用户名: 密码: 验证码:
多视场深度像造型中的若干关键技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维数字成像及造型(3DIM)作为一个新兴领域,覆盖了光学/光电子、精密测量、计算机视觉以及计算机图形学等多学科知识,其关键技术有:三维光学传感、系统标定、深度像匹配、深度像融合、三维模型简化、细分、参数化及三维模型编辑等。本论文主要围绕多视场深度像的处理上的若干关键技术进行探讨,主要有深度像的匹配、融合及简化技术。
     深度像匹配是多视场深度像造型的关键一环,其目的就是寻找不同视角深度像间的空间位置转换关系,从而将这些深度像统一到同一个坐标系内。深度像匹配可大致分为:两个视场的深度像粗匹配、精匹配和多视场的深度像全局匹配。本文提出了结合纹理信息进行深度像匹配的方法,由于二维纹理匹配技术较成熟且不受几何噪声影响,可以自动、快速完成深度像的粗匹配,实验结果表明所提出的算法具有一定的鲁棒性。
     目前应用最为广泛的深度像精匹配方法是ICP算法,该算法依赖一个初始估计、对噪声敏感且计算复杂度高。因此,本文提出并研究了非编码标志点进行多视场深度像的匹配方法,并结合全局优化算法避免了匹配误差积累,获得了较好的实验结果。此外,本文还详细比较了该方法与ICP方法的差异及改进方法。
     深度像的融合是多视场深度像造型的另一重要环节。目前被广泛应用的深度像融合算法主要有基于网格缝合和基于隐式曲面的两类方法,其各有优缺点。一种快速、鲁棒、高精度的深度像融合算法还有待进一步研究。本文提出基于射线投影的深度像融合算法,利用轴向包围盒树结构求取交点,并借助Dexel结构进行存储,既加快了计算速度又节省了存储空间。实验验证了该算法的有效性。
     曲面简化技术在三维造型领域占有重要地位。本文概述了目前各种简化算法的各自特点及适用范围。并着重对二次误差测度(QEM)简化算法进行改进,提出顶点尖特征度的概念,在测度函数上加入一个惩罚项,从而改变边折叠的次序,使得原始模型的尖锐特征在最终简化结果中得以保留,并且网格能够合理分配,在曲率较低区域分布稀疏,曲率较高区域分布密集。
As a new realm, the content behind the Three-dimensional Imaging and Modeling (3DIM) involves multi-disciplines such as optics and optoelectronics, precision metrology, computer vision, computer graphics and so on. In hiberarchy, there are several key components regarding to the 3DIM, which include 3D optical sensing, 3D system calibration, range image registration and integration, 3D modeling and so forth. This dissertation focuses on the three key issues with respect to 3D modeling of multiple range images, namely, the range image registration, integration and the 3D model simplification.
     Range images registration is of a critical issue in 3D modeling. The registration of the range images taken from different view points aims to find the best estimate of rigid transformations among the pairwise range images and then put them into a common coordinate system. In terms of the registration the existed approaches can be classified into three distinct levels: the coarse registration, the fine registration of pairwise range images and the global registration of multiple range images. We propose a novel method for the coarse registration with the help of texture information by observing the fact that the 2D texture registration is not affected by geometry noise and can be performed rapidly. The experimental results have verified the efficiency and robustness of proposed technique.
     Furthermore, the most popular fine registration method is on the basis of the iterative closest point (ICP) algorithm, which was subjected to the four limitations: initial estimate for rigid transformation was needed, fragile to the noise or the outliers, error accumulation and with great time complexity. To overcome these disadvantages, in this thesis, we present a new fine registration method to register the multiple range-images with non-coding markers. In the proposed algorithm, a global optimization technique has been employed to reduce the error accumulation and the sensitivity to the noise and outliers. The experimental results illustrate that the proposed method is very efficient and time-saving compared with previous methods. In addition, we also make a thorough analysis on the difference between marker-based algorithm and ICP-based algorithm.
     Integration or data fusion of multiple range images is another paramount technique of 3D modeling. Up to now most of popular integration methods have been based on mesh stitching or implicit surface. All of these methods had their pros and cons either time-consumig or difficult to deal with real object surfaces with complex geometry and topology, and these methods were designed specifically for different applications. However, a fast, robust and high-accurate integration method need to be further developed. This thesis explores a new algorithm based on ray-casting, in which an axis-aligned bounding box tree is used to compute the intersections, and Dexel data structure is employed to save storage space. The experiment results show that a good range data fusion results can be obtained with the proposed method.
     Model simplification also plays a key role for 3D modeling, which would be viewed as an equivalent operation to the data compression in its counterpart of image processing. This thesis gives a comprehensive review to the most notably simplification algorithms already available in this field. Then we introduce a concept of sharp degree of vertex. With the concept of sharp degree of vertex, we can make an improvement to the quadric error metric (QEM) algorithm. In our approach, an penalty term is added to the measure function to make possible for adjusting the order of edge collapse. With proposed method, we are able to maintain the sharp feature of original model while achieving a large compression ratio in the simplified model. Experiment results show that the proposed method can give a better simplified model with dense meshes in the high-curvature regions and sparse meshes in the flat regions.
