用户名: 密码: 验证码:
珠江三角洲森林和蔬菜地土壤一氧化氮排放
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮氧化物(NO_x=NO+NO_2)在大气光化学烟雾、二次气溶胶和酸雨等重要大气环境与空气质量问题中扮演极其重要角色,在我国人口稠密、工业化程度高的珠江三角洲地区,光化学污染、细粒子污染、灰霾和酸雨正是区内面临的空气污染难题,准确分析NO_x的来源及其排放通量对控制区域大气污染、改善区域空气质量和深入了解氮的地球化学物质循环具有重要意义。迄今为止,除了对珠江三角洲地区石化燃料燃烧过程NO_x排放有过报道之外,对NO_x的其他来源知之甚少。
     土壤是大气NO_x的一个重要来源,尤其对于农田耕作强度高、氮肥用量大和大气氮沉降高的地区,土壤源的贡献可能更大。为了初步评价珠江三角洲及广东省土壤NO排放强度,本研究中我们选择本地区典型森林(季风常绿阔叶林和马尾松林)和蔬菜地为对象,比较系统地研究了这两类生态系统土壤NO排放通量及其影响因素,以及土壤排放的NO的氮同位素特征。研究得到的主要结论如下:
     1.对于阔叶林,雨季NO平均排放通量为14.9ng N m~(-2) s~(-1),低于干季平均排放通量(23.8 ng N m~(-2) s~(-1));对于松林,雨季NO平均排放通量为17.1 ng N m~(-2)s~(-1),高于干季排放通量(7.9 ng N m~(-2) s~(-1))。两类森林的土壤湿度均与NO排放显著相关(P<0.001),土壤湿度变化能很好解释NO排放的季节动态,说明土壤湿度是本地森林土壤NO排放的主要控制因素。由三种不同方法估算出阔叶林全年NO排放为6.1—6.9 kg N ha~(-1) yr~(-1),马尾松林则为4.0—4.4 kg N ha~(-1) yr~(-1)。
     2.外加氮磷实验表明,在阔叶林,硝氮和铵氮处理均大大促进了NO排放,而在松林,铵氮处理对NO排放的促进作用明显高于硝氮。单独氮处理相比同时加氮和磷对NO排放的促进作用更强。我们认为在阔叶林硝化作用和反硝化作用均对NO排放有重要贡献,而对于松林硝化作用在NO排放中起主导作用。根据本研究结果我们推测氮沉降倍增后阔叶林土壤NO排放预计将增加12.2%—21.8%,马尾松林预计将增加12.0%—31.2%。
     3.森林干季加水实验的结果表明阔叶林和马尾松林干季期间由Pulses排放的NO总量分别为29.4 mg N m~(-2)和22.2 mg N m~(-2),分别占全年土壤NO排放总量的4.6%和5.3%。
     4.对广州郊区一块典型耕作方式管理下的蔬菜地(种植有菜心)土壤NO排放进行了一个完整生长周期的研究,结果表明施氮肥后NO排放激剧增加,其他涉及到松土的农田管理措施也会引起NO排放增加。在整个生长期(49天)NO平均排放通量为47.5 ng N m~(-2) s~(-1),基于这一排放通量推算全年NO排放总量约为10.1 kg N ha~(-1) yr~(-1)。施肥引起的NO排放因子为2.4%。根据蔬菜地面积和单位面积NO排放率推算广东省蔬菜地全年向大气排放的NO约为11.7 Gg N yr~(-1),根据排放因子和土壤NO背景排放率推算广东省蔬菜地NO年排放量为13.3 GgN yr~(-1)。
     5.选取南亚热带地区典型菜地土壤,分别施用尿素、碳酸氢铵和硝酸铵。结果表明尿素施用引起的NO排放最大,碳酸氢铵施用引起NH_3排放最大。尿素、碳酸氢铵和硝酸铵施肥引起的NO排放因子分别为2.6%、2.3%和2.2%,引起的NH3排放因子分别为10.9%、15.2%和3.1%。根据本研究结果估算广东省菜地土壤NO排放量约为12.9 Gg N yr~(-1),如果考虑冠层的截留作用,NO排放量下降为10.2 Gg N yr~(-1)。
     6.施尿素和碳酸氢铵后,菜地土壤排放的NO的δ~(15)N值约为-49‰(施肥后第2天),然后逐渐升高,到施肥后第13天时,NO的δ~(15)N值分别为-28.0‰(尿素处理)和-19.8‰(碳酸氢铵处理)。土壤排放的NH_3的δ~(15)N值也逐渐升高,施尿素的土壤NH_3的δ~(15)N值由-42.69‰(day 1)增加到-17.1‰(day 7),施碳酸氢铵的土壤NH_3的δ~(15)N值由-39.4‰(day 0)增加到-21.5‰(day 6)。施肥后土壤源NO的δ~(15)N值范围与石化燃料燃烧排放的NO的δ~(15)N值范围相互区分,而施肥后排放的NH_3的δ~(15)N值范围与其他来源的NH_3的δ~(15)N值范围重叠。
Nitrogen oxides (NO_x) play crucial roles in troposphereic photochemical smog, formation of secondary aerosols and acid rain. Ozone, fine particles and acid rain are the right air quality issues facing China's highly industrialized and densely populated Pearl River Delta (PRD). The understanding of NO_x sources and their fluxes is of top priority not only for the control of the regional air pollution and the improvement of the regional air quality, but also for the regional nitrogen biogeochemical cycling. However, the sources of NO_x in PRD have not been well documented except that from fossil fuel combustion.
     Soils are an important source for atmospheric NO_x, especially for the China's agricultural lands experiencing extensive management, high nitrogen fertilizer application and high nitrogen deposition. In the present study, soil NO emissions from forests (a broadleaf forest and a pine forest) and vegetable fields were measured and their regulating factors were investigated; the nitrogen isotope signature of soil-derived NO was also characterized as well. The main results were as the following:
     1. In the broadleaf forest, mean NO emission in wet season (14.9 ng N m~(-2) s~(-1)) was lower than in dry season (23.8 ng N m~(-2) s~(-1)). In the pine forest, however, mean NO emission in wet season (17.1 ng N m~(-2) s~(-1)) was higher than in dry season (7.9 ng N m~(-1) s~(-1)). Field measurements showed that soil water content was the dominant controlling factor determining the seasonal patterns of NO emissions in both forests. Annual NO emissions in the broadleaf forest and the pine forest were preliminarily estimated to be 6.1-6.9 and 4.0-4.3 kg N ha~(-1) yr~(-1), respectively, by using three upscaling methods.
     2. In the broadleaf forest, both NO_3~- and NH_4~+ addition enhanced NO emissions greatly, but in the pine forest, NH_4~+ addition had much greater enhancement than NO_3~-to soil NO emissions. N addition alone caused more N loss as NO than simultaneous addition of N and P did in both forests. In the pine forest, nitrification was the prevailing process responsible for NO production, while in the broadleaf forest both nitrification and denitrification played important roles in soil NO production. NO emissions will likely increase by 12.8%-23.0% in the broadleaf forest and by 12.0%-33.1% in the pine forest after N deposition doubles in the future.
     3. Based on the results of the water addition experiment in the dry season, we estimated that total NO emissions from pulses in the broadleaf forest and pine forest were 29.4 mg N m~(-2) and 22.2 mg N m~(-2), respectively, which accounted for 4.6% and 5.3% of the annual emission, respectively.
