用户名: 密码: 验证码:
PET/TiO_2纳米复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用原位聚合的方法制备了普通PET、PET/TiO2纳米复合材料,对其结构进行了红外表征,与普通PET相比,PET/TiO2纳米复合材料谱图中出现了TiO2的特征峰。同时对材料的性能做了一系列的研究。
     通过紫外光照射法研究了TiO2对PET材料光降解性能的影响。对照射后的样品进行质量损失和SEM测试,结果表明复合材料的失重率高于纯PET, SEM测试表明加入TiO2的样品表面降解比较严重,出现了比较明显的空洞,并且随着TiO2含量的增加材料表面损伤越发严重,从而证明了TiO2的加入促进了PET的降解。
     通过DSC研究PET/TiO2纳米复合材料和普通PET的非等温结晶行为,使用Jeziorny法、Mo法、Ozawa研究分析了材料的非等温结晶动力学。动力学分析表明,这三种方法均能很好的描述PET的结晶过程。结果表明TiO2在材料的结晶过程中起到异相成核的作用,使得PET在较高的温度下结晶,加速了PET的结晶速率,提高了结晶度。
     用TG热分析仪测试PET/TiO2纳米复合材料、普通PET的热降解行为,研究了材料的热降解稳定性,用Friedman法和Ozawa法对测试结果进行了动力学分析。结果表明,TiO2的加入提高了复合材料的热稳定性。
     通过锥形量热仪(CONE)对PET及PET/TiO2纳米复合材料的燃烧性能研究表明,加入TiO2后,材料的热释放速率和质量损失明显降低,另外纳米复合材料生烟总量和生烟速率较PET有所降低,这些现象都表明TiO2对PET起到了一定的阻燃作用。
Pure PET and PET/TiO2 nanocomposites were synthesized via the in situ method. The structures of PET and PET/TiO2 were studied by infrared spectroscopy, the results showed that the characteristic infrared of TiO2 appeared in the spectrogram, which showed that TiO2 linked into the macromolecule chains of PET.
     The photodegradation properties of PET/TiO2 and PET were studied. The samples after irradiation were characteristic by weight loss and SEM. The results showed that the weight loss (%) of PET/TiO2 was high than that of pure PET, and the SEM also showed that on the surface of the PET/TiO2 appeared more holes, while the surface of pure PET was also as smooth as before irradiation. All the phenomenon told us that the addition of the TiO2 promoted the photodegradation of PET.
     The effect of TiO2 particles on the non-isothermal crystallization behaviour of PET was investigated by differential scanning calorimetry (DSC). Three methods, namely, Avrami, Ozawa and Mo, were adopted to analyze the non-isothermal crystallization data. The results showed that the TiO2 in PET acted as effective nucleation agent, and PET/TiO2 crystallized at higher temperature because of the presence of TiO2. Also TiO2 accelerated the crystallization of PET, shorted crystallization time, and improved the degree of crystallization.
     TG thermal analyzer was used to examine the thermal degradation behaviors of PET and PET/ TiO2. The thermal degradation kinetics were analyzed by Friedman method and Ozawa method. The results showed that the thermal stability of PET/TiO2 nanocomposites was better than that of pure PET.
     The Combustion Properties of pure PET and PET/TiO2 composite were investigated by combustion. The results showed that the mass loss (%) and the heat release rate (HRR) of PET/TiO2 are all lower than those of pure PET. At the same time, The the total smoke production (TSP) and smoke production rate (SPR) of PET/TiO2 nanocoposites were a little lower than those of pure PET. All the phenomenon showed us that addition of TiO2 improved the flame retardation of PET.
引文
[1]郭大生,王文科.聚酯纤维科学与工程[J].中国纺织出版社,2001.6.
    [2]吴剑南.我国聚酯工业的现状和前景展望[J].当代石油化工,2004,12(6):16-19.
    [3]施冬梅,李再兴.纳米Ti02光催化降解水体污染物研究进展[J].环境科学与技术,2002,24(5):16-48.
    [4]Yongfa Zhu, JingShang. Solid-phase photocatalytic degradation of polystyrene plastic with TiO2 as photocatalyst[J]. Journal of Solid state chemistry,2003,174:140-110.
    [5]李玲,向航.功能材料与纳米技术[M].化学工业出版社,2002,1.
    [6]李凤生.超细粉体技术[M].国防工业出版社,2000,5.
    [7]高其标,申屠宝卿,翁志学.纳米改性聚合物材料研究进展[J].化工生产与技术,2001,8(6):22-26
    [8]R Roy, S Komarneni, D M Roy. Multi-phase ceramic composites made by Sol-Gol technique Mater[J]. Res.Symp. Proc,1984,32:347-359.
