal, F. J. Velez, and P. Torres, "Modeling of photonic crystal fibers with the Scalar Finite Element Method", Porlamar, Venezuela,2004, pp.849-854.
    [17]S. S. A. Obayya, B. M. A. Rahman, and K. T. V. Grattan, "Accurate finite element modal solution of photonic crystal fibres", IEE Proceedings:Optoelectronics,2005, vol.152, pp. 241-246.
    [18]A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, "Modeling the Fabrication of Hollow Fibers: Capillary Drawing", J. Lightwave Technol.,2001, vol.19, no.12, pp.1924-1931.
    [19]A. D. Fitt, C. P. Please, K. Furusawa, T. M. Monro, "Modeling fiber drawing:capillary manufacture", IEEE CLEO'02, Technical Digest,2002, pp.20-21.
    [20]S. C. Xue, R. I. Tanner, G. W. Barton, R. Lwin, M. C. J. Large, and L. Poladian, "Fabrication of Microstructured Optical Fibers-Part I:Problem Formulation and Numerical Modeling of Transient Draw Process", J. Lightwave Technol.,2005, vol.23, no.7, pp.2245-2254.
    [21]S. C. Xue, R. I. Tanner, G. W. Barton, R. Lwin, M. C. J. Large, and L. Poladian, "Fabrication of Microstructured Optical Fibers-Part II:Numerical Modeling of Steady-State Draw Process", J. Lightwave Technol.,2005, vol.23, no.7, pp.2255-2266.
    [22]S. C. Xue, M. C. J. Large, G. W. Barton, R. I. Tanner, L. Poladian, and R. Lwin, "Role of Material Properties and Drawing Conditions in the Fabrication of Microstructured Optical Fibers", J. Lightwave Technol.,2006, vol.24, no.2, pp.853-860.
    [23]G. Y. Zhou, Z. Y. Hou, L. T. Hou, S. G Li, "Effect of Drawing Temperature on the Clad Structure of Photonic Crystal Fiber", J. Optoelectron. Lasers,2006, vol.17, pp.120-121.
    [24]S. Yang, Y. Zhang, X. Peng et al., "Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field", Opt. Express,2006, vol. 14, pp.3015-3023.
    [25]G Ren, P. Shum, L. Zhang, X. Yu, W. Tong, and J. Luo, "Low-loss all-solid photonic bandgap fiber", Opt. Lett.,2007, vol.32, pp.1023-1025.
    [26]W. Guo, G Y. Zhou, Y. J. Ni, L. T. Hou, "Fabrication of micro-structure fiber by improved stacking-capillary method", Journal of Optoelectronics Laser,2006, vol.17, pp.1035-1038.
    [27]P. St. Russell, "Photonic-Crystal Fibers", J. Lightwave Technol.,2006, vol.24, no.12, pp. 4729-4749.
    [28]L. D. Landau, and E. M. Lifshitz, "Fluid Mechanics", Oxford, England:Pergamon Press,1982
    [29]W. W. Schultz, and S. H. Davis, "Effects of Boundary Conditions on the Stability of Slender Viscous Fibers",Trans.ASME, J. Appl. Mech.,1984, vol.51, no.1, pp.1-6.
    [30]S. C. Xue, R. I. Tanner, G. W. Barton, R. Lwin, M. C. J. Large, and L. Poladian, "Fabrication of Microstructured Optical Fibers-Part Ⅱ:Numerical Modeling of Steady-State Draw Process", J. Lightwave Technol.,2005, vol.23, no.7, pp.2255-2266.
    [31]R. H. Doremus, "Viscosity of silica", J. Appl. Phys.,2002, vol.92, no.12, pp.7619-7629.
    [32]N. P. Bansal and R. H. Doremus, Handbook of Glass Properties, New York:Academic Press, p680,1986.
    [33]W.D. Kingery, "Surface Tension of Some Liquid Oxides and Their Temperature Coefficients" J. Am. Ceramic Soc.,1959, vol.42, no.1, pp.6-10.