引文
[1] http://www.3dimconference.com
    [2] http://www.gom.com
    [3] http://www.3dscan.com.cn
    [4] http://www.minolta3d.com
    [5] http://www.cyberware.com
    [6] http://www.polhemus.com
    [7] http://www.metron.com
    [8] http://www.3dscanners.com
    [9] http://www.riegl.com
    [10] http://www.gf3dfamily.com
    [11] http://www.steinbichler.de
    [12] http://www.genextech.com
    [13] http://www.inspeck.com
    [14] http://www.digitalmanu.com
    [15] http://www.trimble.com/spatialimaging.shtml
    [16] http://www.leica-geosystems.com/hds/en/lgs_5210.htm
    [17] http://www.innovmetric.com
    [18] http://www.geomagic.com
    [19] http://www.ugs.com/products/nx/imageware
    [20] M. Levoy, K. Pulli, B. Curless, et al. The Digital Michelangelo Project: 3D scanning of large statues, In Proceedings of SIGGRAPH’00, New Orleans, France, 2000, 131~144
    [21] F. Bernardini, I. Martin, J. Mittleman, et al. Building a digital model of Michelangelo 's Florentine Pieta, IEEE Computer Graphics and Applications, 2002, 22(1): 59~67
    [22] G. Guidi, J.A. Beraldin, C. Atzeni. High accuracy 3D modeling of cultural heritage: the digitizing of Donatello’s Maddalena, IEEE Transactions on Image Processing, 2004, 13(3): 370~380
    [23] G. Guidi, L. Micoli, M. Russo, et al. 3D digitization of a large model of Imperial Rome, 5th International Conferences on 3-D Imaging and Modeling, 3DIM’05, Ottawa, Canada, 2005, 565~573
    [24] E. A. Sivers. Performance of X-ray computed tomography imaging system, Materials Evaluation, 1990, 48(6): 706~712
    [25] A. Elmoutaouakkil, F. Peyrin, J.Elkafi, et al. Segmentation of cancellous bone from high-resolution computed tomography images: influence on trabecular bone measurements, IEEE Transactions on Medical Imaging, 2002, 21(4):354~362
    [26] N. Binger, S.J. Harris, The application of laser radar technology, Sensors, 1987, 4(4): 42~44
    [27] M. Hersma, F. Goodwin, S. Kenyon, et al. Coherent laser radar application to 3D vision and metrology, In Proceeding Vision 87th Conf., 1987, section3, 1~12
    [28] R. A. Jarvis. Focus optimization criteria for computer image processing, Microscop, 1976 (24):163~180
    [29] T. Akuta, On-line precise 3-Dimensional shape measurement system, ACTA IMEKO, Budapest, 1985 (2):117~124
    [30] T. Akuta, T. Negishi. Development of an automatic 3-D shape measuring system using a new auto-focusing method, Measurement, 1991, 9(3):98~103
    [31] O. Sasaki, H. Okazaki. Sinusoidal phase modulating interferometry for surface profile measurement, Applied Optics, 1986, 25(18) :3137~3140
    [32] D. Pantzer, J. Politch, L. Ek. Heterodyne profiling instrument for the angstrom region, Applied Optics, 1986, 25(22):4168~4172
    [33] X. Peng, J. Tian, P. Zhang, et al. 3D vision with dual-acousto-optic deflections encoding, OPTICS LETTERS, 2005, 30(15): 1965~1967
    [34] L. Pirodda. Shadow and projection moirétechniques for absolute and relative mapping of surface shapes, Optical Enginerring, 1982, 21(4):23~26
    [35]彭翔,张宗华,朱绍明等。基于白光数字莫尔的三维光学数字成像系统,光学学报,1999,19(10):1401~1405
    [36]张广军。机器视觉,北京,科学出版社,2005
    [37]张剑清,潘励,王树根。摄影测量学,武汉大学出版社,2003
    [38] R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge: Cambridge University Press, 2000
    [39]张宗华,多视场深度图像的计算机辅助造型:[博士学位论文],天津,天津大学,2000
    [40]张国雄,三坐标测量机,天津:天津大学出版社,1998. 1~17
    [41] N. S. Steven, J. S. Autonia, A. G. R. Aristides, Accessibility analysis for planning of dimensional inspection with coordinate measuring machines, IEEE Transactions on Rob. & Auto. 1999, 15(4):714~727
    [42] A. Limaiem, H. A. Elmaraghy, Automatic path planning for coordinate measuring machines, Proceedings IEEE International Conference on Robotics and Automation, Leuven, Belgium, 1998, 1 : 887~892
    [43]于起峰,陆宏伟,刘肖琳,基于图像的精密测量与运动测量,北京:科学出版社,2002. 42~88
    [44] R-J. Ahlers, J. Lu. Stereoscopic Vision—an application oriented overview, In: Proceedings of the SPIE - The International Society for Optical Engineering Optics, Vol. 1194. Illumination and Image Sensing for Machine Vision IV. Bellingham, 1989. 298~308
    [45]吴斌,大型物体三维形貌数字化测量关键技术研究,博士论文,天津,天津大学,2002