    [9]潘飞.PET/TiO2纳米复合材料性能研究及其纺丝模拟[D].上海:东华大学,2006.
    [10]黄锐,王旭,李忠明.纳米塑料[M].中国轻工业出版社,2002,4.
    [11]杨玉芬,陈清如.纳米材料的基本特征与纳米科技的发展[J].中国粉体技术,2002,8(3):22-27.
    [12]杨鼎宜,孙伟.纳米材料的结构特征与特殊性能[J].材料导报,2003,17(10):7-10.
    [13]Kubo, R. Electronic Properties of Metallic Fine Particles.I[J]. Journal of the Physical Society of Japan,17(6):975-986.
    [14]张立德.纳米材料[M].化学工业出版社,2000:40-41.
    [15]Q. Hu, E.Marand. In situ formation of nanosized TiO2 domains within poly(amide-imide) by a sol-gel process[J]. Polymer,1999,40:4833-4843.
    [16]朱曾惠编译.纳米技术在复合材料中的应用[J].化工新型材料,1999,27(10):28-32.
    [17]S.C.Tjong. Structural and mechanical properties of polymer nanocomposites[J]. Materials Science and Engineering,2006,53:73-197.
    [18]周卫平,朱光中,翟泽军.纳米技术在高聚物中的应用及其进展[J].现代化工,2002,22(6):19-23.
    [19]王淼,李振华,鲁阳等.纳米材料应用的新进展[J].材料科学与工程,2000,18(1):103.
    [20]舒中俊,刘晓辉,漆宗能.聚合物/粘土纳米复合材料研究[J].中国塑料,2000,14(3):12-18.
    [21]丁运生,张志成.阻隔性高分子材料研究进展[J].功能高分子学报,2001,14:360-364.
    [22]Wei G, Zhang Y J, Xiong R. Controllable Preparation of Nanosized TiQ2 Thin Film and Relationship Between Structure of Film and its Photocatalytic Activity[J]. Science in China B, 2003,33(2):74-79.
    [23]裴润等.硫酸法钛白生产[M].化学工业出版社,4-10.
    [24]魏绍东.纳米二氧化钛的现状与发展[J].2005,28:7-11.
    [25]林元华,张中太等.纳米金红石型Ti02粉体的制备及其表征[J].无机材料学报,1999,14(6):853-860.
    [26]冀志江,王晓燕.纳米Ti02及应用研究中存在的问题[J].中国建材科技,2004(3):1-4.
    [27]范崇政,肖建平,丁建伟等.纳米二氧化钛的制备与光催化反应研究进展[J].科学通报,2001,46(4):256-273.
    [28]黄华林.锑白在钛白生产中应用探讨[J].无机盐工业,1997,29(3):31-33.
    [29]WernerAlfred J.Titanium dioxide pigment coated with silica and alumina [P].US,1969:437-502.
    [30]G Sivalingam, K Nagaveni, M S Hegde, et al. Photocatalytic degradation of various dyes by combustion synthesized nanoanatase TiO2 [J] App 1. Catal. B:Environ,2003,45:23-28.
    [31]黄华林.锑白在钛白生产中应用探讨[J].无机盐工业,1997,29(3):31-33.
    [32]金涌等.纳米Ti02的性能应用及制备方法[J].材料工程,2002,(11):42-43.
    [33]孙秀果等.纳米二氧化钛粉体的性质及其表面改性的研究[J].石家庄铁道学院学报.2005,18(1):40-41.
    [34]马晓敏,王怡中.二氧化钛光催化氧化杀菌的研究及进展[J].环境污染治理技术与设备,2002,3(5):15-19.
    [35]黄汉生.二氧化钛光催化剂在涂料中的应用[J].化工新型材料,1997,27(5):28-30.
    [36]牛新书,许亚杰.二氧化钛纳米材料的合成及其在环保领域的应用研究进展[J].化工环保,2002,22(4):203-208.
    [37]刘立华.纳米Ti02应用研究进展[J].唐山师范学院学报,2004(26):3-5.
    [38]於莉莉,于经元.碳酸钙粉末的表面改性[J].天津化工,2000(3):11-13.
    [39]王勇,李瑞海,王贵恒.碳酸钙的表面辐照处理-丙烯酰胺在碳酸钙粉末上的接枝聚合[J].成都科技大学学报,1994(4):19-24.
    [40]陈锦元,张玉红.溶胶-凝胶法制备复合MxOy-TiO2光催化剂[J].物理化学学报,2001,17(3):273-277.