     4. NO fluxes measured in a field of Flowering Chinese cabbage drastically increased after nitrogen fertilizer application, and other practices involving loosening the soil also enhanced NO emission. Mean NO emission flux was 47.5 ng N m~(-1) s~(-1) over a complete growth cycle. Annual NO emission from the vegetable field was about 10.1 kg N ha~(-1) yr~(-1). Fertilizer-induced NO emission factor was estimated to be 2.4%. Total NO emission from vegetable fields in Guangdong province was roughly estimated to be 11.7 Gg N yr~(-1) based on the vegetable field area and annual NO emission rate, and to be 13.3 Gg N yr~(-1) based on fertilizer-induced NO emission factor and background NO emission.
     5. We measured NO and NH_3 emissions from a typical vegetable-land soil in south China following the applications of urea, ammonium nitrate and ammonium bicarbonate, respectively. Over a 72-day sampling period, averaged fertilizer-induced NO emission factors from urea, ammonium bicarbonate (ABC) and ammonium nitrate treated soils amounted to 2.6%, 2.3% and 2.2%, respectively. Averaged fertilizer-induced NH3 emission factors were 10.9%, 15.2% and 3.1%, respectively, over a 39-day sampling period. Annual above-soil NO emission from vegetable lands in Guangdong province was estimated to be 12.9 Gg N yr~(-1), but reduced to 10.2 Gg N yr~(-1) when the canopy reduction effect was considered.
     6.δ~(15)N values of soil-derived NO after urea and ammonium bicarbonate application were about -49‰(day 2), but increased to -28‰(urea application) and -19.8‰(ammonium bicarbonate application), respectively, after 13 days of fertilization. The case was similar for NH_3.δ~(15)N values of NH_3 volatized from urea treated soil increased from -42.6‰(day 1) to -17.1‰(day 7), and those from the ABC treated soil increased from -39.4‰(day 0) to -21.5‰(day 6). Theδ~(15)N values of NO emitted by fertilized soil could be distinguished from those of NO emitted by fossil fuel combustion, but theδ~(15)N values of NH_3 volatilized from fertilized soil overlapped with those from other sources.
引文
1.广东省统计局,2006.广东统计年鉴,北京:中国统计出版社.
    2.《广东森林》编辑委员会编著,1990.广东森林.广州:广东科技出版社.
    3.广州市统计局,2006.广州统计年鉴.北京:中国统计出版社.
    4.何金海,1982.鼎湖山自然保护区之土壤.热带亚热带森林生态系统研究.1:25—38.
    5.何宜庚,1983.广东省鼎湖山自然保护区的土壤.华南师范大学学报(自然科学版),1:87—96.
    6.候爱敏,彭少麟,周国逸,2002.鼎湖山地区马尾松年轮元素含量与酸雨的关系.生态学报,22,1552—1559.
    7.黄忠良,丁明懋,张祝平,1994.鼎湖山季风常绿阔叶林的水文学过程及其氮素动态.植物生态学报,18,194—199.
    8.刘世荣,1992.兴安落叶松人工林生态系统营养元素生物地球化学循环特征.生态学杂志,11,1—6.
    9.彭少麟,1996.南亚热带森林群落动态学.北京:科学出版社.
    10.彭少麟,任海,1998.南亚热带森林生态系统的能量生态研究.北京:气象出版社.
    11.沙丽清,郑征,冯志立,2002.西双版纳热带季雨林生态系统氮的生物地球化学循环研究.植物生态学报,26,689—694.
    12.王小治,朱建国,高人,宝川靖和,2004.太湖地区氮素湿沉降动态及生态学意义.应用生态学报,15,1616—1620.
    13.王铸豪,何道泉,宋绍敦,1982.鼎湖山保护区的植被.热带亚热带森林生态系统研究,1,77—141.
    14.肖健,2005.漳州市氮湿沉降量异常的形成及危害.能源与环境,2,59—61.
    15.孙本华,胡正义,吕家珑,周丽娜,徐成凯,2006.大气氮沉降对阔叶林红壤淋溶水化学模拟研究.生态学报,26,1872—1881.
    16.晏儒来,2004.广东菜心引种试验初报.长江蔬菜,9,45—46.
    17.姚文华,余作岳,1995.广东鹤山丘陵地人工林林内降雨养分含量.生态学 报,15(增刊),124—131.
    18.余世孝,2000.广东省自然植被类型划分探讨——针叶林.热带亚热带植物学报,8,142—156.
    19.张颖,刘学军,张福锁,巨晓棠,邹国元,胡克林,2006,化北平原大气氮沉降的时空变异,生态学报,26,1633—1639
    20.中国国家统计局,2001.中国统计年鉴.北京:中国统计出版社.
    21.中华人民共和国国家标准局,1987.森林土壤分析方法(第三分册).北京:国家标准局.
    22.周国逸,闫俊华,2001.鼎湖区域大气降水特征和物质元素输入对森林生态系统存在和发育的影响.生态学报,21,2002—2012.
    23.周厚诚,李明佳,周远瑞,1986.鼎湖山自然保护区植被图及说明书.热带亚热带森林生态系统研究,4,43—52.
    24. Akiyama, H., and H. Tsuruta, 2002. Effect of chemical fertilizer form on N_2O, NO and NO_2 fluxes from Andosol field. Nutrient Cycling in Agroecosystems, 63, 219-230.
    25. Akiyama, H., and H. Tsuruta, 2003a. N_2O, NO and NO_2 fluxes from soils after the application of manures and urea. Journal of Environmental Quality, 32, 423-431.
    26. Akiyama, H., and H. Tsuruta, 2003b. Effect of organic matter application on N_2O, NO and NO_2 fluxes from andisol field. Global Biogeochemical Cycles, 17, doi: 10.1029/2002GB002016.
    27. Ammann, M., R. Siegwolf, F. Pichlmayer, M. Suter, M. Saurer, and C. Brunold, 1999. Estimating the uptake of traffic NO_2 from ~(15)N abundance in Norway spruce needles. Oecologia, 118, 124-131.
    28. Anderson, I. C., and J. S. Levine, 1986. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers. Applied and Environmental Microbiology, 51,938-945.
    29. Anderson, I. C., and J.S. Levine,1987. Simultaneous field measurements of biogenic emissions of nitric oxide and nitrous oxide. Journal of Geophysical Research, 92, 965-976.
    30. Anderson, I. C., J. S. Levine, M. A. Poth, and P. J. Riggan, 1988. Enhanced biogenie emissions of nitric oxide and nitrous oxide following surface biomass burning. Journal of Geophysical Research, 93, 3893-3898.
    31. Anderson, I. C., M. Poth, J. Homstead, and D. Burdige, 1993. A comparison of NO and N_2O production by the autotrophyic nitrifier Nitrosomonas europaea and the heterotrophic nitrifyer Alcaligenes facealis. Applied and Environmental Microbiology, 59, 3525-3533.
    32. Andreae, M. O., 1991. Biomass burning: its history, use and distribution, and its impact on environmental quality and global climate, in: Levine, J. S. (eds) Global Biomass Burning (pp 3-28). MIT Press, Cambrige.
    33. Atkinson, R., 1997a. Gas-phase tropospheric chemistry of volatile organic compounds. 1. Alkanes and alkenes. Journal of Physical and Chemical Reference Data, 26, 215-290.
    34. Atkinson, R., 1997b. Atmospheric reactions of alkoxy and β-hydroxyalkoxy radicals. International Journal of Chemical Kinetics, 29, 99-111.
    35. Atkinson, R., 2000, Atmospheric chemistry of VOCs and NO_x, Atmospheric Environment, 34, 2063-2101.
    36. Bakwin, P. S., S. C. Wofsy, S-M. Fan, M. Keller, S. E. Trumbore, and J. Maria da Costa, 1990. Emission of nitric oxide (NO) from tropical forest soils and exchange of NO between the forest canopy and atmospheric boundary layers. Journal of Geophysical Research, 95, 16,755-16,764.