    [46] S. T. Barnard, M. A. Fischler. Computational Stereo. ACM Computer Surveys, 1982, 14(4): 553~572
    [47]魏振忠,张广军,结构光直光条中心线的鲁棒性自动提取方法,仪器仪表学报, 2004, 25(2): 244~247
    [48]张宗华,彭翔,胡小唐,一种新型的彩色三维光学成像系统,光学学报, 2002, 22(8): 994~998
    [49]许智钦,孙长库,陶立等,彩色三维激光扫描测量方法的研究,光学学报, 2003, 23(8): 1008~1012
    [50]段发阶,刘凤梅,叶声华,一种新型线结构光传感器结构参数标定方法,仪器仪表学报, 2000, 21(1): 108~110
    [51]邱茂林,马颂德,李毅,计算机视觉中摄像机定标综述,自动化学报,26(1),43~55
    [52] G. J. Zhang, Z. Z. Wei. A novel calibration approach to structured light 3D vision inspection, Optics and Laser Technology, 2002, 34(5): 373~380
    [53] R. Legarda-Saenz, T. Bothe, W. P. Juptner. Accurate procedure for the calibration of a structured light system, Opt. Eng., 2004, 43(2): 464~471
    [54] Rodrigues M., Fisher R., Liu Y.. Special Issue on Registration and Fusion of Range Images. Computer Vision and Image Understanding, 2002, 87(1-3): 1~7
    [55] R. J. Campbell, P. J. Flynn. A Survey of Free-Form Object Representation and Recognition Techniques. Computer Vision and Image Understanding. 2001, 81(2): 166~210
    [56] L. Silva, Olga R.P. Bellon, K.L. Boyer. Precision Range Image Registration Using a Robust Surface Interpenetration Measure and Enhanced Genetic Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 762~776
    [57] C. K. Chow, H. T. Tsui, T. Lee. Surface Registration Using a Dynamic Genetic Algorithm. Pattern Recognition, 2004, 37(1): 105~117
    [58] P. J. Besl, N. D. McKay. A method for registration of 3D shapes, IEEE Transactions on Pattern Analysis and Machine Intelligence. 1992, 14(2): 239~256
    [59] Y. Chen, G. Medioni. Object Modeling by Registration of Multiple Range Images. In: Proceedings of the IEEE international Conference on Robotics and Automation, Sacramento, 1991, 3: 2724~2729
    [60] S. Rusinkiewicz, M. Levoy. Efficient Variants of the ICP Algorithm. In: the Third International Conference on 3D Digital Imaging and Modeling, Québec, 2001, 145~152
    [61] K. Brunnstrom, A. Stoddart. Genetic algorithms for freeform surface matching. In: Proceedings of the 13th International Conference on Pattern Recognition, Vienna, 4, 1996, 689~693
    [62] E. Lomonosov, D. Chetverikov, A. Ekart. Pre-registration of arbitrarily oriented 3D surfaces using a genetic algorithm. Pattern Recognition Letters, 2006, 27(11): 1201~1208
    [63] G. Blais, M. Levine. Registering multiview range data to create 3D computer objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 820~824
    [64] G. Turk, M. Levoy. Zippered Polygon Meshes from Range Images. In: Proceedings of Computer Graphics, Annual Conference Series, ACM SIGGRAPH, Orlando, Florida, 1994, 311~318
    [65] J. Boissonnat. Geometric structures for three-dimensional shape representation, ACM Transactions on Graphics, 1984, 3(4): 266~286
    [66] H. Edelsbrunner, E.P. M¨ucke. Three-dimensional alpha shapes, ACM Transactions on Graphics, 1994, 13(1): 43~72
    [67] C.L. Bajaj, F. Bernardini, G. Xu. Automatic reconstruction of surfaces and scalar fields from 3D scans, In proceedings of SIGGRAPH, Los Angeles, 1995: 109~118
    [68] F. Bernardini, C. Bajaj, J. Chen, et al. Automatic reconstruction of 3D CAD models from digital scans, International Journal of Computational Geometry and Applications, 1999, 9(4&5): 327~370
    [69] N. Amenta, M. Bern. Surface reconstruction by voronoi filtering, Discrete & Computational Geometry, 1999, 22(44): 481~504
    [70] F. Bernardini, J. Mittleman, H. Rushmeier. The ball-pivoting algorithm for surface reconstruction, IEEE Transactions on Visualization and Computer Graphics, 1999, 5(4): 349~359
    [71] H. Hoppe, T. DeRose, T. Duchamp. Surface reconstruction from unorganized points, Computer Graphics, 1992, 26(2): 71~78
    [72] G. Turk, J. F. O’Brien. Variational implicit surfaces, Technical Report GIT-GVU-99-15, Georgia Institute of Technology, 1999
    [73] J. C. Carr, R. K. Beatson, J.B. Cherrie, et al. Reconstruction and representation of 3d objects with radial basis functions, Proceedings of ACM SIGGRAPH’01, Los Angeles, 2001, 67~76
    [74] M. Soucy, D. Laurendeau. A general surface approach to the integration of a set of range views. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1995, 17(4): 344~358.