    [34]D. Tabor, Gases, Liquids and Solids, Penguin Books, Harmondsworth, UK,1969
    [35]A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, D. J. Richardson, "The mathematical modelling of capillary drawing for holey fibre manufacture", J. Engineering Math.,2002, vol. 43, no.2, pp.201-227.
    [36]Z.Yin, and Y. Jaluria, "Neck Down and Thermally Induced Defects in High-Speed Optical Fiber Drawing", J. Heat Transfer,2000, vol.122, no.2, pp.351-362.
    [37]N. A. Mortensen, "Effective area of photonic crystal fibers", Opt. Express,2002, vol.10, no.7, pp.341-348.
    [38]N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen, "Improved large-mode-area endlessly single-mode photonic crystal fibers", Opt. Lett.,2003, vol. 28, no.6, pp.393-395.
    [39]K. Saitoh, Y. Tsuchida, M. Koshiba, and N. A. Mortensen, "Endlessly single-mode holey fibers: the influence of core design", Opt. Express,2005, vol.13, no.26, pp.10833-10839.
    [40]J. Ju, W. Jin, and M. S. Demokan, "Design of single-polarization singlemode photonic crystal fiber at 1.30 and 1.55 μm", J. Lightw. Technol.,2006, vol.24, no.2, pp.825-830.
    [41]Tz. L. Wu, and Ch. Hs. Chao, "A novel ultraflattened dispersion photonic Crystal fiber", IEEE Photon. Technol. Lett.,2005, vol.17, no.1, pp.67-69.
    [42]M. Delgado-Pinar, A. Diez, S. Torres-Peiro, M. V. Andres, T. Pinheiro-Ortega, and E. Silvestre, "Waveguiding properties of a photonic crystal fiber with a solid core surrounded by four large air holes", Opt. Express,2009, vol.17, no.9, pp.6931-6938.
    [1]T. Okoshi and K. Oyamada, "Single-polarization single-mode optical fiber with refractive-index pits on both sides of core", Electron. Lett.,1980, vol.16, no.18, pp.712-713.
    [2]J. Noda, K. Okamoto, Y. Sasaki, "Polarization-Maintaining Fibers and their applications", J. Lightw. Technol.,1986, vol.4, no.8, pp.1071-1089.
    [3]D. Nolan, M. J. Li, X. Chen, and J. Koh,"Single-polarization fibers and applications", in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Anaheim, California, Technical Digest (CD) (Optical Society of America,2006), paper O WA1.
    [4]T. Katsuyama, H. Matsumura, and T. Suganuma, "Propagation characteristics of single-polarization fibers", Appl. Opt.,1983, vol.22, no.11, pp.1748-1753.
    [5]H. Ito, N. Mouri, K. Kamoto, H. Yokota, and Y. Sasaki, "Investigation of transmission system using single-polarization" (in Japanese), in Proc. IEICE Soc. Conf.,2000, Paper C-3-48.
    [6]D. T. Walton, S. Gray, L. Zenteno, X. Chen, M. Li, D. Nolan, G. Berkey, J. Wang, J. Koh, W. Wood, and C. Tennent, "High Power, Linearly Polarized Yb-doped Fiber Laser", in Advanced Solid-State Photonics (TOPS), G. Quarles, ed., Vol.94 of OSA Trends in Optics and Photonics (Optical Society of America,2004), paper 104.
    [7]V. A. Bhagavatula, R.J. Bhat, G. E. Berkey, X. Chen, M. J. Dejneka, M. T. Gallagher, L. C. Hughes, K.W. Koch, J. Koh, M. J. Li, V. X. Liu, D. A. Nolan, H. M. Rasmussen, C. L. Tennent, N. Venkataraman, D.T. Walton, J. Wang, C.-E. Zah, and L. A. Zenteno, "Progress in high-power fiber lasers", Proceedings of SPIE,2004, vol.5335, pp.210-216.
    [8]A. W. Snyder, J. D. Love, "Optical Waveguide Theory", Chapman and Hall,1983.