    37. Barja, M. I., J. Proupin, and L. Nunez, 1997. Microcalorimetric study of the effect of temperature on microbial activity in soils. Thermochimica Acta, 303, 155-159.
    38. Barthelmie, R. J., and S. C. Pryor, 1998. Implications of ammonia emissions for fine aerosol formation and visibility impairment-a case study from the Lower Fraser Valley, British Columbia. Atmospheric Environment, 32, 345-352.
    39. Baumgartner, M., M. Koschorreck, and R. Conrad, 1996. Oxidative consumption of nitric oxide by heterotrophic bacteria in soil. Federation of European Microbiological Societies (FEMS) Microbial Ecology, 19, 165-170.
    40. Baumgartner, M., and R. Conrad, 1992, Effects of soil variables and season on the production and consumption of nitric oxide in oxic soils. Biology and Fertility of Soils, 14, 166-174.
    41. Benkovitz, C. M., M. T. Scholtz, J. Pacyna, L. Tawasou, J. Dignon, E. C. Voldner, P. A. Spiro, J. A. Logan and T. E. Graedcl, 1996. Global gridded inventories of anthropogenic emissions of sulfur and nitrogen. Journal of Geophysical Research, 101, 29239-29252.
    42. Blackmer, A. M., and M. E. Cerrato, 1986. Soil properties affecting formation of nitric oxide by chemical reactions of nitrite. Soil Science Society of America Journal, 50, 1215—1218.
    43. Boeckx, P., and O. Van Cleemput, 2006. "Forgotten" terrestrial sources of N-gases. International Congress Series, 1293, 363-370.
    44. Boersma, K. F., H. J. Eskes, E.W. Meijer, and H. M. Kelder, 2005. Estimates of lightning NOx production from GOME satellite observations. Atmospeheric chemistry and Physics Discussion, 5, 3047-3104.
    45. Bokhoven, C., and H. J. Theeuwen, 1966. Determination of the abundance of carbon and nitrogen isotopes in Dutch coals and natural gas. Nature, 5052, 927-929.
    46. Bollmann, A., and R. Conrad, 1998. Influence of O_2 availability on NO and N_2O release by nitrification and denitrification in soils. Global Change Biology, 4, 387-396.
    47. Bouwman, A. F., D. S. Lee, W. A. H. Asman, F. J. Dentener, K. W. Van Der Hoek, and J.G. J. Olivier, 1997. A global high-resolution emission inventory for ammonia, Global Biogeochemical cycles, 11, 561-587.
    48. Bouwman, A. F., L. J. M. Boumans, and N. H. Batjes, 2002a. Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands. Global Biogcochemical cycles, 16, 1024, doi:10.1029/2000GB001389.
    49. Bouwman, A. F., L. J. M. Boumans, and N. H. Batjes, 2002b. Modeling global annual N_2O and NO emissions from fertilized fields. Global Biogcochemical Cycles, 16, 1080, doi: 10.1029/2001GB001812.
    50. Brooks, P.D., J.M. Stark, B.B. Melnteer, and T. Preston, 1989. Diffusion Methods to prepare soil extracts for automated nitrogen-15 analysis. Soil Science Society of America Journal, 53, 1707-1711.
    51. Butterbach-Bahl, K., M. Kock, G. Willibald, B. HeweR, S. Buhagiar, H. Papen, and R. Kiese, 2004. Temporal variations of fluxes of NO, NO_2, N_2O, CO_2, and CH4 in a tropical rain forest ecosystem. Global Biogeochemical Cycles, 18, GB3012, doi: 10.1029/2004GB002243.
    52. Butterbach-Bahl, K., R. Gasche, G Willibald, and H. Papen, 2002. Exchange of N-gases at the Hrglwald forest-a summary. Plant and soil, 240, 117-123.
    53. Butterbach-Bahl, K., R. Gasche, L. Breuer, and H. Papen, 1997. Fluxes of NO and N_2O from temperature forest soils: impact of forest type N deposition and of liming on the NO and N_2O emissions. Nutrient Cycling in Agroecosystems, 48, 79-90.
    54. Cai, G.X., Z.L.Zhu, A.C.F. Trevitt, J.R. Freney, and J.R. Simpson, 1986. Nitrogen loss from ammonium bicarbonate and urea fertilizers applied to flooded rice. Fertilizer Research, 10, 203-215.
    55. Cardenas, L., A. Rondon, C. Johansson, and E. Sanhueza, 1993. Effects of soil moisture, temperature, and inorganic nitrogen on nitric oxide emissions from acidic tropical savannah soils. Journal of Geophysical Research, 98, 14,783-14,790.
    56. Chameides, W.L., F. Fehsenfeld, O. Rodgers, C. Cardelino, J. Martinez, D. Parrish, W. Lonneman, D.R. Lawson, R.A. Rasmussen, P. Zimmerman, J. Greenberg, P. Middleton and T. Wang, 1992. Ozone precursor relationships in the ambient atmosphere. Journal of Geophysical Research, 97, 6037-6055.
    57. Chameides, W.L., P.S. Kasibhatla, J. Yienger, and H. Levy Ⅱ, 1994. Growth of continental-scale metro-agro-plexes, regional ozone pollution, and world food production. Science, 264, 74-77.
    58. Chen, X.Y., J. Mulder, Y.H. Wang, D.W. Zhao, R.J. Xiang, 2004, Atmospheric deposition, minerlization and leaching of nitrogen in subtropical forested catchments, South China. Environmental Geochemistry and Health, 26, 179-186.
    59. Cheng, W.G, H. Tsuruta, G.X. Chen, and K. Yagi, 2004. N_2O and NO production in various Chinese agricultural soils by nitrification. Soil Biology and Biochemistry, 36, 953-963.
    60. Cheng, W., Y. Nakajima, S. Sudo, H. Akiyama, and H. Tsuruta, 2002. N_2O and NO emissions form a field of Chinese cabbage as influenced by band application of urea or controlled-released urea fertilizers. Nutrient Cycling in Agroecosystems, 63, 231-238.
    61. Conrad, R., 1994. Compensation concentration as critical variable for regulating the flux of trace gases between soil and atmosphere. Biogeochemistry, 27, 155-170.
    62. Conrad, R., 1990. Flux of NO_x between soil and atmosphere: Importance of soil microbial metabolism. In: Revsbech, N. P. and J. Sorensen (Eds) Denitrification in soil and sediment (pp 105-128). Plenum Press, New York.
    63. Conrad, R., 1996. Soil microorganisms as controllers of atmospheric trace gases (H_2, CO, CH_4, OCS, N_2O, and NO). Microbiological Reviews, 60, 609-640.
    64. Crutzen, P. J., 1979. The role of NO and NO_2 in the chemistry of the troposphere and stratosphere, Annual Review of Earth and Planetary Sciences, 7, 443-472.
    65. Crutzen, P.J., and M.O. Andreae, 1990. Biomass burning in the tropics:impact on atmospheric chemistry and biogeochemical cycles. Science, 250, 1669-1678.
    66. Davidson, E. A., 1993. Soil water content and the ratio of nitrous oxide to nitric oxide emitted from soil. in: R. S. Ormeland (eds) The Biogeochemistry of Global Change: Radiative Trace Gases (pp 369-386). Chapman and Hall, New York.
    67. Davidson, E.A., 1992a. Sources of nitric oxide and nitrous oxide following wetting of dry soil. Soil Science Society of America Journal, 56, 95-102.
    68. Davidson, E. A., 1992b, Pulses of nitric oxide and nitrous oxide flux following wetting of dry soil: An assessment of probable sources and importance relative to annual fluxes. Ecological Bulletin, 42, 149-155.