    [75] B. Curless, M. Levoy. A Volumetric Method for Building Complex Models from Range Images. In: Proceedings of Computer Graphics, Annual Conference Series, ACM SIGGRAPH, New Orleans, 1996, 303~312
    [76] A. Hilton, A. J. Stoddart,J. Illingworth. Implicit Surface-Based Geometric Fusion. Computer Vision and Image Understanding, 1998, 69(3): 273~291
    [77] A. Hilton, A. J. Stoddart, J. Illingworth. Reliable Surface Reconstruction from Multiple Range Images. In: Fourth European Conference on Computer Vision, Berlin, 1996, 117~126
    [78] A. Hilton, A. J. Stoddart, J. Illingworth. Marching Triangles: Range Image Fusion for Complex Object Modeling. In: Proceedings of IEEE International Conference On Image Processing, Lausanne, 1996, 381~384
    [79] A. Hilton, J. Illingworth, T. Windeatt. Statistics of Surface Curvature Estimates. Pattern Recognition, 1995, 28(8): 1201~1221
    [80] K. Pulli. Surface Reconstruction and Display from Range and Color Data: [Ph.D Thesis]. Seattle, University of Washington, 1997
    [81] K. Pulli, H. Abi-Rached, T. Duchamp, et al. Acquisition and Visualization of Colored 3d Objects. In: The proceedings of The 14th International Conference on Pattern Recognition, Brisbane, 1998, 11~15
    [82] K. Pulli, M.Cohen, T. Duchamp, et al. View-based Rendering: Visualizing Real Objects from Scanned Range and Color Data. In: Proceedings of the 8th Eurographics Workshop on Rendering, St. Etienne, 1997, 23~34
    [83] K. Pulli, T. Duchamp, H. Hoppe, et al. Robust Meshes from Multiple Range Maps. In: Proceedings of the First International Conference on 3D Digital Imaging and Modeling, Ottawa, 1997, 205~211
    [84] K. Pulli, M. Cohen, T. Duchamp, et al. Surface Modeling and Display from Range and Color Data, Keynote Address at ICIA’97, Florence, Italy, Lecture Notes in Computer Science, 1997, 385~397
    [85] K. Pulli, L. G. Shapiro. Surface Reconstruction and Display from Range and Color Data. Graphical Models and Image Processing, 2000, 62(4): 165~201
    [86]马小虎,虚拟现实中多细节层次模型的研究:[博士学位论文],杭州,浙江大学,1997
    [87]何辉光,田捷,张晓鹏等,网格模型化简综述,软件学报,2002,13(12):2215~2224
    [88] A.D. Kalvin, R.H. Taylor. Surperfaces: Polygonal Mesh Simplification with Bounded Error. IEEE Computer Graphics and Application, 1996, 16(3): 64~77
    [89] J. Li, Z. Tang. An Improved Greedy Algorithm for Simplification of Triangular Meshes. In: Proceedings of the CAD&Graphics’97. Shenzhen, International Academic Publishers, 1997, 119~122
    [90] W. Schroder, J. Zarge, Lorensren W. Decimation of Triangle Meshes. Computer Graphics, 1992, 26(2): 65~70
    [91] M. Garland, P. S. Heckbert. Surface Simplification Using Quadric Error Metric. In: Proceedings of Computer Graphics, Annual Conference Series, ACM SIGGRAPH, Los Angeles, 1997, 209~216
    [92]刘晓利,刘则毅,高鹏东等,基于尖特征度的边折叠简化算法,软件学报,2005,16(5):675~669
    [93] G. Turk. Retiling Polygonal Surfaces. In: Proceedings of Computer Graphics, Annual Conference Series, ACM SIGGRAPH, Chicago, 1992, 55~64
    [94] J. Rossignac, P. Borrel. Multi-Resolution 3D Approximation for Rendering Complex Scenes. In: Proceedings of the 2nd Conference Modeling in Computer Graphics: Methods and Applications, New York: Springer-Verlag, 1993, 455~465
    [95]周昆,潘志庚,石教英。一种新的基于顶点聚类的网格简化算法,自动化学报,1999,25(1):1~8
    [96] F. Schmitt, B. Barsky, W. Du. An Adaptive Subdivision Method for Surface Fitting From Sampled Data. In: Proceedings of Computer Graphics, Annual Conference Series, ACM SIGGRAPH, Dallas, 1986, 179~188
    [97] P. S. Heckbert, M. Garland. Survey of Polygonal Surface Simplification Algorithms. In: Proceedings of Computer Graphics, Annual Conference Series, ACM SIGGRAPH, Course Notes, Pittsburgh, 1997
    [98] M. Lounsbery, T. DeRose. Multiresolution Analysis for Surfaces of Arbitrary Topological Type: [Ph.D Thesis]. Seattle, University of Washington, 1994
    [99] W. Bohem, G. Farin, J. Kahman. A Survey of Curve and Surfaces Methods in CAGD. Computer Aided Geometric Design. 1984, 1(1): 1~60
    [100] K. J. Versprille. Computer Aided Design Application of Rational B-Spline Approximation Form: [Ph.D Thesis], Syracuse University, Syracuse, 1975
    [101] http://www.xiniu.com.cn/
    [102] J. Bloomenthal, B. Wyvill. Interactive Techniques for Implicit Modeling, Symposium on Interactive 3D Computer Graphics, Snowbird, UT, in Computer Graphics, 1990, 24(2): 109~116
    [103] C. Hoffmann. Implicit Curves and Surfaces in Computer Aided Geometric Design, IEEE Computer Graphics and Applications IEEE Comput. Soc. Press, Los Alamitos CA, 1993, 13(1): 79~88
    [104] Y. Ohtake, A. Belyaev, M. Alexa, et al. Multi-Level partition of unity implicits, ACM Trans. on Graphics (Proc. of the SIGGRAPH 2003), San Diego, 2003, 463~470
    [105]张景峤,细分曲面生成及其在曲面造型中的应用研究:[博士学位论文],杭州,浙江大学,2002
    [106]张宏鑫,复杂性体建模与绘制的离散方法研究:[博士学位论文],杭州,浙江大学,2002
    [107]李桂清,细分曲面造型及应用:[博士学位论文],北京,中科院计算所,2001
    [108]李桂清,细分模式构造及其拟合技术:[技术报告],杭州,浙江大学,2003
    [109] M. Takeda and K. Mutoh, Fourier transform profilometry for the automatic measurement of 3-D object shapes, Appl. Opt. 1983, 22(24), 3977~3982