    [9]K. Okamoto, "Single-polarization operation in highly birefringent optical fibers", Appl. Opt., 1984, vol.23, no.15, pp.2638-2642.
    [10]M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, "Single-polarization operation of highly birefringent bow-tie optical fibers", Electron. Lett.,1983, vol.19, no.7, pp.246-247.
    [11]M. J. Messerly, J. R. Onstott, and R. C. Mikkelson, "A broad-band single polarization optical fiber", J. Lightwave. Technol.,1991, vol.9, pp.817-820.
    [12]X. H. Zheng, "Single-mode single-polarization fiber using resonant absorbing effect", Electron. Lett.,1987, vol.23, no. 1,pp.14-15.
    [13]J. C. Knight, T. A. Birks, P. St. J. Russel et al., "All-silica single-mode optical fiber with photonic crystal cladding", Opt. Lett.,1996, vol.21, no.19, pp.1547-1549.
    [14]J. C. Knight and P. S. J. Russell, "Photonic crystal fibers:New way to guide light," Science, 2002, vol.296, no.5566, pp.276-277.
    [15]P. St. J. Russell, "Photonic-Crystal Fibers", J. Lightwave. Technol.,2006, vol.24, no.12, pp. 4729-4749.
    [16]T. Y. Guo, S. Q. Lou, H. L. Li, S. S. Jian, "Control of fabrication parameters during the fabrication of photonic crystal fibers", Acta Physica Sinica,2009, vol.58, no.9, pp.412-419.
    [17]K. Saitoh and M. Koshiba, "Single-polarization single-mode photonic crystal fibers", IEEE Photon. Technol. Lett.,2003, vol.15, no.10, pp.1384-1386.
    [18]J. R. Folkenberg, M. D. Nielsen, and C. Jakobsen, "Broadband single-polarization photonic crystal fiber", Opt. Lett.,2005, vol.30, no.12, pp.1446-1448.
    [19]J. Ju, W. Jin, and M. S. Demokan, "Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55μm",J. Lightwave. Technol.,2006, vol.24, no.2, pp.825-830.
    [20]M. Eguchi and Y. Tsuji, "Single-mode single-polarization holey fiber using anisotropic fundamental space-filling mode", Opt. Lett.,2007, vol.32, no.15, pp.2112-2114.
    [21]S. Q. Lou, F. P. Yan, G. B. Ren, S. S. Jian, "High Flexible Single-Polarization Single-Mode Photonic Crystal Fibre", Chin. Phys. Lett.,2004, vol.21, no.12, pp.2448-2451.
    [22]S. Q. Lou, W. Jian, G. B. Ren, S. S. Jian, "An Ultra-Broadband Single-Polarization Single-Mode Photonic Crystal Fibre", Chin. Phys. Lett.,2005, vol.22, no.9, pp.2302-2304.
    [23]L. An, Z. Zheng, Z. Li, T. Zhou, J. Cheng, "Ultra-wideband single-polarization single-mode, high nonlinearity photonic crystal fiber", Opt. Commun.,2009, vol.282, no.16, pp.3266-3269.
    [24]H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, "Absolutely single polarization photonic crystal fiber", IEEE Photon. Technol. Lett.,2004, vol.16, no.1, pp. 182-184.
    [25]刘小毅,张方迪,张民,叶培大,“基于谐振吸收效应的单模单偏振光子晶体光纤研究”物理学报,2007,vol.56,no.1,pp.301-307.
    [26]Y. Tsuchida, K. Saitoh, and M. Koshiba, "A Design Method for Single-Polarization Holey Fibers With Improved Beam Quality Factor", J. Lightwave. Technol.,2008, vol.26, no.14, pp. 2162-2167.
    [27]T. Okoshi, K. Oyamada, M. Nishimura, H. Yokota, "Side tunnel fiber:An approach to polarization-maintaining optical waveguiding scheme," Eiectron. Lett.,1982, vol.18, no.19, pp. 824-826.
    [28]R. B. Dyott, J. R. Cozens, and D. G. Morris. "Preservation of polarization in optical-fiber waveguides with elliptical cores," Electron. Lett.,1979, vol.15, no.13, pp.380-382.