    69. Davidson, E. A., D. H. Herman, A. Schuster, and M. K. Firestone.1993b. Cattle grazing and oak trees as factors affectingsoil emissions of nitric oxide from an annual grassland.Pages 109-120 in: D.E. Rolston (eds) Agricultural ecosystem effects on trace gases and global climate change. Agronomy Society of America, Madison, Wisconsin, USA.
    70. Davidson, E.A., M. Keller, H.E. Erickson, L.V. Verchot, and E. Veldkamp, 2000. Testing a conceptual model of soil emissions of nitrous and nitric oxide. BioScience, 50, 667-680.
    71. Davidson, E.A., P.A. Matson, P.M. Vitousek, R. Riley, K. Dunkin, G.G. Mendez, J.M. Maas, 1993a. Processes regulating soil emissions of NO and N_2O in a seasonally dry tropical forest. Ecology, 74, 130-139.
    72. Davidson, E. A., P. M. Vitousek, P. A. Matson, R. Riley, G. Garcia-Mendez, and J. M. Maass, 1991. Soil emissions of nitric oxide in a seasonally dry tropical forest of Mexico. Journal of Geophysical Research, 96, 15,439-15,445.
    73. Davidson, E. A., and W. Kingerlee, 1997. A global inventory of nitric oxide emissions of from soils. Nutrient Cycling in Agroecosystems, 48, 37-50.
    74. Delmas, R., D. Serca, and C. Jambert, 1997. Global inventory of NO_x sources, Nutrient Cycling in Agroecosystems, 48, 51-60.
    75. DeMore, W.B., S.P. Sander, D.M. Golden, R.F. Hampson, M.J. Kurylo, C.J. Howard, A.R. Ravishankara, C.E. Kolb, and M.J. Molina, 1997. Chemical Kinetics and Photochemical Data for use in Stratospheric Modeling, Evaluation No. 12, NASA Panel for Data Evaluation, Jet Propulsion Laboratory Publication 97-4, Pasadena, CA.
    76. Dixon, R.K., S. Brown, R.A. Houghton, A.M. Solomon, M.C. Trexler, and J. Wisniewski, 1994. Carbon pool and flux of global forestsystem. Science, 263, 185-190.
    77. Dunfield, P. F., and R. Knowles, 1997. Biological oxidation of nitric oxide in a humisol. Biology and Fertility of Soils, 24, 294-300.
    78. Dunfield, P. F., and R. Knowles, 1998. Organic matter, heterotrophic activity, and NO consumption in soils. Global Change Biology, 4, 199-207.
    79. Downs, M., B. Michener, and B. Fry, K. Nadelhoffer, 1999. Routine measurement of dissolved inorganic ~(15)N in precipictation and strearnwater. Environmental Monitoring and Assessment, 55, 211-220.
    80. Ehhalt, D.H., H.-P. Dorn, and D. Poppe, 1991. The chemistry of the hydroxyl radical in the troposphere. Proceedings of the Royal Society of Edinburgh B, 97, 17-34.
    81. Erickson, H., E.A. Davidson, M. Keller, 2002. Former land-use and tree species affect nitrogen oxide emissions from a tropical dry forest. Oecologia, 130, 297-308.
    82. Erickson, H., M. Keller, and E.A. Davidson, 2001. Nitrogen oxide fluxes and nitrogen cycling during postagricultural succession and forest fertilization in humid tropics. Ecosystems, 4, 67-84.
    83. Fang, S.X., and Y. Mu, 2006. Air/surface exchange of nitric oxide between two typical vegetable lands and the atmosphere in the Yangtze Delta, China. Atmospheric Environment, 40, 6329-6337.
    84. Fang, S.X., Y. Mu, 2007. NO_x fluxes from three kinds of agricultural lands in the Yangtze Delta, China. Atmospheric Environment, doi:10.1016/j.atmosenv. 2007.02.015.
    85. FAO, 2001. Global Forest Resources Assessment 2000. Main Report. FAO Forestry Paper 140, Rome 2001, Italy, 479 pp.
    86. Feigin, A., G. Shearer, D.H. Kohl, and B. Commoner, 1974. The amount and nitrogen-15 content of nitrate in soil profiles from two central Illinois fields in a corn-soybean rotation. Soil Science Society of America Proceedings, 38, 465-471.
    87. Fenn, M.E., M.A. Poth, J.D. Aber, J.S. Baron, B.T. Bormann, D.W. Johnson, A. D. Lernly, S.G McNulty, D.F. Ryan, and R. Stottlemyer, 1998. Nitrogen excess in North American ecosystems: predisposing factors, ecosystem responses, and management strategies. Ecological Applications, 8, 706-733.
    88. Fenn, M.E., M.A. Poth, and D.W. Johnson, 1996. Evidence for nitrogen saturation in the San Bernardino Mountains in southern California. Forest Ecology and Management, 82, 211-230.
    89. Firestone, M. K., and E. A. Davidson, 1989. Microbiological basis of NO and N_2O production and consumption in soil. In: M. O. Andreae and D. S. Schimel (eds). Exchange of trace gases between terrestrial ecosystems and the atmosphere (pp. 7-21). John Wiley and Sons, New York, USA.
    90. Fowler, D., C. Flechard, U. Skiba, M. Coyle, J.N. Cape, 1998. The atmospheric budget of oxidized nitrogen and its role in ozone formation and deposition. New Pyhtologist, 139, 11-23.
    91. Frank, D.A., R.D. Evans, and B.F. Tracy, 2004. The role of ammonia volatilization in controlling the natural ~(15)N abundance of a grazed grassland. Biogeochemistry, 68, 169-178
    92. Freyer, H.D., 1978a. Preliminary δ ~(15)N studies on atmospheric nitrogenous trace gases. Pure and Applied Geophysics, 116, 393-404.
    93. Freyer, H.D., 1978b. Seasonal trends of NH_4~+ and NO_3~- nitrogen isotope composition in rain collected at Jiilich, Germany Tellus, 30, 83-92.
    94. Freyer, H. D., 1991. Seasonal vaiation of ~(15)N/~(14)N ratios in atmospheric nitrate species, Tellus, 43B, 30-40.
    95. Freyer, H.D., D. Kley, A. Volz-Thomas, and K. Kobel, 1993. On the interaction of isotopic exchange processes with photochemical reactions in atmospheric oxides of nitrogen. Journal of Geophysical Research, 98, 14791-14796.
    96. Galbally, I. E., 1989. Factors controlling NOx emissions from soils. In: Andreae, M.O., and D.S. Schimel (Eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere (pp 23-37). John Wiley & Sons, New York
    97. Galbally, I.E., and C. Johansson, 1989. A model relating laboratory measurements of rates of nitric oxides production and field measurements of nitric oxide emission from soils. Journal of Geophysical Research, 94, 6473-6480.
    98. Galbally, I.E., and C.R. Roy, 1978. Loss of fixed nitrogen from soils by nitric oxide exhalation. Nature, 275, 734-735
    99. Galloway, J. N., F. J. Dentener, D. G. Capone, E. W. Boyer, R. W. Howarth, S. P. Soitzinger, G. P. Asner, C. C. Cleveland, P. A. Green, E. A. Holland, D. M. Karl, A. F. Michaels, J. H. Porter, A. R. Townsend, and C. J. Vorosmarty, 2004. Nitrogen Cycles: Past, Present, and Future, Biogeochemistry, 70, 153-226.
    100. Galloway, J.N., J.D. Aber, J.W. Erisman, S.P. Seitzinger, R.W. Howarth, E.B. Cowling, and B.J. Cosby, 2003. The nitrogen cascade. BioScience, 53, 341-356.
    101. Ganzevcld, L., J. Lelieveld, and F. Dentener, 2002. Global soil-biogenic emissions and the role of canopy processes. Journal of Geophysical Research, 107, 4298, 10.1029/2001JD001289.
