用户名: 密码: 验证码:
具有轴向周期渐变结构的功能梯度碳化硅纤维的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
先驱体转化法制备的SiC纤维具有高强度、高模量、耐高温、抗氧化、耐腐蚀、低密度等优异性能,是高温高强复合材料的关键增强材料。近年来,开发新型功能SiC纤维成为SiC纤维研制的另一个热点。功能型SiC纤维不仅拥有普通SiC纤维的优良性能,同时还兼具电磁吸收、气体吸附等其他特殊性能。以这些功能型SiC纤维为基础,可以开发出适用于高温、高腐蚀环境下的结构功能材料,极具应用前景。
     功能梯度材料是一种组成和微观结构梯度变化的材料,这种组成和结构变化可以满足在单一材料器件内部的不同部位实现不同功能的需要,从而优化器件的整体性能。实际上,先驱体法制备的SiC纤维本就是一种径向组成与结构渐变的梯度材料,但真正意义上的梯度SiC纤维应是在纤维轴向存在组成与结构的梯度变化。这种轴向梯度SiC纤维的结构与普通SiC纤维存在很大差异,这必然会给其性能带来众多独特之处,然而目前国内外均未见与之相关的报道。
     本课题将功能梯度材料的设计思想与结构控制理论引入到SiC纤维的制备中,研制了一种结构和电阻率沿纤维轴向周期性渐变的功能梯度SiC纤维。文中首先采用两种常见的烧成模式进行恒速烧成实验,系统研究了烧成工艺、纤维电阻率及纤维结构三者间的关系。在此基础上,设计了一种用于制备轴向梯度SiC纤维的变速烧成系统,并结合实验与模拟结果优化了烧成平台参数,最终成功制备出电阻率的变化周期与变化幅度可调的轴向梯度SiC纤维。最后,对轴向梯度SiC纤维的电磁性能及耐高温、抗氧化性能进行表征,并采用该轴向梯度纤维制备出宽频吸波性能优异的吸波材料。
     一步恒速烧成所得I-SiC纤维的表面存在约5~50nm厚的碳层,纤维电阻率随碳层增厚而降低。该碳层是I-SiC纤维的主要导电相,其形成过程可分为先驱体裂解、小分子炭化、热解炭沉积三个阶段。采用具有针对性的工艺技术对上述三个阶段加以控制,就可以控制I-SiC纤维表面的碳层厚度,进而调整I-SiC纤维电阻率。I-SiC纤维的导电行为符合“壳-芯”结构的特点,根据此模型计算出I-SiC纤维表面碳层的电阻率约为10-2cm。
     两步恒速烧成模式下制备的II-SiC纤维由于缺少表面碳层作为导电相,因此纤维电阻率比I-SiC纤维要高。游离碳是II-SiC纤维中的主要导电相,它通过一种逾渗作用决定了纤维的导电性能。烧成温度升高可促进纤维内游离碳含量与尺寸的增大,从而有效降低II-SiC纤维电阻率。但1300℃以上的热处理会使纤维内的SiCxOy结构发生分解,在纤维内部形成孔缺陷,导致纤维导电性能变差。II-SiC纤维的导电行为可用综合有效介质理论来描述,根据此模型计算得到的II-SiC纤维内部游离碳的电阻率约为10-1cm,其逾渗阀值在11.3%左右。
     文中采用椭圆形收丝筒取代传统的圆形收丝筒进行连续烧成,使SiC纤维烧成时间出现周期性梯度变化,最终实现对SiC纤维轴向结构与性能的周期性梯度控制。结合实验与模拟结果优化了烧成炉恒温区长度、椭圆收丝筒形状等烧成平台参数。此外,还采用一种新的套管烧成技术对SiC纤维表面的碳层厚度进行有效控制,制备出表面碳层厚度介于I-SiC和II-SiC纤维之间的IDR-SiC纤维。通过调整烧成时间,可使其电阻率在101~105cm之间变化,且实验重复性好。
     使用套管技术进行一步变速烧成,得到表面富碳的IDR-G-SiC纤维。该纤维电阻率在100~102cm之间梯度变化。纤维电阻率变化的周期和范围可简单地通过改变收丝筒尺寸和烧成温度来调控。结构分析表明该纤维内部以无定形结构为主,纤维轴向电阻率发生周期性梯度变化主要是由其表面碳层的波动变化所引起的。
     采用两步烧成模式进行变速烧成,制备了电阻率可在102~106cm之间梯度变化的表面富氧的II-G-SiC纤维。与预烧条件相比,终烧的温度和时间对II-G-SiC纤维电阻率的影响更大。此外,不熔化纤维的Si-H反应程度越低,所得II-G-SiC纤维的电阻率也越低,但变化幅度基本不变。结构分析表明,II-G-SiC纤维的结晶程度优于IDR-G-SiC纤维,纤维的电阻率变化主要由其内部游离碳含量变化引起。
     对不同条件下制备的轴向梯度SiC纤维的电磁参数进行了测试。结果表明,由于IDR-G-SiCf纤维表面存在碳层,因此其介电损耗正切值较高,适合用作吸波材料的吸收体;而II-G-SiC纤维的表面无碳层,tgδ值较低,适合用作透波材料或是吸波材料中的介质层。以II-G-SiCf作为的介质层材料,IDR-G-SiCf作为内部吸收层材料,采用不同的叠加方式,制备出两种具有优良吸波性能的吸波材料。其最大反射衰减分别为-26.3dB和-23.5dB,反射衰减低于-10dB的频宽分别为7.7GHz和11.6GHz。
     针对轴向梯度SiC纤维在未来可能的高温、氧化等苛刻环境中的应用,研究了梯度SiC纤维的高温稳定性和抗氧化性能。由于表面碳层在高温处理过程中被氧化,IDR-G-SiC梯度纤维的电阻率在热处理后变化明显,强度略有降低。II-G-SiC纤维常温力学性能比IDR-G-SiC纤维略低,但其耐高温、抗氧化性能整体优于IDR-G-SiC纤维。
The silicon carbide fibers (SiCf) are typically used as reinforcement for hightemperature structural composites due to their excellent tensile strength, stiffness andhigh temperature resistance in oxidizing atmosphere. In recent years, development offunctional SiCfhas become another hotspot of the SiCfpreparation. The functional SiCf,which combine excellent specific strength, high temperature stability and other uniqueproperties, should find applications in the fields of high temperature, high humidity andcausticity.