    [29]X. H. Zheng, "Theory of Resonant Absorption Effect and Its Application to Single-Mode Single-Polarization Fibers", J. Lightw. Technol.,1988, vol.6, no.8, pp.1265-1271.
    [30]吴重庆,光波导理论,北京:清华大学出版社,2000.
    [31]G. B. Ren, Z. Wang, S. Q. Lou, and S. S. Jian, "Effective area of photonic crystal fiber", Acta. Electronica Sinica,2004, vol.32, pp.723-726.
    [32]S. S. A. Obayya, B. M. A. Rahman, and K. T. V. Grattan, "Accurate finite element modal solution of photonic crystal fibres", in IEE Proceedings. Optoelectron.,2005, vol.152, no.5, pp. 241-246.
    [33]K. Saitoh, and M. Koshiba, "Full-Vectorial Imaginary-Distance Beam Propagation Method Based on a Finite Element Scheme:Application to Photonic Crystal Fibers", J. Quant. Electron., 2002, vol.38, no.7, pp.927-933.
    [34]D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, F. Poli, and S. Selleri, "Leakage Losses in Photonic Crystal Fibers", in Optical Fiber Communication Conference, Technical Digest (Optical Society of America,2003), paper FI5.
    [35]N. A. Mortensen, "Effective area of photonic crystal fibers", Opt. Express,2002, vol.10, no.7, pp.341-348.
    [36]SMF-28e, Fiber Production Information Sheet. Corning, NY:Corning Inc,2003.
    [37]H. Fang, S. Q. Lou, G. B. Ren, Z. Wang, S. S. Jian, "Theoretical Analysis on Splice Loss of Photonic Crystal Fibers" (in Chinese), Acta Optica Sinica,2006, vol.26, no.6, pp.806-811.
    [38]J. L. Auguste, J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, "Conception, Realization, and Characterization of a Very High Negative Chromatic Dispersion Fiber", Optical Fiber Technology,2002, vol.8, pp.89-105.
    [39]S. Yang, Y. Zhang, L. He, and S. Xie, "Broadband dispersion-compensating photonic crystal fiber", Opt. Lett.,2006, vol.31, no.19, pp.2830-2832.
    [40]T. Fujisawa, K. Saitoh, K. Wada, and M. Koshiba, "Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation", Opt. Express,2006, vol.14, no.2, pp.893-900.
    [1]J. N. Blake, B. Y. Kim, and H. J. Shaw, "Fiber-optic modal coupler using periodic microbending", Opt. Lett.,1986, vol.11, no.3, pp.177-179.
    [2]K. Y. Song, I. K. Hwang, S. H. Yun, and B. Y. Kim, "High performance fused-type mode-selective coupler using elliptical core two-mode fiber at 1550nm", IEEE Photon. Technol. Lett.,2002, vol.14, pp.501-503.
    [3]W. V. Sorin, B. Y. Kim, and H. J. Shaw, "Highly selective evanescent modal filter for two-mode optical fibers", Opt. Lett.,1986, vol.11, no.9, pp.581-583.
    [4]S. H. Yun, I.K. Hwang, and B.Y. Kim, "All-fiber tunable filter and laser based on two-mode fiber", Opt. Lett.,1996, vol.21, pp.27-29.
    [5]B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, "All-fiber acousto-optic frequency shifter", Opt. Lett.,1986, vol.11, no.6, pp.389-391.
    [6]H. S. Park, K. Y. Song, S. H. Yun, and B. Y. Kim, "All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers", J. Lightwave Tech.,2002, vol.20, pp. 1864-1868.
    [7]J. N. Blake, S. Y. Huang, B. Y. Kim, and H. J. Shaw, "Strain effects on highly elliptical core two-mode fibers", Opt. Lett.,1987, vol.12, no.9, pp.732-734.
    [8]K. A. Murphy, M. S. Miller, A. M. Vengsarkar, and R.O. Claus, "Elliptical-core two-mode optical-fiber sensor implementation methods", J. Lightwave Technol.,1990, vol.8, pp. 1688-1696.