    102. Gao, Y., 2002. Atmospheric nitrogen deposition to Barnegat Bay. Atmospheric Environment, 36, 5783-5794.
    103. Garcia-Montiel, D.C., EA. Steudler, M. Piccolo, C. Ncill, J. M. Melillo, and C.C. Cerri, 2003. Nitrogen oxide emissions following wetting of dry soils in forest and pastures in Rond6nia, Brazil. Biogcochcrnistry, 64, 319-336.
    104. Garcia-Montiel, D.C., P.A. Stendler, M.C. Piccolo, J.M. Melillo, C. Neill, and C.C. Cerri, 2001. Controls on soil nitrogen oxide emissions from forest and pastures in the Brazilian Amazon. Global Biogeochernical Cycles, 15, 1021-1030.
    105. Gasche, R., H. Papen, 1999. A 3-year continuous record of nitrogen trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany 2. NO and NO2 fluxes. Journal of Geophysical Research, 104, 18505-18520.
    106. Goreau, T.J., W.A. Kaplan, S.C. Wofsy, M.B. McElroy, F.W. Valios, and S.W. Watson, 1980. Production of NO_2~- and N_2O by nitrifying bacteria at reduced concentrations of oxygen. Applied and Environmental Microbilogy, 40, 526-532.
    107. Gut, A., S. M. van Dijk, M. Schcibe, U. Rummel, M. Welling, C. Ammann, EX. Meixner, G.A. Kirkman, M.O. Andreae, and B.E. Lehmann, 2002. NO emission from an Amazonian rain forest soil: Continuous measurements of NO flux and soil concentration. Journal of Geophysical Research, 107, 8057, doi:10.1029/2001JD000521.
    108. Hagler, G.S.W., M.H. Bergin, L.G. Salmon, J.Z. Yu, E.C.H. Wan, M. Zheng, L.M. Zeng, C.S. Kiang, Y.H. Zhang, A.K.H. Lau, and J.J. Schauer, 2006. Source areas and chemical composition of fine particulate matter in the Pearl River Delta region of China. Atmosphere Environment, 40, 3802-3815.
    109. Hall, S. J., and P. A. Matson, 1999. Nitrogen oxide emissions after nitrogen additions in tropical forests. Nature, 400, 152-155.
    110. Hao, J.M., H.Z. Tian, and Y.Q. Lu, 2002. Emission inventories of NO_x from commercial energy consumption in China, 1995-1998. Environmental Science and Technology, 36, 552-560.
    111. Harris, G.W., F.G. Wienhold, and T. Zenker, 1996. Airborne observation of strong biogenic NO_x emissions from the Namibian savanna at the end of the dry season. Journal of Geophysical Research, 101, 23,707-23,711.
    112. He, Z.L., A.K. Alva, D.V. Calvert, and D.J. Banks, 1999. Ammonia volatilization from different fertilizer sources and effects of temperature and soil pH. Soil Science, 164, 750-758.
    113. Heaton, T.H.E., 1987. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chemical Geology (Isotope Geoscience section), 59, 87-102.
    114. Heaton, T.H.E., 1990. ~(15)N/~(14)N ratios of NO_x from vehicle engines and coal-fired power stations. Tellus, 42B, 304-307.
    115. Hogberg P, 1997. Tansley review NO. 95: ~(15)N natural abundance in soil-plant systems. New Phytologist, 137, 179-203.
    116. Holland, E.A., F. J. Dentener, B. Braswell, and M. Sulzman, 1999. Contemporary and pre-industrial global reactive nitrogene budgets. Biogeochemistry, 46, 7-43.
    117. Holland, E.A., and J.F. Lamarque, 1997. Modeling bio-atmospheric coupling of the nitrogen cycle through NO_x emissions and NO_y deposition. Nutrient Cycling in Agroecosystems, 48, 7-24.
    118. Holtgrieve, G. W., P. K. Jewett, and P. A. Matson, 2006. Variations in soil N cycling and trace gas emissions in wet tropical forests. Oecologia, 146, 585-594.
    119. Hosen, Y., K. Paisancharoen, and H. Tsuruta, 2002. Effects of deep application of urea on NO and N_2O emissions from an Andisol. Nutrient Cycling in Agroecosystems, 63, 197-206.
    120. Hou, A. H. Akiyama, Y. Nakajima, S. Sudo, H. Tsuruta, 2000. Effects of urea form and soil moisture on N_2O and NO emissions from Japanese Andosols. Chemosphere-Global Change Science, 2, 321-327.
    121. Hutchinson, G.L., G.P. Livingston, and E.A. Brains, 1993. Nitric and nitrous oxide evolution from managed subtropical grassland. In: Oremland, R.S. (Ed) The biogeochemistry of global change: Radiatively active trace gases (pp. 290-316). Chapman and Hall, New York.
    122. Hutchinson, G.L., M.F. Vigil, J.W. Doran, and A. Kessavalou, 1997. Coarse-scale soil-atmosphere NO_x exchange modeling: status and limitations. Nutrient Cycling in Agroecosystems, 48, 25-35.
    123. IFA (International Fertilizer Association), 2007. Nitrogen, phosphate and potash statistics from 1973-1973/74 to 2004-2004/05. IFADATA statistics online, updated: 7 Feb. 2007 (http://www.fertilizer.org/ifa/statistics/IFADATA/dataline.asp).
    124. IPCC, 2001. Climate Change 2001: The Scientific Basis-Contribution of Working Group Ⅰ to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton et al., 881 pp., Cambridge Univ. Press, New York.
    125. Jacob, D.J., 2000. Heterogeneous chemistry and tropospheric ozone. Atmospheric Environment, 34, 2131-2159.
    126. Johansson, C., 1984. Field measurements of emission of nitric oxide from fertilized and unfertilized forest soils in Sweden. Journal of Atmospheric Chemistry, 1,429-442
    127. Johansson, C., and I.E., Galbally, 1984. Production of nitric oxide in loam under aerobic and anaerobic conditions. Applied Environmental Microbiology, 47, 1284-1289.
    128. Johansson, C., H. Rohde, and E. Sanhueza, 1988. Emission of NO in a tropical savanna and a cloud forest during the dry season. Journal of Geophysical Research, 93, 7180-7192.
    129. Johansson, C., and L. Granat, 1984. Emission of nitric oxide from arable land. Tellus, 36B, 25-37.
    130. Kaplan, W. A., S. C. Wofsy, M. Keller, and J. M. da Costa, 1988. Emission of NO and deposition of O_3 in a tropical forest system. Journal of Geophysical Research, 93, 1389-1395.
    131. Keller, M., W.A. Reiners, 1994. Soil-atmosphere exchange of nitrous oxide, nitric oxide and methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa Rica. Global Biogeochem Cycles, 8, 399-409.
    132. Khaleel, R., K. R. Reddy, and M. R. Overcash, 1981. Changes in soil physical properties due to organic waste applications: a review. Journal of Environmental Quality, 10, 133-141.
    133. Kim, D.S., V.P. Aneja, and W.P. Robarge, 1994. Characterization of nitrogen oxide fluxes from soil of a fallow field in the central Piedmont of North Carolina. Atmospheric Environment, 28, 1129-1137.
    134. Kim, Y. J., C. H. Song, Y. S. Ghim, J. G. Won, S. C. Yoon, G. R. Carmichael, J. H. Woo, 2006. An investigation on NH_3 emissions and particulate NH_4~+-NO_3~- formation in East Asia. Atmospheric Envionment, 40, 2139-2150.