     Functionally graded materials (FGMs), which integrate two or more constituentphases with a continuously variable composition, are recognized as the most promisingcandidates to result remarkable functional properties. Owing to the unique features ofthe fabrication process, the polymer-derived SiCfare more or less innate gradient alongthe radial direction (so-called core-shell structure). But, as real FGMs, the continuousSiCfwith gradient structure and properties in the axial direction will be more attractive.
     In this work, we study the relationships among the preparation condition, structureand electrical resistivity of the polymer-derived SiCf. Base on the mechanism study, wedesign a simple process by which graded fibers with sinusoidal electrical resistivity inthe axial direction can be directly prepared through the precursor polymer pyrolysisroute. Two kinds of axial graded SiC fibers, IDR-G-SiCfand II-G-SiCf, are preparedaccording to this approach. The electrical resistivity, high temperature resistance andoxidation resistance of the graded fibers is investigated along the axial direction. Radarabsorbing materials (RAMs) comprising this novel functional SiCfshows excellentmicrowave absorbability.
     SiC fibers prepared by one step continuous pyrolysis using circular rotating spoolare denoted as I-SiCf. A carbon layer with thickness of5~50nm appears on the surfaceof I-SiCf. The electrical resistivity of I-SiCfdecreases as the thickness of the carbonlayer increases. This carbon layer is the main conductive phase of I-SiCf. Its formationprocess is discussed in three steps: the decomposition of the cured preceramic to releaseorganic gaseous species, the carbonization of the gaseous species to generate pyrolyticcarbon, and the deposition of the pyrolytic carbon to form a carbon layer on the surfaceof the fibers. The electrical resistivity of I-SiCfcan be adjusted by accurate control ofthe three steps. A “core-shell” model is proposed to explain the the electrical conductivebehavior of I-SiCf. Electrical resistivity of the carbon layer calculated from this model isaround10-2cm.
     II-SiCfis the fibers obtained from two step continuous pyrolysis using circularrotating spool. The electrical resistivity of II-SiCfis much higher than I-SiCfdue to thelack of carbon layer on its surface. Free carbon is the main conductive phase in the II-SiCf. The amount of the free carbon but mainly, its texture, govern the electricalconductivity of the II-SiCfaccording to a percolation effect. Increase of the pyrolysistemperature promotes the growth of free carbon and thus decreases the electricalresistivity of II-SiCf. But heat treatment over1300℃may cause decompose of SiCxOyphase, which will release SiO and CO gases and leave pores in the fibers. The increaseof the pore volume leads to a102order of increase in the fiber electrical resistivity. Theelectrical behavior of II-SiCfin the percolation regime can be described using generaleffective media theory. Electrical resistivity and percolation threshold of the free carboncalculated from this model is10-1cm and11.3%, respectively.
     A rotating spool having the shape of an ellipse is employed in the pyrolysis systemto periodically adjust the pyrolysis time of SiCf. The periodic variation of pyrolysis timesubsequently resulted in a sinusoidal electrical resistivity of the SiCf. The apparatusparameters, such as the length of the temperature constant area of the pyrolysis furnaceand the size of the elliptic rotating spool, are optimized according to simulation andexperiment results. A novel pyrolysis technology, namely deposition retarded pyrolysistechnology, is adopted to control the thickness of the carbon layer on the surface of SiCf.The IDR-SiCfprepared by using this technology shows adjustable electrical resistivity inthe range of101~105cm.
     Axial graded SiC fibers with carbon-enriched surface are prepared by one stepcontinuous pyrolysis using elliptic rotating spool and deposition retarded pyrolysistechnology. This kind of axial graded SiCf, denoted as IDR-G-SiCf, shows sinusoidalelectrical resistivity in the range of100~105cm. Desired period and range of theelectrical resistivity can be facilely controlled by adjusting the size of the rotating spooland the pyrolysis temperature. Structure analyses reveal that the IDR-G-SiCfis mainlycomposed of amorphous phase. The fluctuating carbon layer thickness on fiber surfaceis responsible for the electrical resistivity variation of the fibers.
     Direct pyrolysis under two step continuous pyrolysis using elliptic rotating spoolgives axial graded SiCfhaving oxygen-enriched surface. This kind of axial graded SiCf,denoted as II-G-SiCf, exhibits sinusoidal electrical resistivity in the range of102~106
     cm. In comprison with pre-pyrolysis conditions, the final-pyrolysis temperature andtimes are more efficient in adjusting the electrical conductivity of the II-G-SiCf. Inaddition, decrease in oxygen content will lower the electrical resistivity of the II-G-SiCf,but the extent of the electrical resistivity variation is independent of the oxygen content.The II-G-SiCfshows better crystallizability than IDR-G-SiCf. The sinusoidal electricalresistivity of II-G-SiCfis result from the variation of free carbon content in the fibers.