    [41]罗菊,丁星兆等.溶胶凝胶法制备的纳米Ti02粉体的结构[J].材料科学进展,1993,7:52-60.
    [42]钱延龙,陈新滋.金属有机化学与催化[M].北京:化学工业出版社,1997.
    [43]董国利,施利毅,李春忠等.高温气相合成金红石型纳米Ti02颗粒的研究[J].金属学报,2000,36(3):295-299.
    [44]TA KEDA S, SU ZU K I S, ODA KA H, HO SONO H. Photocataltic TiO2 Thin film deposited onto glass by DC magnetron sputtering [J].Thin Solid Film,2003,98:785-900.
    [45]G.L.Li, Z.W.Pan, Z.L.Wang. Gallium oxide nanoribbons and nanosheets[J]. Phys.Chem.B,2002, 106(5):902-904.
    [46]张敬畅,曹维良,于定新,石锦华,窦仓.超临界流体干燥法制备纳米级Ti02的研究[J].无机材料学报,1999,14(1):29-35.
    [47]J.D.Casey, L D. Zhang. Fabrication.characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3 [J]. Chem.Phys.Lett,2001,338:231-236.
    [48]冯乙巳,王新龙,文威.纳米二氧化钛光催化反应和光电转化反应研究进展[J].精细石油化工进展,2002,3(1):16-18.
    [49]伊荔松,沈辉.二氧化钛光催化研究进展及应用[J].材料导报,2000,12(4):23-25.
    [50]刘青山,严玉蓉,赵耀明.纳米二氧化钛催化光降解聚丙烯纤维的研究[J].合成材料老化与应用,2005,34(1):8-9.
    [51]常红,王京刚.纳米二氧化钛在环保领域中的应用[J].矿冶,2002,11(4):73-74.
    [52]S.Cho,W.Choi.Solid-phase photocatalytic degradation of PVC-TiO2 polymer composites[J].Journal of Photochemistry and Photobiology AChemistry,2001,143:221-228.
    [53]Yongfa Zhu, Xu Zhao. Solid-phase photocatalytic degradation of polyethylene plastic under UV and solar light irradiation[J]. Journal of Molecular Catalysis A: Chemical,2007,268:101-106.
    [54]JingShang, MingChai. Photocatalytic Degradation of Polystyrene Plastic under Fluorescent Light[J]. Environ. Sci.Technol.2003,37:4494-4499.
    [55]Zongwei Li, Yongfa Zhu. Enhancement of Photocatalytic Degradation of Polyethylene Plastic with CuPc Modified TiO2 Photocatalyst under Solar Light Irradiation[J]. Thin Solid Film,2007,515: 7127-7134.
    [56]Harada kenji, Hisanaga Teruaki, et al. Photoeatalytic activity of nanometer TiO2 thin films prepared by the sol-gel methol[J]. Water Res.1990,24(11):1415-1417.
    [57]李晓娥等.纳米Ti02紫外线屏蔽性能的研究[J].涂料工业,2000,(9):3-5.
    [58]李维芬.纳米材料的性质[J].现代化工,1999,19(6):44-47.
    [59]Jiaguo Yu, Xiujian Zhao. Efect of substrates on the photocatalytic aclivity of ninometer TiO2 thin films[J]. Materials Research Bulletin.2000, (35):1293-1301.
    [60]陈士夫,梁新,赵梦月.不同制备条件对TiO2/beads光催化活性的影响[J].感光科学与光化学,1999,(2):25-31.
    [61]韩得强.云母钛珠光颜料的研究进展和发展前景[J].涂料工业,2003,33(7):31-34.
    [62]杨宗志.国外超细透明二氧化钛的生产[J].钒钛,1994(4):45-52..
    [63]李大成,周大利等.纳米Ti02的应用[J].四川有色金属,2002(4):14-16.
    [64]孙秀果,魏雨,贾振斌.纳米二氧化钛粉体在水中的分散行为[J].电子元件与材料,2003,22(5):11-13.
    [65]于艳辉,徐传友.纳米二氧化钛表面改性技术进展[J].无机盐工业,2008,40:11-13.
    [66]Damm C, Israel G. Photoelectric Properties and Photo-catalytic Activity of Silver-coated Titanium Dioxides[J]. Dyes&Pigments,2007,3(75):612-618.
    [67]Rana S, Misra R D K.The Anti-microbial Activity of Titania-nickel Ferrite Composite Nanoparticles[J]. Journal of the Minerals, Metals and Materials Society 2005,57(12):65-69.
    [68]郑伟双,张光友,卢士香等.掺铜纳米二氧化钛光催化降解偏二甲肼废水[J].科技导报,2006,24(7):21-23.