    135. Kirkman, G. A., A. Gut, C. Ammann, L. V. Gatti, A. M. Cordova, M. A. L. Moura, M. O. Andreae, and F. X. Meixner, 2002. Surface exchange of nitric oxide, nitrogen dioxide, and ozone at a cattle pasture in Rondonia, Brazil. Journal of Geophysical Research, 107, 8083, doi: 10.1029/2001 JD000523.
    136. Kramer, M., and R. Conrad, 1991. Influence of oxygen on production and consumption of nitric oxide in soil. Biology and Fertility of Soils, 11, 38-42.
    137. Langford, A.O., F.C. Fehsenfeld, J. Zacharizssen, D.S. Schimel, 1992. Gaseous ammonia fluxes and background concentrations in terrestrial ecosystems of the United States. Global Biogeochemical Cycles, 6, 459-483.
    138. Levaggi, D.A., W. Siu, M. Feldstein, E.L. Kothny, 1972. Quantitative separation of nitric oxide from nitrogen dioxide at atmospheric concentration range. Environmental Science and Technology, 6, 250-252.
    139. Levine, J.S., W.R. Corer Ⅲ, D.I. Sebacher, E.L. Winstead, S. Sebacher, and P.J. Boston, 1988. The effects of fire on biogenic soil emissions of nitric oxide and nitrous oxide. Global Biogeochemical Cycles, 2, 445-449.
    140. Levy, H., W. J. Moxim, A. A. Klonecki, and P. S. Kasibhafla, 1999. Simulated Tropospheric NO_x: Its evaluation, global distribution and individual source contributions. Journal of Geophysical Research, 104, 26279-26306.
    141. Lipschulta, F., O.C. Zafiriou, S.C. Wofsy, M.B. McElroy, F.W. Valois, S.W. Watson, 1981. Production of NO and N_2O by soil nitrifying bacteria. Nature, 294, 641-643.
    142. Liu, S. C., M. Trainer, F. C. Fehsenfeld, D. D. Parrish,E. J. Williams, D. W. Fahey, G Hubler, and P. C.Murphy, 1987. Ozone production in the rural troposphere and the implications for regional and global ozone distributions. Journal of Geophysical Research, 92, 4191-4207.
    143. Logan, J. A., M. J. Prather, S. C. Wofsy, and M. B. McElroy, 1981. Tropospheric chemistry: A global perspective. Journal of Geophysical Research, 86, 7210-7254.
    144. Ludwig, J., and F.X. Meixner, 1994. Surface exchange of nitric oxide (NO) over three European ecosystems. In: Angeletti G and Restelli G (Eds) Proceedings of the Sixth European Symposium on the Physico-Chemical Behaviour of Atmospheric Pollutants (pp 587-593). Commission of the European Communities, Luxembourg.
    145. Ludwig, J., F. X. Meixner, B. Vogel, and J. Ftrstner, 2001. Soil-air exchange of nitric oxide: An overview of processes, environmental factors, and modeling studies. Biogeochemistry, 52, 225-257.
    146. Mariotti, A., 1983. Atmospheric nitrogen is a reliable standard for natural ~(15)N abundance measurements. Nature, 303, 685-687.
    147. Martin, R. E., M. C. Scholes, A. R. Mosier, D. S. Ojima, E. A. Holland, and W. J. Parton, 1998. Controls on annual emissions of nitric oxide from soils of the Colorado shortgrass steppe. Global Biogeochemical Cycles, 12, 81-91.
    148. Matson, P.A., C. Billow, S. Hall, J. Zachariassen, 1996. Fertilization practices and soil variations control nitrogen oxide emissions from tropical sugar cane. Journal of Geophysical Research, 101, 18,533-18,545.
    149. Mckenny, D.J. and C.F. Drury, 1997. Nitric oxide production in agricultural soils. Global Change Biology, 3, 317-326.
    150. McKenney, D.J., C. Lazar, and W.J. Findlay, 1990. Kinetics of the nitrite to nitric oxide reaction in peat. Soil Science Socciety of America Journal, 54, 106-112.
    151. Meixner, F.X., T. Fickinger, L. Marufu, D. Serca, F.J. Nathaus, E. Makina, L. Mukurumbira, and M.O. Andreae, 1997. Preliminary results on nitric oxide emission from a southern African savanna ecosystem. Nutrient Cycling in Agroecosystems, 48, 123-138
    152. Mo, J. M., S. Brown, J. H. Xue, Y. T. Fang, and Z. A. Li, 2006. Response of litter decomposition to simulated N deposition in disturbed rehabilitated and mature forests in subtropical China. Plant and Soil, 282, 135-151.
    153. Mo, J. M., S. Brown, S. L. Peng, and G. H. Kong, 2003. Nitrogen availability in disturbed, rehabilitated and mature forest of tropical China. Forest Ecology and Management, 175, 573-583.
    154. Moore H, 1977. The isotopic composition of ammonia, nitrgoen dioxide and nitrate in the atmosphere. Atmospheric Environment, 11, 1239-1243.
    155. Morino, Y., Y. Kondo, N. Takegawa, Y. Miyazaki, K. Kita, Y. Komazaki, M. Fukuda, T. Miyakawa, N. Moteki, and D.R. Worsnop, 2006. Partitioning of HNO_3 and particulate nitrate over Tokyo: Effect of vertical mixing. Journal of Geophysical Research, 111, D 15215, doi: 10.1029/2005JD006887.
    156. Moxim, W.J., H. Levy Ⅱ, and P.S. Kasibhatla, 1996. Simulated global tropospheric PAN: Its transport and impact on NO_x. Journal of Geophysical Research, 101, 12,621-12,638.
    157. Nagele, W., and R. Conrad, 1990. Influence of soil pH on nitrate-reducing microbial populations and their potential to reduce nitrate to NO and N_2O. Federation of European Microbiological Societies (FEMS) Microbial Ecology, 74, 49-58.
    158. National Research Council, 1991. Rethinking the ozone problem in urban and regional air pollution. National Academy Press, Wahington D.C. pp.524.
    159. Ormeci, B., S.L. Sanin, and J.J. Peirce, 1999. Laboratory study of NO flux from agricultural soil: Effects of soil moisture, pH, and temperature. Journal of Geophysical Research, 104, 1621-1629.
    160. Otter, L.B., W.X. Yang, M.C. Scholes, and F.X. Meixner, 1999. Nitric oxide emissions from a Southern African savanna. Journal of Geophysical Research, 104, 18, 471-18, 485
    161. Papen, H., R. von Berg, I. Hinkel, B. Thoene, and H. Rennenberg, 1989. Heterotrophic nitrification by Alcaligenes faecalis: NO_2~-, NO_3~-, N_2O, and NO production in exponentially growing cultures. Applications of Environmental Microbiology, 55, 2068-2072.
    162. Parrish, D. D., M. P. Buhr, M. Trainer, R. B. Norton, J. P. Shimshock, F. C. Fehsenfeld, K. G. Anlauf, J. W. Bottenheim, Y. Z. Tang, H. A. Wiebe, J. M. Roberts, R. L. Tanner, L. Newman, V. C. Bowersox, K. J. Olszyna, E. M. Bailey, M. O. Rodgers, T. Wang, H. Berresheim, U. K. Roychowdhury, and K.L. Demerjian, 1993. The total reactive oxidized nitrogen levels and the partitioning between the individual species at six rural sites in eastern North America. Journal of Geophysical Research, 98, 2927-2939.
    163. Parsons, D. A. B., M. C. Scholes, R. J. Schloes, and J. S. Levine, 1996. Biogenic NO emissions from savanna soils as a function of fire regime, soil type, soil nitrogen, and water staturs. Journal of Geophysical Research, 101, 23, 683-23, 688.
    164. Parsons, W. F. J., and M. Keller, 1995. Controls of nitric oxide emissions from tropical pasture and rain forest soils. Biology and Fertility of Soils, 20, 151-156.