    [110] V. I. Gushov and Y. N. Solodkin, Automatic processing of fringe patterns in integer interferometers, Opt. Lasers Eng., 1991(4-5), 14: 311~324
    [111] C. J. Greivenkamp. Generalized data reduction for heterodyne interferometry, Opt. Eng., 1984, 23(4): 350~352
    [112] J. H. Bruning, D. R. Herriott, J. E. Gallagher, et al. Digital wavefront measuring interferometer for testing optical surfaces and lenses, Appl. Opt., 1974, 13(11): 2693~2703
    [113] C. Ai, J. C. Wyant. Effect of piezoelectric transducer nonlinearity on phase shift interferometry, Appl. Opt., 1987, 26(6) : 1112~1116
    [114] Y. Surrel. Phase stepping: a new self-calibrating algorithm, Appl. Opt., 1993, 32(19): 3598~3600
    [115]候立周,强锡富,孙小明。几种任意步距步进相移算法的误差分析与对比,光学技术,1999,25(5):7~10
    [116] P. Carre. Installation et utilization du comparateur photoeletrique interferentiel du burear international des poids et measures, Metrologia, 1966, (2): 13~23
    [117] J. Schwider, R. Burow, K. E. Elssner, et al. Digital wave-front measuring interferometry: some systematic error sources, Appl. Opt., 1983, 22(21): 3421~3431
    [118] G. Stoilov, T. Dragostinov. Phase-stepping interferometry: five-frame algorithm with an arbitrary step, Optics and Lasers in Engineering, 1997, 28(1): 61~69
    [119] K. Hibino, B. F. Oreb, D. I. Farrant. Phase shifting for nonsinusoidal waveforms with phase-shift errors, J. Opt. Soc. Am. A, 1995, 12(4):761~768
    [120] X.Y. Su. Phase unwraping techniques for 3-D shape measurement. Proc.SPIE, 1996, 2866: 460~465
    [121]韦林彬。多分辨深度图像重建算法与软件实现,硕士论文,天津:天津大学,2006
    [122] M. Takeda, Q. Gu, M. Kinoshita et al. Frequency-multiplex Fourier-transform profilometry: a single-shot three-dimensional shape measurement of objects with large height discontinuities and/or surface isolations. Appl. Opt., 1997, 36(22): 5347~5354
    [123] J. M. Huntley, H. Saldnerzx. Temporal phase unwrapping algorithm for automated interferogram analysis. Appl.Opt., 1993, 32(17): 3047~3052
    [124] J. M. Huntley, H. Saldnerzx. Shape measurement by temporal phase unwrapping: comparison of unwrapping algorithms. Meas. Sci. Technol., 1997, 8(9): 986~992
    [125] J. M. Huntley, C. R. Coggrave. Progress in Phase Unwrapping. Proc. SPIE., 1998, 3407: 86~93
    [126] G. Sansoni, S. Corini, S. Lazzari, et al. Three-dimensional imaging based on Gray-code light projection: characterization of the measuring algorithm and development of a measuring system for industrial applications, App. Opt., 1997, 36(23): 4463~4472
    [127] J. Tian and X. Peng, 3-D digital imaging based on shifted point-array encoding, Appl. Opt., 2005, 44(26): 5491~5496
    [128] H. Zhao, W. Chen, Y. Tan. Phase-unwrapping algorithm for the measurement of three-dimensional object shapes. Appl. Opt., 1994, 33(20): 4497~5000
    [129] L. Kinell, M. Sjodahl. Robustness of Reduced Temporal Phase Unwrapping in the Measurement of Shape. Appl.Opt., 2001, 40(17): 2297~2303
    [130] X. Peng, Z. L. Yang and H. B. Niu, Multi-resolution reconstruction of 3-D image with modified temporal unwrapping algorithm. Opt. Comm., 2003, 224(1~3): 35~44
    [131]彭翔,韦林彬,邱文杰,田劲东:广义条纹图序列编码的相位重建,光学学报,2006, 26(6): 1156~1161
    [132]张宗华,彭翔,史伟强等,实物表面三维相位图定标的研究,仪器仪表学报, 2000, 21(5): 539~542
    [133]黄琼,苏显渝,数字图象获取装置的相位漂移及其对相位测量轮廓术的影响,光电子.激光, 1998, 9(5): 406~408
    [134]周利兵,苏显渝,王立无,相位测量轮廓术中探测器非线性误差的分析,激光杂志, 2002, 23(3): 19~21
    [135]曹益平,苏显渝,陈文静等,数字微镜器件的时空特性对相位测量轮廓术的影响,光学技术, 2004, 30(2): 157~160
    [136]王立无,苏显渝,周利兵,相位测量轮廓术中随机相移误差的校正算法,光学学报, 2004, 24(5): 614~618
    [137]梁晓萍,苏显渝,位相测量轮廓术的仿真研究:系统结构参数的影响,光电工程, 1998, 25(5): 53~60
    [138] Q. Hu, P.S. Huang, Q. Fu, et al. Calibration of a three-dimensional shape measurement system, Opt. Eng., 2003, 42(2): 487~493
    [139] Y I. Abdel-Aziz, H. M. Karara. Direct linear transformation into object space coordinates in close-range photogrammetry, Proc. Symp. Close-Range Photogrammetry, Urbana Illinois, 1971, 433: 1~18
    [140] R. Y. Tsai. An efficient and accurate camera calibration technique for 3D machine vision, In: Proc. CVPR’86, Miami Beach , 1986, 364~374.
    [141] Z. Y. Zhang. A flexible new technique for camera calibration. MSR.Technical Report, 1998.
    [142] J. Weng, P. Cohen, M. Herniou. Camera calibration with distortion models and accuracy evaluation, IEEE Trans. PAMI, 1992, 14(10):965~980.
    [143] H. A. Martins, J. R. Birk, R. B. Kelley. Camera models based no data from two calibration planes. Computer Graphics and Imaging Processing, 1981, 17(2):173~180.
    [144] G. Wei, S. Ma. Two-plane calibration: a unified model. Proc. CVPR’91, Maui, 1991, 133~138.
    [145] O. D. Faugeras. Stratification of three dimensional vision: projective, affine, and metric representations. J.Opt. Soc. Am. A. 1995, 12(3):465~484.
    [146] H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 1981, 293(10):133~135.
    [147] O. D. Faugeras, S. Maybank. Motion from point matches: multiplicity of solutions. Intl.J.Computer Vision, 1990, 4(3):225~246.