     Electromagnetic parameters of axial graded SiCfprepared at different condition aretested. The loss tangent of IDR-G-SiCfis higher than II-G-SiCf, because the carbon layerof the former is effective in consuming electromagnetic wave. The measurement results of electromagnetic parameters reveal that the IDR-G-SiCfis applicable to use asmicrowave absorber and the II-G-SiCfare good permeable materials. Radar absorbingmaterials comprising the graded SiCfshow excellent wide frequency absorbingproperties.
     For the potential applications in high temperature and oxidation environment, thethermal stability and the anti-oxidation properties of graded SiC fibers areinvestigated.The oxidation of carbon layer leads to a drastic increase in the electricalresistivity of the IDR-G-SiCf. The tensile strength of the II-G-SiCfat room temperature isslightly lower than that of the IDR-G-SiCf. But the II-G-SiCfexhibits betterhigh-temperature and oxidation resistance due to the protection of oxygen-enrichedlayer.
引文
[1] Galasso F, Basche M, Kuehl D. Preparation, structure and properties ofcontinuous silicon carbide filaments [J]. Applied Physics Letters,1966,9(1):37-39.
    [2] Scholz R. Light ion irradiation creep of SiC fibers in torsion [J]. Journal ofNuclear Materials,1998,258-263:1533-1539.
    [3] Frechette F, Dover B, Venkateswaran V, et al. High temperature continuoussintered SiC fiber for composite applications [J]. Ceramic Engineering and ScienceProceedings,1991,12(7):992-995.
    [4] Biernacki J J, Venkateswaran V, Aandrejcack M. Scaling technology forproduction of continuous ceramic fiber [J]. Ceramic Engineering and ScienceProceedings,1997,18(3):73-75.
    [5] Dicarlo J A. Creep limitations of current polycrystalline ceramic fibers [J].Composites Science and Technology,1994,51(2):213-222.
    [6] Ryu Z Y, Zheng J T, Wang M Z, et al. Preparation and characterization of siliconcarbide fibers from activated carbon fibers [J]. Carbon,2002,40:715-720.
    [7] Okada K, Kato H, Nakajima K. Preparation of silicon carbide fiber from activatedcarbon fiber and gaseous silicon monoxide [J]. Journal of the American CeramicSociety,1994,77(6):1691-1693.
    [8] Ishikawa T. Recent developments of the SiC fiber Nicalon and its composites,including properties of the SiC fiber Hi-Nicalon for ultra-high temperature [J].Composites Science and Technology,1994,51:135-144.
    [9]楚增勇.先驱体转化法连续SiC纤维国内外研究与开发现状[J].无机材料学报.2002,17(2):193-201.
    [10] Chantrell P G, Popper P. Special Ceramics[M]. New York: Academic Press,1964.
    [11] Schilling C L. Polymer route to silicon carbide [J]. British polymer Journal,1986,18(6):355-358.
    [12] Seyferth D, Sobon C A, Borm J. A new proedure for "up-grading" the Nicalonpolycarbosilane and related Si-H containing organosilicon polymers [J]. Journal ofChemistry,1990,14:545-547.
    [13] Laine R M, Babonneau F. Preceramic polymer routes to silicon carbide [J].Chemistry of Materials,1993,5(3):260-279.
    [14] Interrante L V, Shen Q. Silicon-containing polymers[M]. Kluwer Academicpublishers,2000.
    [15] Birot M, Pillot J, Dunogues J. Comprehensive chemistry of polycarbosilanes,polysilazanes, and polycarbosilazanes as precursors of ceramics [J]. Chemical Reviews,1995,95(5):1443-1477.
    [16] Hasegawa Y, Iimura M, Yajima S. Synthesis of continuous silicon carbide fibre.Part2Conversion of polycarbosilane fibre into silicon carbide fibres [J]. Journal ofMaterials Science,1980,15:720-728.
    [17] Soraru G D, Babonneau F, Mackenzie J D. Structural evolutions frompolycarbosilane to SiC ceramic [J]. Journal of Materials Science,1990,25:3886-3893.
    [18] Yajima S, Hasegawa Y, Hayashi J, et al. Synthesis of continuous silicon carbidefibre with high tensile strength and high young's modulus Part1Synthesis ofpolycarbosilane as precursor [J]. Journal of Materials Science,1978,13:2569-2576.
    [19] Yajima S, Okamura K, Matsuzawa T, et al. Anomalous characteristics of themicrocrystalline state of SiC fibres [J]. Nature,1979,279:706-707.
    [20]蓝新艳.聚碳硅烷纤维成型过程研究[D].长沙:国防科学技术大学,2004.
    [21]刘辉.聚碳硅烷纤维成型的基础研究[D].长沙:国防科学技术大学,2002.
    [22]李效东.先驱体高分子[M].反应性与功能性高分子材料,张政朴,北京:化学工业出版社,2005,341-375.
    [23] Hasegawa Y, Okamura K. Synthesis of continuous silicon carbide fibre. Part4The structure of polycarbosilane as the precursor [J]. Journal of Materials Science,1986,21:321-328.