    165. Patton, W. J., E. A. Holland, S. J. Del Grosso, M. D. Hartman, R. E. Martin, A. R. Mosier, D. S. Ojima, and D. S. Schimel, 2001. Generalized model for NO_x and N_2O emissions from soils. Journal of Geophysical Research 106, 17403-17419.
    166. Perez, T., S. E. Trumbore, S. C. Tyler, P.A. Matson, I. Ortiz-Monasterio, T. Rahn, and D.W.T. Griffith, 2001. Identifying the agricultural imprint on the global N_2O budget using stable isotopes. Journal of Geophysical research, 106, 9869-9878.
    167. Piccolo, M. C., C. Neill, and C. C. Cerri, 1994. Net nitrogen mineralization and net nitrification along a tropical forest-to-pasture chronoscquence. Plant and Soil, 162, 61-70.
    168. Pilegaard, K., 2001. Air-soil exchange of NO, NO_2 and O_3 in forests. Water, Air and Soil Pollution.: Focus, 1, 79-88.
    169. Pilegaard, K., P. Hummelshoj, and N. O. Jcnscn, 1999. Nitric oxide emission from a Norway spruce forest floor. Journal of Geophysical Research, 104, 3433-3445.
    170. Pinto, M., P. Merino, A. del Prado, J.M. Estavillo, S. Yamulki, G. Gebauer, S. Piertzak, J. Larf, O. Oenema, 2004. Increased emissions of nitric oxide and nitrous oxide following tillage of a perennial pasture. Nutrient Cycling in Agroecosystems, 70, 13-22.
    171. Potter, C.S., P.A. Matson, P.M. Vitousek, and E.A. Davidson, 1996. Process modeling of controls on nitrogen trace gas emissions from soils worldwide. Journal of Geophysical Research, 101, 1361-1377.
    172. Potter, C.S., R.H. Riley, and S.A. Klooster, 1997. Simulation modeling of nitrogen trace gas emissions along an age gradient of tropical forest soils. Ecological Modeling, 97, 179-196.
    173. Purbopuspito, J., E. Veldkamp, R. Brumme, and D. Murdiyarso, 2006. Trace gas fluxes and nitrogen cycling along an elevation sequence of tropical montane forests in Central Sulawesi, Indonesia. Global Biogeochemical Cycles, 20, GB3010, doi: 10.1029/2005GB002516.
    174. Remde, A., F. Slemr, and R. Conrad, 1989. Microbial production and uptake of nitric oxide in soil. FEMS Microbiology Ecology, 62, 221-230.
    175. Riley, R. H., and P. M. Vitousek, 1995. Nutrient dynamics and nitrogen trace gas flux during ecosystem development in montane rain forest. Ecology, 76, 292-304.
    176. Rondon, A., C. Johansson, and E. Sanhueza, 1993. Emissions of nitric oxide from soils and termite nests in a Trachypogon savanna of the Orinoco Basin. Journal of Atmospheric Chemistry, 17, 293-306.
    177. Rummel, U., C. Ammann, A. Gut, F. X. Meixner, and M. O. Andreae, 2002. Eddy covariance measurements of nitric oxide flux within an Amazonian rain forest. Journal of Geophysical Research, 107, 8050, doi: 10.1029/2001JD000520.
    178. Russel, K.M., J.N. Galloway, S. Macko, J.L. Moody, and J.R. Seudlark, 1998. Sources of nitrogen in wet deposition to the Chesapeake bay region. Atmospheric Environment, 32, 2453-2465.
    179. Sanhueza, E., 1992. Biogenic emissions of NO and N_2O from tropical savanna soils. In: Proceedings of International Symposium on Global Climate Change (pp. 22-34). Japan National Committee for the IGBC, Tokyo.
    180. Sanhueza, E., L. Cardenas, L. Donoso, and M. Santana, 1994. Effect of plowing on CO_2, CO, CH_4, N_2O, and NO fluxes from tropical savannah soils. Journal of Geophysical Research, 99, 16,429-16,434.
    181. Sanhueza, E., W.-M. Hao, D. Scharffe, L. Donoso, and P. J. Crutzen, 1990. N_2O and NO emission from soils of the northern part of the Guayana shield. Journal of Geophysical Research, 95, 22,481-22,488.
    182. Schleppi, P., I. Bucher-Wallin, M. Saurer, M. Jaggi, and W. Landolt, 2006. Citric acid traps to replace sulphuric acid in the ammonia diffusion of dilute water samples for ~(15)N analysis. Rapid Communications in Mass Spectrometry, 20, 629-634.
    183. Scholes, M. C., R. Martin, R. J. Scholes, D. Parsons and E. Winstead, 1997. NO and N_2O emissions from savanna soils following the first simulated rains of the season. Nutrient Cycling in Agroecosystems, 48, 115-122.
    184. Serca, D., R. Delmas, C. Jambert, and L. Labroue, 1994. Emissions of nitrogen oxides from equatorial rain forest in central Africa: Origin and regulation of NO emission from soils. Tellus, 46B, 243-254.
    185. Senwo, Z. N., and M. A. Tabatabai, 1996. Aspartase activity of soils. Soil Science Society of America Journal, 60, 1416-1422.
    186. Shepherd, M. F., S. Barzetti, and D.R. Hastie, 1991. The production of atmospheric NO_x and N_2O from a fertilized agricultural soil. Atmospheric Environment, 25A, 1961-1969.
    187. Simek, M., and J. E. Cooper, 2002. The influence of soil pH on denitdfication: Progress towards the understanding of this interaction over the last 50 years. European Journal of Soil Science, 53, 345-354.
    188. Skiba, U., D. Fowler, and K.A. Smith, 1994. Emissions of NO and N_2O from soils. Environmental Monitoring and Assessment, 31, 153-158.
    189. Skopp, J., M. D. Jawson, and J.W. Doran, 1990. Steady-state aerobic microbial activity as a function of soil water content. Soil Science Society of America Journal, 54, 1619-1625.
    190. Slemr, F., and W. Seiler, 1991. Field study of environmental variables controlling the NO emissions from soil and the NO compensation point. Journal of Geophysical Reseasrch, 96, 13,017-13,031.
    191. Slemr, F., and W. Seiler, 1984. Field measurements of NO and NO_2 emissions from fertilized and unfertilized soils. Joumal of Atmospheric Chemistry, 2, 1-24.
    192. Sommer, S.G., and J.E.Olesen, 2000. Modelling ammonia volatilization from animal slurry applied with trail-hoses to cereals. Atmospheric Environment, 34, 2361-2372.
    193. Stark, J.M., and M.K Firestone, 1995. Mechanisms for soil moisture effects on activity of nitrifying bacteria. Applied and Environmental Microbiology, 61, 218-221.
    194. Stark, J.M., D.R. Smart, S.C. Hart, and K.A. Haubensak, 2002. Regulation of nitric oxide emissions from forest and rangeland soils of western North American. Ecology, 83, 2278-2292.
    195. Steudler, P. A., D. C. Garcia-Montiel, M. C. Piccolo, C. Neill, J. M. Melillo, B. J. Feigl, and C. C. Cerri, 2002. Tace gas reponses of tropical forest and pasture soil to N and P fertilization. Global Biogeochemical Cycles, 16, 1023, doi: 10.1029/2001GB001394.
    196. Tang, X.L., S.G. Liu, G.Y. Zhou, D.Q. Zhang, and C.Y. Zhou, 2006. Soil-atmospheric exchange of CO_2, CH_4, and N_2O in three subtropical forest ecosystems in southern China. Global Change Biology, 12, 546-560.