    [9]A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, "Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature", J. Lightwave Technol.,1994, vol.12, pp.170-177.
    [10]H. L. Wang, W. H. Bi, A. Yang, and F. Liu, "Modular interference characteristic of two-mode fiber", Chin. Opt. Lett.,2006, vol.4, no.11, pp.621-624.
    [11]A. M. Vengsarkar, J. A. Greene, and K. A. Murphy, "Photoinduced refractive-index changes in two-mode, elliptical-core fibers:sensing applications", Opt. Lett.,1991, vol.16, no.19, pp. 1541-1543.
    [12]H. G. Park, C. C. Pohalski, and B. Y. Kim, "Optical Kerr switch using elliptical-core two-mode fiber", Opt. Lett.,1988, vol.13, no.9, pp.776-778.
    [13]A. M. Vengsarkar, B. R. Fogg, K. A. Murphy, and R. O. Claus, "Polarimetric analysis of two-mode, elliptical-core optical fibers", Opt. Lett.,1991, vol.16, no.7, pp.464-466.
    [14]B. K. Kim, S. H. Yun, I. K. Hwang, and B. Y. Kim, "Nonlinear Response of Two-Mode Fiber-Optic Interferometer to Strain", in Optical Fiber Sensors, (Optical Society of America, 1996), paper Tu52.
    [15]B. Y. Kim, J. N. Blake, S. Y. Huang, H. J. Shaw, "Use of highly elliptical core fibers for two-mode fiber devices", Opt. Lett.,1987, vol.12, no.9, pp.729-731.
    [16]A. W. Snyder, J. D. Love, "Optical Waveguide Theory", Chapman and Hall,1983.
    [17]A. W. Snyder, and X. H. Zheng, "Optical fibers of arbitrary cross sections", J. Opt. Soc. Am. A, 1986, vol.3, no.5, pp.600-609.
    [18]Z. Wang, J. Ju, and W. Jin, "Properties of elliptical-core two-mode fiber", Opt. Express,2005, vol.13, no.11, pp.4350-4357.
    [19]J. C. Knight, T. A. Birks, D. M. Atkin, and P. S. J. Russell, "Pure silica single-mode fibre with hexagonal photonic crystal cladding", in OFC'96, San Diego,1996, vol.2, pp.1-4.
    [20]J. C. Knight, T. A. Birks, P. St. J. Russell, et al., "All-silica single-mode optical fiber with photonic crystal cladding", Opt. Lett.1996, vol.21, no.19, pp.1547-1549.
    [21]P. St. Russell, "Photonic-Crystal Fibers", J. Lightwave Technol.,2006, vol.24, no.12, pp. 4729-4749.
    [22]T. A. Birks, J. C. Knight, P. St. Russell, et al., "Endlessly single-mode photonic crystal fiber", Opt. Lett.,1997, vol.22, no.13, pp.961-963.
    [23]A. Ferrando, E. Silvestre, J. J. Miret, et al., "Nearly zero ultraflattened dispersion in photonic crystal fibers", Opt. Lett.,2000, vol.25, no.12, pp.790-792.
    [24]S. Yang, Y. Zhang, L. He, and S. Xie, "Broadband dispersion-compensating photonic crystal fiber", Opt. Lett.,2006, vol.31, no.19, pp.2830-2832.
    [25]P. R. Chaudhuri, V. Paulose, C. Zhao et. al., "Near-elliptic core polarization-maintaining photonic crystal fiber:modeling birefringence characteristics and realization", IEEE Photon. Technol. Lett.,2004, vol.16, no.5, pp.1301-1303.
    [26]Y. Tsuchida, K. Saitoh, M. Koshiba, "Large-Mode-Area Single-Mode Holey Fiber with Low Bending Losses:Towards High Power Beam Delivery Systems", in OFC'07, OSA Technical Digest Series (CD),2007, paper OThA1.