    [24] Idesaki A, Narisawa M, Okamura K, et al. Fine SiC fiber synthesized fromorganosilicon polymers: relationship between spinning temperature and melt viscosityof precursor polymers [J]. Journal of Materials Science,2001,36:5565-5569.
    [25] Ichikawa H, Teranishi H, Ishikawa T. Effect of curing conditions on mechanicalproperties of SiC fibre (Nicalon)[J]. Journal of Materials Science Letters,1987,6:420-422.
    [26] Nagamori M, Boivin J A, Claveau A. Thermodynamic stability of siliconoxycarbide Si5C6O2(Nicalon)[J]. Journal of Materials Science,1995,30:5449-5456.
    [27] Mah T, Hecht N L, Mccullum D E, et al. Thermal stability of SiC fibres (Nicalon)[J]. Journal of Materials Science,1984,19:1191-1201.
    [28] Yang D X, Song Y C, Mao X H, et al. Composition, structure and properties oflow oxygen content SiC fibers [J]. Key Engineering Materials,2007,336-338:1297-1300.
    [29] Hasegawa Y. New curing method for polycarbosilane with unsaturatedhydrocarbons and application to thermally stable SiC fibre [J]. Composites Science andTechnology,1994,51(2):161-166.
    [30] Hasegawa Y. Si-C fiber prepared from polycarbosilane cured without oxygen [J].Journal of Inorganic and Organometallic Polymers,1992,2(1):161-169.
    [31] Hasegawa Y. Synthesis of continuous silicon carbide fibre. Part6Pyrolysisprocess of cured polycarbosilane fibre and structure of SiC fibre [J]. Journal ofMaterials Science,1989,24:1177-1190.
    [32] Hasegawa Y, Okamura K. Synthesis of continuous silicon carbide fibre. Part3.Pyrolysis process of polycarbosilane and structure of the products [J]. Journal ofMaterials Science,1983,18:3633-3648.
    [33] Okamura K, Shimoo T, Suzuya K, et al. SiC-based ceramic fibers prepared viaorganic-to-inorganic conversion process-A Review [J]. Journal of the Ceramic Societyof Japan,2006,114(1330):445-454.
    [34] Le Coustumer P, Monthioux M, Oberlin A. Understanding Nicalon fibre [J].Journal of European Ceramic Society,1993,11(2):95-103.
    [35] Simon G, Bunsell A R. Mechanical and structural characterization of the Nicalonsilicon carbide fibre [J]. Journal of Materials Science,1984,19:3649-3657.
    [36] Porte L, Sartre A. Evidence for a silicon oxycarbide phase in the Nicalon siliconcarbide fiber [J]. Journal of Materials Science,1989,24:271-275.
    [37] Laffon C, Flank A M, Lagarde P, et al. Study of Nicalon-based ceramic fibers andpowders by EXAFS spectrometry, X-ray diffractometry and some additional methods[J]. Journal of Materials Science,1989,24:1503-1512.
    [38] Bunsell A R, Piant A. A Review of the development of three generations of smalldiameter silicon carbide fibres [J]. Journal of Materials Science,2006,41(3):823-839.
    [39] Clark T J, Arons R M, Stamatoff J B, et al. Thermal degradation of Nicalon SiCfiber [J]. Ceramic Engineering and Science Proceedings,1985,6:576-578.
    [40] Toreki W, Batich C D, Sacks M D, et al. Polymer-derived silicon carbide fiberswith low oxygen content and improved thermomechanical stability [J]. CompositesScience and Technology,1994,51(2):145-159.
    [41] Toreki W. Polymer-derived silicon carbide fibers with low oxygen content [J].Ceramic Engineering and Science proceedings,1992,15(4):115-118.
    [42] Sacks M D. Effect of composition and heat treatment conditions on the tensilestrength and creep resistance [J]. Journal of European Ceramic Society,1999,19:2305-2315.
    [43]彭善勇.干法纺丝法制备低氧含量碳化硅纤维[D].长沙:国防科学技术大学,2005.
    [44] Okamura K, Segushi T. Application of radiation curing in the preparation ofpolycarbosilane-derived SiC fibers [J]. Journal of Inorganic and OrganometallicPolymers,1992,2(1):171-179.
    [45] Sato M, Yamamura T, Seguchi T, et al. Behavior of radicals on radiationcrosslinking of polycarbosilane as SiC fiber precusor [J]. Bulletin of the ChemicalSociety of Japan,1990,5:554-556.
    [46] Sugimoto M, Toshio S, Okamura K, et al. Reaction mechanisms of silicon carbidefiber synthesis by heat treatment of polycarbosilane fibers cured by radiztion: I Evolvedgas analysis [J]. Journal of the American Ceramic Society,1995,78(4):1013-1017.
    [47] Shimoo T, Hayatsu T, Narisawa M, et al. Mechanism of ceramization ofelectron-irradiation cured polycarbosilane fiber [J]. Journal of the Ceramic Society ofJapan,1993,101:809-813.
    [48] Takeda M, Imai Y, Ichikawa H, et al. Thermal stability of SiC fiber prepared byan irradiation-curing process [J]. Composites Science and Technology,1999,59:793-799.
    [49] Takeda M, Imai Y, Ichikawa H, et al. Thermomechanical analysis of the lowoxygen silicon carbide fibers derived from polycarbosilane [J]. Ceramic Engineeringand Science Proceedings,1993,14(7-8):540-547.