    197. Tilsner, J., N. Wrage, J. Lauf, G. Gebauer, 2003. Emission of gaseous nitrogen oxides from an extensively managed grassland in NE Bavaria, Germany. I. Annual budgets of N_2O and NO_x emissions. Biogeochemistry, 63, 229-247.
    198. van Dijk, S. M., A. Gut, G.A. Kirkman, F.X. Meixner, M.O. Andreae, and B.M. Gomes, 2002. Biogenie NO emissions from forest and pasture soils: Relating laboratory studies to field measurements. Journal of Geophysical Research, 107, 8058, doi: 10.1029/2001 JD000358.
    199. Venterea, R.T., P. M. Groffman, L.V. Vercho4 A.H. MagiU, J.D. Aber, and P. A. Steudler, 2003. Nitrogen oxide gas emissions from temperate forest soils receiving long-term nitrogen inputs. Global Change Biology, 9, 346-357.
    200. Veldkamp, E., and M. Keller, 1997. Fertilizer-induced nitric oxide emissions from agricultural soils. Nutrient Cycling in Agroecosystems, 48, 69-77.
    201. Vitousek, P.M., J.D. Aber, R.W. Howarth, G.E. Likens, P.A. Matson, D.W. Schindler, W.H. Schlesinger, and G.D. Tilman, 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7, 737-750.
    202. Verchot, L. V., E. A. Davidson, J. H. Cattanio, I. L. Ackerman, H. E. Erickson, M. Keller, 1999. Land use change and biogeochemical controls of nitrogen oxide emissions from soils in eastern Amazonia. Global Biogeochemical Cycles, 13, 31-46.
    203. Walsh, M., 2001. NO_x and N_2O fluxes in an upland agroecosystem of the North China Plain: field measurements, biogeochemical simulation, and climatic sensitivity. Ph.D. Dissertation, Colorado State University, Fort Collins, Colorado, 65pp.
    204. Wang, Q.G, Z.W. Han, and Y. Higano, 2005. An inventory of nitric oxide emissions from soils in China. Environmental Pollution, 135, 83-90.
    205. Wang, T., C.N. Poon, Y.H. Kwok, Y.S. Li, 2003. Characterizing the temporal variability and emission patterns of pollution plumes in the Pearl River Delta of China. Atmospheric Environment, 37, 3539-3550.
    206. Wang, X.H., X.H. Bi, G.Y. Sheng, J.M. Fu, 2006. Chemical composition and sources of PM_(10) and PM_(2.5) aerosols in Guangzhou, China. Environmental Monitoring and Assessment, 119, 425-439.
    207. Wei, D. S., and Z. Q. Huang, 2003. The status and development strategies of non-timber forest production in China. Forestry Economics, 11, 20-21. (in Chinese)
    208. Weitz, A. M., M. Keller, E. Linder, and P. M. Crill, 1999. Spatial and temporal variability of nitrogen oxide and methane fluxes from a fertilizer tree plantation in Costa Rica. Journal of Geophysical Research, 104, 30,097-30,107.
    209. Widory, D., 2007. Nitrogen isotopes: Tracers of origin and processes affecting PM10 in the atmosphere of Paris. Atmospheric Environment, 41, 2382-2390.
    210. Williarns, E.J., A. Guenther, F.C. Fehsenfeld, 1992a. An inventory of nitric oxide emissions from soils in the United States. Journal of Geophysical Research, 97, 7511-7519.
    211. Williams, E.J., and D. Grosjean, 1990. Removal of atmospheric oxidants with annular denuders. Environmental Science and Technology, 24, 811-814.
    212. Williams, E.J., D.D. Parrish, M.P. Buhr, F.C. Fehsenfeld, and R. Fall, 1988. Measurement of soil NO_x emissions in central Pennsylvania. Journal of Geophysical Research, 93, 9539-9546.
    213. Williams, E.J., and F.C. Fehsenfeld, 1991. Measurement of soil nitrogen oxide emissions at three North American ecosystems. Journal of Geophysical Research, 96, 1033-1042.
    214. Williams, E. J., G. L. Hutchinson, and F. C. Fehsenfeld, 1992b. NO_x and N_2O emissions from soil. Global Biogeochemical Cycles, 6, 351-388.
    215. Xiao, H.Y., and C.Q. Liu, 2002. Sources of nitrogen and sulfur in wet deposition at Guiyang southwest China. Atmospheric Environment, 36, 5121-5130
    216. Xing, G.X., and Z.L. Zhu, 2000. An assessment of N loss from agricultural fields to the environment in China. Nutrient Cycling in Agroecosystems, 57, 67-73.
    217. Xu, X.L., H. Ouyang, G.G. Cao, Z.Y. Pei, and C.P. Zhou, 2004. Nitrogen deposition and carbon sequestration in alpine meadows. Biogeochemistry, 71, 353-369.
    218. Yamulki, S., R.M. Harrison, K.W.T. Goulding, and C.P. Webster, 1997. N_2O, NO and NO_2 fluxes from a grassland, effect of soil pH. Soil Biology and Biochemistry, 29, 1199-1208.
    219. Yah, X.Y., H. Akimoto, and T. Ohara, 2003a. Estimation of nitrous oxide, nitric oxide and ammonia emissions from croplands in East, Southeast and South Asia. Global Change Biology, 9, 1080-1096.
    220. Yah, X. Y., K. Shimizu, H. Akimoto, T. Ohara, 2003b. Determining fertilizer-induced NO emission ratio from soils by a statistical distribution model. Biology and Fertility of Soils, 39, 45-50.
    221. Yan, X., T. Ohara, and H. Akimoto, 2005. Statistical modeling of global soil NO_x emissions. Global Biogeochemical Cycles, 19, GB3019, doi: 10.1029/2004GB002276.
    222. Yang, W. X., and F.X. Meixner, 1997. Laboratory studies on the release of nitric oxide from subtropical grassland soils: The effect of soil temperature and moisture. In: Jarvis SC and Pain BF (Eds) Gaseous Nitrogen Emissions from Grasslands (pp 67-71). CAB International, Wallingford, UK
    223. Ye, R. W., B. A. Averill, and J. M. Tiedje, 1994. Denitdfication - production and consumption of nitric oxide. Applied Environmental Microbiology, 60, 1053-1058.
    224. Yienger, J. J., and H. Levy Ⅱ, 1995. Empirical model of global soil biogenic NO_x emissions. Journal of Geophysical Research, 100, 11,447-11,464.
    225. Zhang, B.G, and M.N. Zhuo, 1985. The physical properties of soil under different forest types in Ding Hu Shan biosphere reserve. Tropical and Subtropical Forest Ecosystems, 3, 1-10.
    226. Zheng, X., Y. Huang, Y. Wang, and M. Wang, 2003a. Seasonal characteristics of nitric oxide emission from a typical Chinese rice-wheat rotation during the non-waterlogged period. Global Change Biology, 9, 219-227.
    227. Zheng, X., Y. Huang, Y. Wang, M. Wang, J. Jin, and L. Li, 2003 b. Effects of soil temperature on nitric oxide emission from a typical Chinese rice-wheat rotation during the non-waterlogged period. Global Change Biology, 9, 601-611.
    228. Zheng, X., S. Han, Y. Huang, Y. Wang, and M. Wang, 2004. Re-quantifying the emission factors based on field measurements and estimating the direct N_2O emission from Chinese croplands. Global Biogeochemical Cycles, 18, GB2018, doi: 10.1029/2003GB002167.
    229. Zhu, Z.L., G.X. Cai, J.R. Simpson, S.L. Zhang, D.L. Chert, A.V. Jackson, and J.R.. Freney, 1989. Processes of nitrogen loss from fertilizers applied to flooded rice fields on a calcareous soil in north-central China. Fertilizer Research, 18, 101-115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700