    [27]K. Saitoh and M. Koshiba, "Single-polarization single-mode photonic crystal fibers", IEEE Photon. Technol. Lett.,2003, vol.15, no.10, pp.1384-1386.
    [28]K. Saitoh, M. Koshiba, "Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window", Opt. Express,2004, vol.12, no. 10, pp.2027-2032.
    [29]A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, ""Highly birefringent photonic crystal fibers", Opt. Lett.,2000, vol.25, no.18, pp.1325-1327.
    [30]S. S. A. Obayya, B. M. A. Rahman, and K. T. V. Grattan, "Accurate finite element modal solution of photonic crystal fibres", in IEE Proceedings. Optoelectron.,2005, vol.152, no.5, pp. 241-246.
    [31]K. Saitoh, and M. Koshiba, "Full-Vectorial Imaginary-Distance Beam Propagation Method Based on a Finite Element Scheme:Application to Photonic Crystal Fibers", J. Quant. Electron., 2002, vol.38, no.7, pp.927-933.
    [32]B. T. Kuhlmey, R. C. McPhedran, and C. M. de Sterke, "Modal cutoff in microstructured optical fibers", Opt. Lett.,2002, vol.27, no.19, pp.1684-1686.
    [33]Y. Li, C. Wang, Y. Chen, M. Hu, B. Liu and L. Chai, "Solution of the fundamental space-filling mode of photonic crystal fibers:numerical method versus analytical approaches", Applied Physics B:Lasers and Optics,,2006, vol.85, no.4, pp.597-601.
    [34]G. B. Ren, Z. Wang, S. Q. Lou, and S. S. Jian, "Mode classification and degeneracy in photonic crystal fibers" Opt. Express,2003, vol.11, no.11, pp.1310-1321.
    [35]A. S. Jazi, Y. G. Lam, "Mode classification and cutoff conditions in fiber optical waveguides" J. Opt. Soc. Am.,1977, vol.67, pp.1372-1374.
    [36]T. Y. Guo, S. Q. Lou, H. L. Li, S. S. Jian, "Capillary drawing for Fabrication of Photonic Crystal Fibers:theoretical calculations and experiments", Acta. Physica. Sinica,2009, vol.58, no.7, pp.4724-4730.
    [37]T. Y. Guo, S. Q. Lou, H. L. Li, S. S. Jian, "Control of the fabrication parameters during the fabrication of Photonic Crystal Fibers", Acta. Physica. Sinica,2009, vol.58, no.9, pp. 6308-6315.
    [38]X. Z. Sheng, and S. Q. Lou, "Influence of Deformation Holes on Properties of Photonic Crystal Fibres", Chin. Phys. Lett.2005, vol.22, pp.2588-2591.
    [39]W. Jin, Z. Wang, and J. Ju, "Two-mode photonic crystal fibers", Opt. Express,2005, vol.13, no. 6, pp.2082-2088.
    [40]J. Ju, W. Jin, M. S. Demokan, "Two-Mode Operation in Highly Birefringent Photonic Crystal Fiber", IEEE Photon. Technol. Lett.,2004, vol.16, no.11, pp.2472-2474.
    [41]H. Y. Choi, M. J. Kim, and B. H. Lee, "All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber", Opt. Express,2007, vol.15, no.9, pp.5711-5720.
    [42]S. Y. Huang, J. N. Blake, and B. Y. Kim, "Mode Characteristics of Highly Elliptical Core Two-Mode Fibers Under Purterbations", in Optical Fiber Sensors, vol.2 of OSA Technical Digest Series (Optical Society of America,1988), paper WBB2.
    [43]T. Y. Guo, S. Q. Lou, H. L. Li, L. Yao, S. S. Jian, "Low Loss Arc Fusion Splice of Photonic Crystal Fibers", Acta Optica Sinica,2009, vol.29, no.2, pp.511-516.
    [1]J. C. Knight, T. A. Birks, P. St. J. Russell, et al., All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett.1996, vol.21, no.19, pp.1547-1549.
    [2]J. C. Knight, and P. St. Russell, "New ways to guide light", Science,2002, vol.296, no.5566, pp. 276-277.