    [50] Berger M H, Hochet N, Bunsell A R. Microstructure and thermo-mechanicalstability of a low-oxygen Nicalon fibre [J]. Journal of Microscopy,1995,177(3):230-241.
    [51] Takeda M, Sakamoto J, Imai Y, et al. Thermal stability of the low-oxygen-contentsilicon carbide fiber, Hi-NicalonTM[J]. Composites Science and Technology,1999,59:813-819.
    [52] Chollon G, Pailler R, Naslain R, et al. Thermal stability of a PCS-derived SiCfiber with a low oxygen content (Hi-Nicalon)[J]. Journal of Materials Science,1997,32:327-347.
    [53] Bodet R, Bourrat X, Lamon J, et al. Tensile creep behaviour of a siliconcarbide-based fibre with a low oxygen content [J]. Journal of Materials Science,1995,30:661-677.
    [54] Takeda M, Saeki A, Sakamoto J I, et al. Properties of polycarbosilane-derivedsilicon carbide fibers with various C/Si compositions [J]. Composites Science andTechnology,1999,59(6):787-792.
    [55] Ichikawa H. Recent advances in Nicalon ceramic fibres including Hi-Nicalon typeS [J]. Annales De Chimie-Science Des Materiaux,2000,25(7):523-528.
    [56] Takeda M, Saeki A, Sakamoto J I, et al. Effect of hydrogen atmosphere onpyrolysis of cured polycarbosilane fibers [J]. Journal of the American Ceramic Society,2000,83(5):1063-1069.
    [57] Ishikawa T, Yamamura T, Okamura K. Production mechanism ofpolytitanocarbosilane and its conversion of the polymer into inorganic materials [J].Journal of Materials Science,1992,27:6627-6634.
    [58] Hasegawa Y, Feng C X, Song Y C, et al. Ceramic fibres from polymer precursorcontaining Si-O-Ti bonds. Part Ⅱ Synthesis of various types of ceramic fibres [J].Journal of Materials Science,1991,26:3657-3664.
    [59] Yamamura T, Ishikawa T, Shibuya M, et al. Development of a new continuousSi-Ti-C-O fibre using an organometallic polymer precursor [J]. Journal of MaterialsScience,1988,23(7):2589-2594.
    [60] Ishikawa T, Kohtoku Y, Kuagawa K. Production mechanism ofpolyzirconcarbosilane using zirconium (IV) acetylacetonate and its conversion of thepolymer into inorganic materials [J]. Journal of Materials science,1998,33:161-166.
    [61] Yamaoka H, Ishikawa T, Kumagawa K. Excellent heat resistance of Si-Zr-C-Ofibre [J]. Journal of Materials Science,1999,34:1333-1339.
    [62] Ishikawa T, Kohtoku Y, Kumagawa K, et al. High-strength alkali-resistantsintered SiC fibre stable to2200°C [J]. Nature,1998,391:773-775.
    [63] Itatani K, Takahashi F, Aizawa M, et al. Densification and microstructuraldevelopments during the sintering of aluminium silicon carbide [J]. Journal ofMaterials science,2002,37:335-342.
    [64] Lipowitz J, Rabe J A, Zangvil A, et al. Structure and properties of SylramicTMsilicon carbide fiber-A polycrystalline, stoichiometric β-SiC composition [J]. CeramicEngineering and Science Proceedings,1997,18(3):147-157.
    [65] Jones R E, Petrak D, Rabe J, et al. SylramicTMSiC fibers for CMC reinforcement[J]. Journal of Nuclear Materials,2000,283-287:556-559.
    [66] Deleeuw D C, Lipowitz J, Lu P P. Preparation of substantially crystalline siliconcarbide fibers from polycarbosialne[P]. USA:5071600.1991.
    [67] Lipowitz J, Barnard T, Bujalski D, et al. Fine-diameter polycrystalline SiC fibers[J]. Composites Science and Technology,1994,51(2):167-171.
    [68] Yun H M, Dicarlo J A. Comparison of the tensile, creep, and rupture strengthproperties of stoichiometric SiC fibers [J]. Ceramic Engineering and Scienceproceedings,1999,20(3):259-272.
    [69] Kagawa Y, Matsumura K, Iba H, et al. Potential of short Si-Ti-C-Ofiber-reinforced epoxy matrix composite as electromagnetic wave absorbing material [J].Journal of Materials Science,2007,42(4):1116-1121.
    [70] Kagawa Y, Imahashi Y, Iba H, et al. Effect of electrical resistivity of Si-Ti-C-Ofiber on electromagnetic wave penetration depth of short fiber-dispersed composites [J].Journal of Materials Science Letters,2003,22(2):159-161.
    [71]赵东林,沈曾民.吸波Cf和SiCf的制备及其微波电磁特性[J].宇航材料工艺.2001(1).
    [72]余煜玺,李效东,曹峰,等.先驱体法制备含异质元素SiC陶瓷纤维的现状与进展[J].硅酸盐学报.2003,31(4):371-375.
    [73] Ube-Industry. http://www.ube.com
    [74]曹淑伟.含锆、钽、铪SiC陶瓷先驱体的合成及纤维制备研究[D].长沙:国防科学技术大学,2007.
    [75]杨大祥. PCS和PMCS的新合成方法及高耐温性SiC纤维制备研究-杨大祥[D].长沙:国防科学技术大学,2008.
    [76] Chen Z Y, Li X D, Wang J, et al. Preparation of Continuous Si-Fe-C-OFunctional Ceramic Fibers [J]. Transactions of Nonferrous Metals Society of China,2007,17:987-991.