    [148] S. J. Maybank, O. D. Faugeras. A theory of self-calibration of a moving camera. Intl.J.Computer Vision, 1992, 8(2):123~151.
    [149] S. Ma. A self-calibration technique for active vision system, IEEE Trans. Robotics and Automation, 1996, 12(1):114~120
    [150] O. D. Faugeras, B. Mourrain. On the geometry and algebra of the point and line correspondences between n images. Proc. ICCV’95, Cambridge, Mass, 1995, 951~956.
    [151] R. Hartley. A linear method for reconstruction from lines and points. Proc. ICCV’95, Cambridge, Mass, 1995, 1058~1063
    [152] A. Shashua. Trilinear functions for visual recognition. Proc. ECCV’94, Stockholm, Sweden, 1994, 479~484
    [153]黄桂平,数字近景工业摄影测量关键技术研究与应用,博士论文,天津,天津大学,2005
    [154]张鸿宾,谢丰,基于表面间距离度量的多视点距离图像的对准算法,中国科学E辑,2005,35(2):150~160
    [155]张鸿宾,唐积尧,多视点距离图像的对准算法,自动化学报,2001,27(1):39~46
    [156]张鸿宾,唐积尧,多视点距离图象集成的截平面法,高技术通讯,1998,8(5):24~29
    [157]何文峰,大型场景三维重建中的深度图像配准:[硕士学位论文],2004,北京,北京大学,2004
    [158]张宗华,彭翔,胡小唐,获取ICP匹配深度图像初值的研究,工程图学学报,2002,23(1):78~84
    [159]张宗华,彭翔,胡小唐,ICP方法匹配深度图像的实现,天津大学学报,2002,35(5):571~576
    [160]高鹏东,彭翔,李阿蒙等,ICP框架下基于表面间平均体积测度的深度像配准,计算机辅助设计与图形学学报,2007,19(6):719~724
    [161]张爱武,孙卫东,葛成辉等,室外大型场景多机位三维数据全局快速配准,高技术通讯,2004,14(6):6~10
    [162]张爱武,孙卫东,李风亭,大规模三维场景几何信号基本处理方法,计算机辅助设计与图形学学报,2005,17(7):1486~1491
    [163]张爱武,胡少兴,孙卫东等,基于激光与可见光同步数据的室外场景三维重建,电子学报,2005,33(5):810~815
    [164]宋万忠,苏显渝,游志胜,相位测量轮廓术中的距离像配准,光电工程,2004,31(4):42~45
    [165]武殿梁,黄海量,基于遗传算法和最小二乘法的曲面匹配,航空学报,2002,23(3):285~288
    [166]张宏伟,张国雄,李真等,散乱数据的曲面重构与深度图像多视匹配技术,中国机械工程,2004,15(18):1626~1629
    [167] Y. Sato, M. D. Wheeler, K. Ikeuchi. Object shape and. reflectance modeling from observation, Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, 1997: 379~387
    [168] K. Pulli, Multiview registration of large data sets, in Proc. 2nd Int. Conf. on 3-D Digital Imaging and Modeling, 1999, Ottawa, 160~168
    [169]张宗华,彭翔,胡小唐,获取ICP匹配深度图像初值的研究,工程图学学报,2002,23(1):78~84
    [170] C. S. Chen, Y. P. Hung, J. B. Cheng. Ransac-based darces: a new approach to fast automatic registration of partially overlapping range images, IEEE Trans. Pattern Anal. Mach. Intell, 1999, 21 (11):1229~1234
    [171]许晓栋,赵毅,李从心,结构光测量中多视拼合技术与算法实现,机床与液压,2005,32(10):137~140
    [172] C. J. R. Chua, Point signatures: a new representation for 3d object recognition, Int. J. Comput. Vision, 1997, 25 (1): 63~85
    [173] A. E. Johnson, M. Hebert. Using Spin-Images for Efficient Object Recognition in Cluttered 3-D Scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1998, 21(5), 433~449
    [174] O. Carmichael, D. Huber, M. Hebert. Large data sets and confusing scenes in 3-d surface matching and recognition, Second International Conference on 3-D Digital Imaging and Modeling, Ottawa, Canada, 1999, 258~367.
    [175] D. Huber, M. Hebert, A new approach to 3-d terrain mapping, International Conference on Intelligent Robotics and Systems, Kyongju, South Korea, 1999, 1121~1127
    [176] I. Stamos, M. Leordeanu. Automated feature-based range registration of urban scenes of large scale, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003, 2: 555~561
    [177] C. Chen, I. Stamos, Semi-automatic range to range registration: a feature-based method, International Conference on 3-D Digital Imaging and Modeling, Ottawa, 2005, 254~261
    [178] J. V. Wyngaerd, L. V. Gool. Automatic Crude Patch Registration: Toward 3D Model Building. Computer Vision and Image Understanding. 2002, 87(1~3): 8~26
    [179] J. Feldmar, N. Ayache. Rigid, affine and locally affine registration of free-form surfaces, Tech. rep., Technical Report of INRIA, Sophia Antipolis, March 1994.