    [3]T. A. Birks, J. C. Knight, and P. St. Russell, "Endlessly single-mode photonic crystal fiber", Opt. Lett.,1997, vol.22, no.13, pp.961-963.
    [4]W. H. Reeves, J. C. Knight, P. S. J. Russell, and P. J. Roberts, "Demonstration of ultra-flattened dispersion in photonic crystal fibers", Opt. Express,2002, vol.10, no.14, pp.609-613.
    [5]S. G Yang, Y. J. Zhang, X. Z. Peng, Yang Lu, S. Z. Xie, J. Y. Li, Wei Chen, Z. W. Jiang, J. G. Peng, and H. Q. Li, "Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field", Opt. Express,2006, vol.14, no.7, pp. 3015-3023.
    [6]L. An, Z. Zheng, Z. Li, T. Zhou, J. Cheng, "Ultra-wideband single-polarization single-mode, high nonlinearity photonic crystal fiber", Opt. Commun.,2009, vol.282, no.16, pp.3266-3269.
    [7]N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen, "Improved large-mode-area endlessly single-mode photonic crystal fibers", Opt. Lett.2003, vol.28, no.6, pp.393-395.
    [8]K. S. Abedin, T. Miyazaki, F. Kubota, "Wavelength conversion of pseudorandom pulses at 10 Gb/s by using soliton self-frequency shift in a photonic crystal fiber", IEEE Photon. Techno 1. Lett.,2004, vol.16, no.4, pp.1119-1121.
    [9]N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, "Noise amplification during supercontinuum generation in microstructure fiber", Opt. Lett.,2003, vol.28, no.11, pp. 944-946.
    [10]J. Herrmann and A. Husakou, "Nonlinear optical processes in photonic crystal fibers", in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Baltimore, Maryland, Technical Digest (Optical Society of America,2003), paper QMI1.
    [11]B. J. Eggleton, C. Kerbage, P. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices", Opt. Express,2001, vol.9, no.13, pp.698~713
    [12]M. Yoshida and J. Maeda, "Photonic Crystal Fiber Amplifiers", in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Baltimore, Maryland, Technical Digest (CD) (Optical Society of America,2005), paper OFB1.
    [13]J. Limpert, N. Deguil-Robin, I. Manek-Honninger, F. Salin, F. Roser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tunnermann, J. Broeng, A. Petersson, and C. Jakobsen, "High-power rod-type photonic crystal fiber laser", Opt. Express,2005, vol.13, no.4, pp.1055-1058.
    [14]Y. P. Wang, L. M. Xiao, D. N. Wang, and W. Jin, "Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity", Opt. Lett.,2006, vol.31, no.23, pp.3414-3416.
    [15]W. N. Macpherson, M. J. Gander, R. Mcbride, et al. Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre[J]. Optics Comm.2001,193:97~104.
    [16]L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Heiby, and O. Bang, "Photonic Crystal Fiber Gratings:Prospects for Label-Free Biosensors" in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, Quebec City, Canada, OSA Technical Digest (CD) (Optical Society of America,2007), paper BWC4.
    [17]P. J. Bennett, Tanya M. Monro, and D. J. Richardson, "Toward practical holey fiber technology: fabrication, splicing, modeling, and characterization", Opt. Lett.,1999, vol.24, no.17, pp. 1203-1205.
    [18]B. Bourliaguet, C. Pare, F. Emond, A. Croteau, A. Proulx, and R. Vallee, "Microstructured fiber splicing", Opt. Express,2003, vol.11, no.25, pp.3412-3417.
    [19]J. H. Chong, M. K. Rao, Y. Zhu, and P. Shum, "An effective splicing method on photonic crystal fiber using CO2 laser", IEEE Photon. Technol. Lett.,2003, vol.15, pp.942-944.
    [20]J. H. Chong, M. K. Rao, "Development of a system for laser splicing photonic crystal fiber", Opt. Express,2003, vol.11, no.12, pp.1365-1370.