    [77]陈志彦,王军,李致东,等.连续含铁碳化硅纤维及其结构吸波材料的研制[J].复合材料学报.2007,24(5):72-76.
    [78]王军,宋永才,冯春祥.掺混型碳化硅纤维及其微波吸收特性[J].材料工程.1998(5):41-44.
    [79]董纪震,罗鸿烈,等.合成纤维生产工艺学[M].北京:纺织工业出版社,1996.
    [80]刘旭光.复杂异形截面碳化硅纤维的制备与性能[D].长沙:国防科学技术大学,2005.
    [81]殷玲玲.同板多形碳化硅纤维的制备及其性能研究[D].长沙:国防科学技术大学,2004.
    [82] Edie D D, Fox N K, Barnett B C, et al. Melt-spun non-circular carbon fibers [J].Carbon,1986,24(4):477-482.
    [83] Jiang Y G, Wang Y D, Lan X Y, et al. Preparation of C-shaped silicon carbidefibers [J]. Journal of Materials Science,2004,39(18):5881-5882.
    [84] Wang Y D, Chen Y M, Zhu M F. Development for silicon carbide fibers withtrilobal cross section [J]. Journal of materials Science Letters,2002,21:349-350.
    [85]刘旭光,王应德,王磊,等.截面形貌对三叶型SiC纤维电磁性能的影响[J].功能材料.2010(04):697-699.
    [86]刘旭光,王应德,王磊,等.十字形碳化硅纤维的制备与微波电磁特性[J].无机材料学报.2010(04):441-444.
    [87] Muto N, Miyayama M, Yanagida H, et al. Infrared detection by Si-Ti-C-O fibers[J]. Journal of the American Ceramic Society,1990,73(2):443-445.
    [88] Bouillon E, Mocaer D, Villeneuve J F, et al. Composition-microstructure-propertyrelationships in ceramic monofilaments resulting from the pyrolysis of apolycarbosilane precursor at800to1400°C [J]. Journal of Materials Science,1991,26(6):1517-1530.
    [89] Bouillon E, Langlais F, Pailler R, et al. Conversion mechanisms of apolycarbosilane precursor into an SiC-based ceramic material [J]. Journal of MaterialsScience,1991,26:1333-1345.
    [90] Lipowitz J, Rabe J A, Frevel L K, et al. Characterization of nanoporosity inpolymer-derived ceramic fibres by X-ray scattering techniques [J]. Journal of MaterialsScience,1990,25:2118-2124.
    [91] Chu Z Y, Feng C X, Song Y C, et al. Initiation and propagation behaviors ofinterior microflaws in the pyrolysis of an air-cured polycarbosilane precursor fiber [J].Journal of Materials Science,2004,39:2827-2833.
    [92]赫荣安.先驱体法制备SiC陶瓷多孔吸附纤维的研究[D].长沙:国防科学技术大学,2008.
    [93] Chu Z Y, He R A, Zhang X B, et al. Fabrication of porous SiCy(core)/C (shell)fibres using a hybrid precursor of polycarbosilane and pitch [J]. Carbon,2010,48:2115-2118.
    [94]赫荣安,张晓宾,楚增勇,等.裂解温度与先驱体处理方法对SiC纤维吸附储氢性能的影响[J].稀有金属材料与工程.2007,36(S1):383-386.
    [95] Morscher G N. Tensile stress rupture of SiCf/SiCmminicomposites with carbonand boron nitride interphases at elevated temperatures in air [J]. Journal of theAmerican Ceramic Society,1997,80(8):2029-2042.
    [96] Naslain R, Dugne O, Guette A, et al. Boron nitride interphase in ceramic matrixcomposites [J]. Journal of the American Ceramic Society,1991,74(10):2482-2488.
    [97] Singh R N, Brun M. Effect of boron nitride coating on fiber-matrix interactions[J]. Ceramic Engineering and Science Proceedings,1987,8(7-8):634-643.
    [98] Zima T M, Baklanova N I, Titovb A T. The behavior of the oxide-coatedNicalonTMfibers exposed to air at1000°C [J]. Journal of European Ceramic Society,2005,25:1943-1952.
    [99] Li H, Lee J, Libera M R, et al. Morphological evolution and weak interfacedevelopment within chemical-vapor-deposited zirconia coating deposited on Hi-Nicalonfiber [J]. Journal of the American Ceramic Society,2002,85(6):1561-1568.
    [100] Luthra K L. Oxidation-resistant fiber coatings for non-oxide ceramic composites[J]. Journal of the American Ceramic Society,1997,80(12):3253-3257.
    [101] Gundel D B, Taylor P J, Wawner F E. Fabrication of thin oxide coatings onceramic fiber by a sol–gel technique [J]. Journal of Materials Science,1994,29(8):1795-1800.
    [102]杨孚标,李永清,程海峰,等. SiC纤维的B4C涂层研究[J].功能材料.2002,33(3):286-288.
    [103]程海峰,陈朝辉,李永清,等.短切碳化硅纤维微波电磁参数改性研究[J].宇航材料工艺.1999(4):41-44.
    [104]程海峰,陈朝辉,李永清,等.碳化硅短切纤维电磁特性改进研究[J].宇航材料工艺.1998(2):55-59.
    [105] Mouchon E, Colomban P. Microwave absorbent: preparation, mechanicalproperties and R.F.-microwave conductivity of SiC (and/or Mullite) fibre reinforcednasicon matrix composites [J]. Journal of Materials Science,1996,31:323-334.