    [180]潘小林,张丽艳,揭裕文等,三维曲面部分匹配的算法研究,南京航空航天大学学报,2004,36(5):544~549
    [181]朱延娟,周来水,张丽艳,散乱点云数据配准算法,计算机辅助设计与图形学学报,2006,18(4):475~481
    [182] D. Chung, Y.D.S. Lee. Registration of multiple-range views using the reverse-calibration technique, Pattern Recognition, 1998, 31(4):457~464
    [183] F. Bernardini, I. Martin, H. Rushmeier. High-quality texture reconstruction from multiple scans, IEEE Transactions on Visualization and Computer Graphics, 2001, 7(4): 318~332
    [184] A. E. Johnson, S. Kang. Registration and integration of textured 3D data, Image and Vision Computing, 1999, 17(2):135~147
    [185] G. Roth. Registering two overlapping range images, Proceedings of International Conference on 3D Digital Imaging and Modeling, Ottawa, 1999: 191~200
    [186] J. V. Wyngaerd, L. V. Gool, "Combining texture and shape for automatic crude patch registration", Proc. 3DIM’03, IEEE Computer Society, Banff, Canada, 2003, 179~186
    [187] D. G. Lowe. Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision, 2004, 60(2), 91~110
    [188]杨延西,刘丁,辛菁。模糊遗传图像相关匹配算法,仪器仪表学报, 2005, 25(11):1166~1169
    [189]汪亚明。图像匹配的鲁棒型Hausdorff方法,计算机辅助设计与图形学学报,2002, 14(3):238~241
    [190] D. P. Huttenlocher, G. A. Klanderman, W. J. Rucklidge. Comparing images using the Hausdorff distance, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(9): 850~863
    [191]马颂德,张正友。计算机视觉——计算理论与算法基础,北京:科学出版社,1998, 174~178
    [192] K. Mikolajczyk, C. Schmid. An affine invariant interest point detector, In European Conference on Computer Vision(ECCV), Copenhagen, Denmark, 2002, 128~142
    [193] M. A. Fishler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography, Communications of ACM, 1981, 24 (6), 381~395
    [194] R. Hartley. In defense of the 8-point algorithm, IEEE Trans. Pattern Analysis and Machine Intelligence, 1997, 19(6): 580~593
    [195] T. Masuda, K. Sakaue, N. Yokoya. Registration and integration of multiple range images for 3-D model construction. Proc. ICPR, Canada, 1996, 1: 879~883
    [196] S. Weik. Registration of 3-D partial surface models using luminance and depth information. Proc. 3DIM, Ottawa ,1997, 93~100
    [197] G. Godin, M. Rioux, R. Baribeau. Three-dimensional registration using range and intensity information. Proc. SPIE, 1994, VideometricsⅢ, 2350: 179~290
    [198] P. Neugebauer. Geometrical cloning of 3D objects via simultaneous registration of multiple range images, in Proc. Int. Conf. on Shape Modeling and Appl., Aizu-Wakamatsu, Japan, 1997, 130~139
    [199] C. Dorai, G. Wang, A. K. Jain, et al. Registration and integration of multiple object views for 3D model construction, IEEE Trans. Pattern Anal. Mach. Intell, 1998, 20(1): 83~89
    [200] D. W. Eggert, A. Lorusso, R. B. Fisher. Estimating 3-D rigid body transformations: a comparison of four major algorithms, Machine Vision and Applications, 1997, 9(5-6): 272~290
    [201] Z. Zhang. Iterative Point Matching for Registration of Free-Form Curves and Surfaces. International Journal of Computer Vision. 1994, 13(2): 119~152
    [202] T. Jost, H. Hugli. A multi-resolution ICP with heuristic closest point search for fast and robust 3D registration of range images, 3DIM’03, Ottawa, IEEE Computer Society, 2003, 427~433
    [203] G. Godin, D. Laurendeau, R. Bergevin, A method for the registration of attributed range images, in: 3DIM01 Third International Conference on 3D Digital Imaging and Modeling, Canada, 2001, 179~186
    [204] G. Sharp, S. Lee, D. Wehe, ICP registration using invariant features, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24 (1): 90~102
    [205] T. Masuda, Generation of geometric model by registration and integration of multiple range images, in: Third International Conference on 3-D Digital Imaging and Modeling, 2001, 254~261
    [206] C. Robertson, R.B. Fisher. Parallel Evolutionary Registration of Range Data, Computer Vision and Image Understanding, 2002, 87(1): 39~50
    [207] R. Benjemaa, F. Schmitt. Fast Global Registration of 3D Sampled Surfaces Using a Multi-Z-Buffer Technique. Image and Vision Computing, 1999, 17(2): 113~123
    [208] D. W. Eggert, A. W. Fitzgibbon, R. B. Fisher. Simultaneous Registration of Multiple Range Views for Use in Reverse Engineering of CAD Models, Computer Vision and Image Understanding, 1998, 69(3): 253~272
    [209]罗先波,钟约先,李仁举等,基于标志点的多视角三维测量数据配准技术的研究,计量技术,2004,25(5):20~22
    [210]张维中,张丽艳,张辉等。基于标记点的多帧透视图像三维重建算法,中国机械工程,2006,17(16):1711~1715
    [211]徐文立,张立华。一种基于几何推理的点模式匹配算法,中国科学,2002,32(4):553~560
    [212] R. Kolluri, J. R. Shewchuck, J. F. O’Brien, Spectral surface reconstruction from noisy point clouds, In proceedings of the 2004 Eurographics/ ACM SIGGRAPH symposium on Geometry Processing, Grenoble, 2004, 71:11~21
    [213] W. Lorensen, H. Cline. Marching Cubes: A high resolution 3d surface reconstruction algorithm, Computer Graphics, 1987, 21(4): 163~169
    [214] D. Marchal, F. Aubert, C. Chaillou. Collision between deformable objects using fast-marching on tetrahedral models, In Proceedings of the 2004 ACM SIGGRAPH, Los Angeles, 2004: 121~129
    [215] P. Claes, D. Vandermeulen, L. Van Gool, et. al. Partial surface integration based on variational implicit functions and surfaces for 3D model building, Proceedings of 3DIM’05, Ottawa, 2005, 31~38
    [216]张宗华,彭翔,胡小唐,深度图像合成的主次缝合线方法,工程图学学报, 2000, 22 (2): 102~109
    [217] M. Rutishauser, M. Stricker, M. Trobina. Merging range images of arbitrarily shaped objects, In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Seattle, 1994: 573~580
    [218] G. Succi, G. Sandini, E. Grosso. 3D feature extraction from sequences of range data, the 5th Int. Symposium on Robotics Research, Tokyo, 1991: 116~127
    [219] M. D. Wheeler, Y. Sato, K. Ikeuchi. Consensus surfaces for modeling 3D objects from multiple range images. In Sixth International Conference on Computer Vision, Bombay, India, 1998, 917~924
    [220] V. T. Hook. Real-time shaded NC Milling Display, Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH’86, New York, 1986: 15~20
    [221] G.. V. Bergen. Efficient Collision Detection of Complex Deformable Models using AABB Trees. Journal of Graphics Tools, 1997, 2(4): 1~14
    [222] J. Palmer, R.L. Grimsdale. Detection for animation using sphere-tree. Computer Graphics Forum, 1995, 14(2):105~116
    [223] S. Gottschalk, M. Lin, D. Manocha. OBB tree: a hierarchical structure for rapid interference detection, Computer Graphics (SIGGRAPH’96), New Orleans, 1996, 30: 171~180.