    [69]Aramendla M A, Colmenares J C, Marinas A, Marinas JM. Effect of the Redox Treatment of Pt/TiO2 System on its Photocatalytic Behaviour in the Gas Phase Selective Photooxidation of Propanol[J]. Catalysis Today,2007,128(3):235-244.
    [70]吴树新,马智,秦永宁.掺杂纳米TiO2光催化性能的研究[J].物理化学学报,2004,20(2):138-143.
    [71]王艳芹,张莉,程虎民等.掺杂过渡金属离子的Ti02复合纳米粒子光催化剂-罗丹明B的光催化剂降解[J].高等学校化学学报,2000,21(16):958-960.
    [72]徐纯芳,黄妙良,程应汉.金属离子掺杂对TiO2/沸石光催化性能的影响[J].化学环保,2004,24:23-26.
    [73]Fu X, Clerk L A, Yang Q, et al. Enhanced Photocatalytic Performance of Titania-based Binary Metal Oxides: TiO2/SnO2 and TiO2/ZrO2[J]. Envir. Sci.&Tech.,2003,30:647-653.
    [74]苏文悦,陈亦琳,傅贤智等.SO42-/TiO2固体酸催化剂的酸强度及光催化性能[J].催化学报,2001,22(2):175-176.
    [75]Jochum W, Eder D, Kaltenhauser G, Kramer R. Impedance Measurements in Catalysis:Charge Transfer in Titania Supported Noble Metal Catalysts[J]. Tpics in Catalysis 2007,46(1/2):49-55
    [76]王幼平,余家国,赵修建,石柱明.溶胶-凝胶工艺制备掺铅Ti02纳米薄膜及其光催化性能的研究[J].中国环境科学,1998,18(3):244.
    [77]何厚康,吴文华.纳米二氧化钛粒子的表面处理及其分散性研究[J].合成纤维工业,2003,26(3):12-14.
    [78]鄢程,李竞先,潘志东.纳米TiO2颗粒的表面改性进展[J].陶瓷学报,2002,1(23):62-66.
    [79]Shao Q, Wang Ch G, Zhu Y F, Ge Sh S. Surface Modification and Characterization of Nanometer TiO2 for Nanometer Styrene-acrylate Emulsion Polymerization[J]. Functional Materials,2006, 37(4):642-645.
    [80]陈均志,单世群,武丹聘.铝锆有机金属偶联剂对超微二氧化钛表面的改性[J].涂料工业,2007,37(4):1-3.
    [81]Hyeok C, Stathatos E. Effect of Surfactant in a Modified sol on the Physicochemical Properties and Photocatalytic Activity of Cry stalline TiO2 Nanoparticles[J].Topics in Catalysis,2007, 44(4):513-521.
    [82]李晓娥,邓红,张粉艳等.纳米二氧化钛有机化改性工艺研究[J].无机盐工业,2001,33(4): 5-7.
    [83]Oyama H T, Char S. Coating of uniform inorganic particles with polymers[J]. Coloid Interface Sci.,1993,160:298-230.
    [84]Cheng B, Zhu Y R. Calculation of macroscopic linear and nonlinear optical susceptibilities for the naphthalenean thracene and meta-nitroaniline crystals[J].Chin.J.Chem. Phys.,2000(3):359-371.
    [85]Chen J, Zhou Y, Nan Q L, Sun YQ, Ye X Y, Wang Zh Q. Synthesis, Characterization and Infrared Emissivity Study of Polyurethane/TiO2 Nanocomposites[J]. Applied Surface Science,2007, 253(23):9154-9158.
    [86]李国辉,李春忠,吕志敏.纳米氧化钛颗粒表面处理及表征[J].华东理工大学学报,2000,25(6):639-641.
    [87]Atsushi Taniguchi, Miko Cakmak. The suppression of strain induced crystallization in PET through sub micron TiO2 particle incorporation [J]. Polymer,2004, (45):6647-6654.
    [88]高翔,金日光.纳米Ti02对PET结晶行为和力学性能的影响[J].中国塑料,2003,6:37-40.
    [89]李宁.聚对苯二甲酸乙二酯/二氧化钛纳米复合材料的研究[D].北京:北京化工大学,2006.
    [90]朱建平.原位生成纳米Ti02/PET复合树脂抗紫外纤维性能研究[D].苏州:苏州大学,2005.
    [91]Benigno Sancheza, Juan M. Preparation of TiO2 coatings on PET monoliths for the photocatalytic elimination of trichloroethylene in the gas phase[J]. Applied Catalysis B:Environmental, 2006(66):295-301.