    [106]黄小忠,申小海,冯春祥.磁性涂层碳化硅纤维的电磁特性研究[J].磁性材料及器件.2007,38(04):44-47.
    [107] Erdogan F. Fracture mechanics of functionally graded materials [J]. CompositesEngineering,1995,5(7):753-770.
    [108] Birman V, Byrd L W. Modeling and analysis of functionally graded materials andstructures [J]. Transactions of the ASME,2007,60:195-216.
    [109]新野正之,平井敏雄,渡边龙三.倾斜机能材料-宇宙机用超耐热材料た目指す[J].日本复合材料学会誌.1984,13(6):257-264.
    [110]新野正之,熊川彰長,若松義男,等.傾斜機能材料の製造方法[P]. Japan,2593735.1992.
    [111]新野正之.傾斜機能材料の開発[J]. The Japan Society of Mechanical Engineers.1989,92(858):1078-1081.
    [112] Suresh S.,Mortensen A.功能梯度材料基础——制备及热机械行为[Z].北京:国防工业出版社,2000.
    [113]孙涛,奚正平,汤慧萍,等.过滤用粉末烧结梯度多孔材料[J].稀有金属材料与工程.2008,37(A04):509-513.
    [114]宋晓艳,刘雪梅,张久兴. SPS过程中导电粉体的显微组织演变规律及机理[J].中国科学:E辑.2005,35(5):459-469.
    [115] Marion Joensson,淡新国,佘建芳. W—Cu梯度复合材料——加工、性能及其应用[J].国外难熔金属与硬质材料.2004,20(2):21-28.
    [116]邱长军,刘瑞林.涂层梯度液相烧结的原理和显微组织[J].焊接学报.2001,22(1):8-10.
    [117]王勇,高家诚,张亚平.激光熔覆梯度生物陶瓷涂层的研究[J].中国激光.2004,31(4):487-490.
    [118]杨森,赵金兰,杨欣.激光熔覆制备梯度功能涂层的研究现状[J].激光技术.2007,31(2):220-224.
    [119]邓刚,李文飞.不同Ca/P比粉末对宽带激光熔覆梯度生物陶瓷涂层组织结构的影响[J].西安建筑科技大学学报:自然科学版.2011,43(1):147-152.
    [120]董江,刘芳,陈岁元,等.铜板上激光熔覆制备Co-Ni-Cu梯度涂层[J].东北大学学报:自然科学版.2008,29(11):1581-1584.
    [121]梁城,高万振,潘邻,等.钛合金表面激光熔覆Ni基梯度涂层的研究[J].材料保护.2006,39(11):32-34.
    [122]杨永强,张翠红.激光熔覆-激光氮化复合法制取TiNi—TiN梯度材料[J].中国有色金属学报.2006,16(2):213-218.
    [123]刘栋,刘其斌.宽带激光熔覆生物陶瓷梯度涂层及其生物活性[J].红外与激光工程.2010(4):741-745.
    [124]陈传忠,王佃刚,徐萍,等.激光熔覆HA生物陶瓷梯度涂层的微观组织结构[J].中国激光.2004,31(8):1021-1024.
    [125]付永信,王建江,杜心康,等.热喷涂技术制备功能梯度材料涂层的发展状况[J].材料保护.2006,39(6):41-44.
    [126]王建江,胡文斌,付永信,等.自反应火焰喷涂梯度过渡陶瓷涂层研究[J].材料科学与工艺.2009(2):293-296.
    [127] Stewart S, Ahmed R. Contact fatigue failure evaluation of post-treatedWC-NiCrBSi functionally graded thermal spray coatings [J]. Wear,2004,257:962-983.
    [128] Prchlik L, Sampath S. Friction and wear properties of WC-Co and Mo-Mo2Cbased functionally graded materials [J]. Wear,2001,249:1103-1115.
    [129] Tillmann W.,Vogli E.,Abdulgader M.,等.双丝电弧喷涂方法制备功能梯度涂层[J].热喷涂技术.2011,3(1):58-64.
    [130] Musil J, Fiala J. Plasma spray deposition of graded metal-ceramic coatings [J].Surface and Coatings Technology,1992,52(2):211-215.
    [131] Wan Y P. An advanced model for plasma spraying of functionally gradedmaterials [J]. Journal of Materials Processing Technology,2003,137(1):110-116.
    [132]许磊,张春华,张松.爆炸喷涂研究的现状及趋势[J].表面改性技术.2004,29(2):21-25.
    [133] Kim J H, Kim M C. Evaluation of functionally graded thermal barrier coatingsfabricated by detonation gun spray technique [J]. Surface and Coatings Technology,2003,168:275-280.
    [134]蒋建纯.热梯度化学气相沉积工艺与设备的发展[J].炭素.2003(1):11-16.
    [135]付志强,周家斌,王成彪,等.化学气相沉积法制备SiC/SiO2梯度复合涂层的热力学分析[J].材料工程.2008(6):68-71.
    [136]赵建国,李克智,李贺军,等.热梯度化学气相沉积工艺制备炭/炭复合材料[J].新技术新工艺.2005(6):71-73.
    [137] Sasaki M. Design of SiC/C FGM and its preparation by chemical vapordeposition [J]. Journal of the Japan Ceramic Society,1989,97(3):539-544.
    [138]王立平,高燕,胡丽天,等.电沉积功能梯度材料的研究现状及展望[J].表面技术.2006,35(2):1-3.