    [224] J. Klosowski, M.Held, J. S. B. Mitchell, et al. Efficient collision detection using bounding volume hierarchies of k-dops, IEEE Transaction on Visualization and Computer Graphics, 1998, 4(1): 21~36
    [225] H. Edelsbrunner. Surface reconstruction by wrapping finite point set in space. Discrete and Computational Geometry—The Goodman-Pollack Festschrift, eds. Aronov, Basy, Pach and Sharir, Springer-Verlag, Berlin, 2003, 379~404
    [226] P. Cignoni, C. Rocchini, R. Scopigno. Metro:measuring error on simplified surfaces, Computer Graphics Forum. 1998, 17(2):167~174
    [227] J. Cohen, A. Varshney, D. Manocha, et al. Simplification envelopes. In: Proceedings of the Computer Graphics, SIGGRAPH’96, New Orleans, 1996, 119~128
    [228] M. Garland. Multiresolution modeling: Survey & future opportunities, In: Proceedings of the Eurographics’99, Milan, Italy, 1999, 111~131
    [229] R. J. Fowler, J. J. Little. Automatic extraction of irregular network digital terrain models, Computer Graphics, 1979, 13(2): 199~207
    [230] M. Garland, P. S. Heckbert. Fast polygonal approximation of terrians and height fields, Technical Report, CMU-CS-95-181, Department of Computer Science, Carnegie Mellon University, 1995
    [231] E. Catmull, J. Clark. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer Aided Design, 1978, 10(6): 350~355
    [232] C. Loop. Smooth subdivision surfaces based on triangles [MS. Thesis]. Utah: University of Utah, 1987
    [233] B. Hamann. A data reduction scheme for triangulated surface, Computer Aided Geometric Design, 1994,11(2):197~214
    [234] H. Hoppe. Progressive meshes, In: Proceedings of the SIGGRAPH’96, New Orleans, 1996, 99~108
    [235] H. Hoppe, T. Derose, T. Duchamp, et al. Mesh Optimization, In: Proceedings of Computer Graphics, Annual Conference Series, ACM SIGGRAPH, Anaheim, California, 1993, 19~26
    [236] H. Hoppe. New quadric metric for simplification meshes with appearance attributes, In: Proceedings of the IEEE Visualization’99, San Francisco, 1999, 59~66
    [237] P. Lindstrom, G. Turk. Fast and memory efficient polygonal simplification. In: Proceedings of the IEEE Visualization’98, Research Triangle Park, North Carolina, United States, 1998. 279~284
    [238] T. Gieng, B. Hamann, K. Joy, et al. Smooth hierarchical surface triangulations. In: Proceedings of the IEEE Visualization’97, San Francisco, 1997, 375~386
    [239] V. Isler, R. W. H. Lau, M. Green. Real-Time multi-resolution modeling for complex virtual environments, In: Proceedings of the VRST’96, Hong Kong, 1996, 11~19.
    [240]周昆,潘志庚,石教英。基于三角形折叠的网格简化算法。计算机学报, 1998, 21(6): 506~513
    [241] R. Ronfard, J. Rossignac. Full-Range approximation of triangulated polyhedra. Computer Graphics Forum, 1996, 15(3): 67~76
    [242] J. C. Xia, A. Varshney. Dynamic view-dependent simplification for polygonal models, In: Proceedings of the IEEE Visualization’96, San Francisco, 1996, 327~334
    [243] H. Hoppe. View-Dependent refinement of progressive meshes. In: Proceedings of the Computer Graphics, SIGGRAPH’97, Los Angeles, 1997, 189~198
    [244]李捷,唐泽圣。三维复杂模型的实时连续多分辨率绘制,计算机学报,1998,21(6): 481~491
    [245]周昆,潘志庚,石教英。多细节层次模型间的平滑过渡,计算机辅助设计与图形学学报,2000,12(6): 463~467
    [246]李现民。三角网格简化及等值面抽取技术:[博士学位论文],北京,中国科学院计算技术研究所,2001
    [247] Y. Kho, M. Garland. User-guided simplification, In: Proceedings of 2003 ACM Symposium on Interactive 3D Graphics, Monterey, California, 2003, 123~126
    [248] G. Taubin, J. Rossignac. Geometric compression through topological surgery, ACM Transactions on Graphics, 1998, 17(2): 84~115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700