    [21]A. D. Yablon and R. T. Bise, "Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses", IEEE Photon. Technol. Lett.,2005, vol.17, pp.118-120.
    [22]J. C. W. Corbett and J. R. Allington-Smith, "Coupling starlight into single-mode photonic crystal fiber using a field lens", Opt. Express,2005, vol.13, pp.6527-6540.
    [23]G Diwa, A. Quema, E. Estacio, R. Pobre, H. Murakami, S. Ono, and N. Sarukura, "Photonic-crystal-fiber pigtail device integrated with lens-duct optics for terahertz radiation coupling", App. Phys. Lett.,2005, vol.87, pp.151114.
    [24]G E. Town, and J. T. Lizier, "Tapered holey fibers for spot-size and numerical-aperture conversion", Opt. Lett.,2001, vol.26, no.14, pp.1042-1044.
    [25]T. A. Birks, G. Kakarantzas, P. St J. Russell, D. F. Murphy, "Photonic crystal fiber devices", Proc. SPIE-(Fiber-Based Component Fabrication, Testing and Connectorization),2002, pp. 142-151.
    [26]D. L. Bisbee, "Splicing silica fibers with an electric arc", Appl. Opt.,1976, vol.15, pp. 796-798.
    [27]R. Thapa, K. Knabe, K. L. Corwin, and B. R. Washburn, "Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells", Opt. Express,2006, vol.14, no.21, pp. 9576-9583.
    [28]L. M. Xiao, M. S. Demokan, Wei Jin, Y. P. Wang, and C. L. Zhao, "Fusion Splicing Photonic Crystal Fibers and Conventional Single-Mode Fibers:Microhole Collapse Effect", J. Lightwave Technol.,2007, vol.25, no.11, pp.3563-3574.
    [29]L. M. Xiao, Wei Jin, and M. S. Demokan, "Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges", Opt. Lett.,2007, vol.32, no.2, pp.115-117.
    [30]Y. P. Wang, H. Bartelt, S. Brueckner, J. Kobelke, M. Rothhardt, K. Morl, W, Ecke, and R. Willsch, "Splicing Ge-doped photonic crystal fibers using commercial fusion splicer with default discharge parameters", Opt. Express,2008, vol.16, no.10, pp.7258-7263.
    [31]A. Ishikura, Y. Kato, T. Ooyanagi, and M. Miyauchi, "Loss factors analysis for single-mode fiber splicing without core axis alignment", J. Lightwave Technol.,1989, vol.7, no.4, pp. 577-583.
    [32]J. K. Mackenzie, and R. Shuttleworth, "A phenomenological theory of sintering", in Proc. Phys. Soc. London B,1949, vol.62, pp.833-852.
    [33]T. Y. Guo, S. Q. Lou, S. S. Jian, "Experimental analysis on electric-arc splicing of Photonic crystal fibers", J. Optoelectronics&Laser,2006, vol.17, supplementary issue, pp.247-249.
    [34]J. Laegsgaard, and A. Bjarklev, "Reduction of coupling loss to photonic crystal fibers by controlled hole collapse:a numerical study", Opt. Comm.,2004, vol.237, pp.431-435.
    [35]K. Petermann, "Constraints for fundamental-mode spot size for broadband dispersion compensated singlemode fibers", Electronics Letters,1983, vol.19, pp.712-714.
    [36]F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, "Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method", Opt. Fiber Technol.,2000, vol.6, no.2, pp.181-191.
    [37]M. Koshiba, "Full-vector analysis of photonic crystal fibers using the finite element method", IEICE Trans. Electron.,2002, vol.85-C, no.4, pp.881-888.
    [38]C. M. Miller, S.C. Mettler, and I. A. White, Optical Fiber Splices and Connectors:Theory and Methods, New York:Marcel Dekker Inc.,1986.
    [39]S. G. Krivoshlykov, and E.G Sauter, "Mode coupling between two waveguides with offset, tilt and gap using quantum theoretical methods", J. Phys. A:Math. Gen.,1987, vol.20, pp. 3805-3823.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700