    [92]Takayuki Miyamae, Hisakazu Nozoye. Surface characterization and photochemical behavior of poly(ethyleneterephthalate) and TiO2/poly(ethyleneterephthalate) interface by using sum-frequency generaion[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2001(154):93-99.
    [93]T.Kanazawa, A.Ohmori. Behavior of TiO2 coating formation on PET plate by plasma spraying and evaluation of coating's photocatalytic activity[J]. Surface&Coatings Technology,2005, (197): 45-50.
    [94]赵京波,杨万泰.合成生物降解性聚酯研究的进展[J].高分子通报,1999,(2):11-21.
    [95]贺爱军.降解塑料的开发进展[J].化工新型高分子材料,2002,30(3):1-7.
    [96]赵京波.合成生物降解性聚酯研究的进展[J].高分子通报,1999(2).
    [97]Ajioka M, Suizu H, Higuchi C, et al.Aliphatic polyesters and their copolymers synthesized througll direct condensateion polymerization. Polym Degrad Stab[J],1998, (59):137-143.
    [98]Min Zhang, Haruo Sekiguchi,Atsunobu Haga, Shigehiro Hirano. Structure of insect chitin isolated from beetle larva cuticle and silkworm(Bombyx mori)pupa exuvia [J]. Biol Macromol,2000, 27:99-105.
    [99]Shigehiro Hirano,Tamayo Nakahira Min Zhang, Masuo Nakagawa, Masatoshi Yoshikawa, Takehiko Midorikaw. Wet spun blend biofibers of cellulose-silk fibroin and cellulose-chitin-silk fibroin. Carbohydr Polym[J],2002,47:121-124.
    [100]赵华.改性淀粉的制备与在降解材料中的应用[J].塑料技术,1999,19(1):17-19.
    [101]高建平,于九皋,王为.完全生物可降解热塑性淀粉复合材料[J].高分子材料科学与工程1999,15(3):93-95.
    [102]宋玉春.可降解塑料的研究进展及发展前景[J].化工文摘,2001,9:27-28.
    [103]陈和生,孙振亚等.生物降解塑料的研究进展[J].塑料科技,2000,138(4):36-39.
    [104]唐赛珍.中国降解塑料的研究与开发[J].合成树脂及塑料,1999,16(2):1-6.
    [105]张华集.淀粉顾脂酸铈配合体系的降解LDPE包装薄膜的研究[J].中国塑料,1999,13(2):60-65.
    [106]李建秀,俞镇慌.完全生物降解材料的应用及发展趋势[J].产业用纺织品.
    [107]蔡亮珍,赵建青.高阻隔性PET瓶的研究新进展[J].塑料,2001,30:20-23.
    [108]DARWIN K A. Review on the potential biodegradability of poly(ethylene terephthalate)[J]. Poly Int,1999,48:346-352.
    [109]薛允连.废塑料的再生利用[J].合成材料的老化与应用,2001,(1):30-32.
    [110]唐赛珍.我国可降解塑料发展前景及对策[J].中国包装,1998,(1):3-38.
    [111]朱颖先,陈大俊.可生物降解性纤维材料[J].高分子通报,2001,(1):48-52.
    [112]赵京波,杨万泰.合成生物可降解聚酯研究的进展[J].高分子通报,1999,(2):11-21.
    [113]Ozawa T. Kinetics of non-isothermal crystallization. Polymer,1971,12:150-158.
    [114]Jeziomy A. Parameters characterizing the non-isothemal crystallization of poly (ethylene terephthalate) determined by DSC[J]. Polymer,1978,19:1142-1148.
    [115]Liu T, Mo Z, Zhang H. Nonisothermal crystallization behavior of novel poly(aryl etherketone):PEDEKmK[J]. Appl.Polym.Sci.1998,67:815-821.
    [116]Augis JA, Bennett JE. Calculation of avrami parameters for heterogeneous solid-state reactions using a modification of Kissinger method[J]. Thermal Anal,1978,13(2):283-292.
    [117]Kissinger, H. E. Reaction kinetics in differential thermal analysis.1957,29:1702-1706.
    [118Takhor RL. Advances in nucleation and crystallization of glasses [J]. American Ceramics Society: Columbus,1971:166-172.
    [119]Groeninckx G, Berghmans H, Overbergh NC. Polym Phys,1974,12:303-316.
    [120]刘述梅,蒋智杰,赵建青,叶华.聚碳酸酯阻燃测试方法结果分析[J].功能材料,2007,10(38):1734-1737.
    [121]胡小平.聚乙烯用新型膨胀型阻燃剂的合成与应用及阻燃机理的研究[D].四川:四川大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700