    [139]王宏智,张卫国,等.电沉积梯度功能镀层的研究进展[J].电镀与环保.2001,21(3):1-4.
    [140]温变英.聚合物基梯度功能材料研究进展[J].中国塑料.2007,21(4):1-6.
    [141] Velhinho A, Sequeira P D, Martins R. X-ray to mographic imaging of Al/SiCpfunctionally graded composites fabricated by centrifugal casting [J]. NuclearInstruments and Methods in Physics Research Section B: Beam Interactions withMaterials and Atoms,2003,200:295-302.
    [142]袁秦鲁,胡锐,李金山,等.梯度复合材料制备技术研究进展[J].兵器材料科学与工程.2003,26(6):66-69.
    [143] Allen T.颗粒大小测定[Z].北京:中国建筑工业出版社,1984.
    [144]杨中民,张联盟.用共沉降法制备组分连续变化的梯度材料[J].材料科学与工艺.2002,10(3):326-330.
    [145]冯志云,黄继华.共沉降—热压法原位反应合成TiC/Ni连续梯度材料[J].粉末冶金技术.2002,20(2):86-89.
    [146]张联盟,杨中民.颗粒共沉降方法消除梯度材料内部界面的可能性分析[J].硅酸盐通报.1999,18(6):60-62.
    [147]黄继华,李敬峰.共沉降法制备金属/陶瓷连续梯度功能材料[J].科学通报.1998,43(5):550-554.
    [148]秋山三郎,加納義久.高分子傾斜構造材料[J].高分子.2000,49(1):32-37.
    [149] Murayama S, Kuroda S, Osawa Z. Hydrophobic and hydrophilic interpenetratingpolymer network (IPNs) composed of polystyrene and poly(2-hydroxyethylmethacrylate):2. Gradient composition in the IPNs synthesized by photopolymerization[J]. Polymer,1993,34(3):3893-3898.
    [150] Jasso C F, Martinez J J, Mendizabal E, et al. Mechanical and pheologicalproperties of styrene/acrylic gradient polymers [J]. Journal of Applied Polymer Science,1995,58(2):2207-2212.
    [151]余茂黎,魏明坤.梯度功能材料的发展和应用[J].功能材料.1992,23(3):184-189.
    [152]朱永彬.聚合物梯度材料的连续制备装置设计、制备及结构表征[D].四川大学,2006.
    [153]毛仙鹤.碳化硅纤维制备的基础问题研究-聚碳硅烷的高产率合成和低氧含量碳化硅纤维的制备[D].长沙:国防科学技术大学,2007.
    [154] Ishikawa T, Yamaoka H, Harada Y, et al. A general process for in situ formationof functional surface layers on ceramics [J]. Nature,2002,416(6876):64-67.
    [155]周春华,尹衍升,张书香,等.原位转化法制备TiO2/SiC纳米功能陶瓷膜的研究[J].中国科学E辑.2005,35(1):1-8.
    [156] Tang X Y, Yu Y X, Yang D X. SiO2/TiO2fibers from titanium-modifiedpolycarbosilane [J]. Journal of Materials Science,2010,45:2670-2674.
    [157] Yu Y X, Guo Y D, Cheng X, et al. Preparation of TiO2/SiO2composite fiber bythermal decomposition of polycarbosilane–tetrabutyl titanate hybrid precursor [J].Journal of Materials Chemistry,2009,19:5637-5642.
    [158] Harris G L. Properties of silicon carbide[M]. London: INSPEC, the Institution ofElectrical Engineers,1995.
    [159]方惠群,于俊生,史坚.仪器分析[M].北京:科学出版社,2002.
    [160]马礼敦.高等结构分析[M].上海:复旦大学出版社,2002.
    [161]谢炜.中空多孔炭纤维轻质吸波材料研究[D].长沙:国防科学技术大学,2008.
    [162]何山.雷达吸波材料性能测试[J].材料工程.2003(6):25-28.
    [163] Yajima S. Special heat-resisting materials from organometallic polymers [J].American Ceramic Society Bulletin,1983,62(8):893-915.
    [164] Monthioux M, Oberlin A, Bouillon E. Relationship between microtexture andelectrical properties during heat treatment of SiC fibre precursor [J]. CompositesScience and Technology,1990,37(1-3):21-35.
    [165] Chollon G, Czerniak M, Pailler R, et al. A model SiC-based fibre with a lowoxygen content prepared from a polycarbosilane precursor [J]. Journal of MaterialsScience,1997,32:893-911.
    [166] Chollon G, Pailler R, Canet R, et al. Correlation between microstructure andelectrical properties of SiC-based fibres derived from organosilicon precursors [J].Journal of European Ceramic Society,1998,18:725-733.
    [167]王亦菲.连续碳化硅纤维高温性能及基于热交联的改进工艺研究[D].长沙:国防科学技术大学,2004.
    [168] Mucalo M R, Milestone N B, Brown I W M. NMR and X-Ray diffraction studiesof amorphous and crystallized pyrolysis residues from pre-ceramic polymers [J].Journal of Materials Science,1997,32:2433-2444.
    [169]王得印,毛仙鹤,宋永才,等.一种具有稳定富碳表层的SiC纤维的制备与性能[J].无机材料学报.2009(06).
    [170] Delhaes P, Carmona F. Physical properties of noncrystalline carbons[M].Chemistry and Physics of Carbon, Thrower P A,1981:17,89-174.
    [171] Carmona F, Delhaes P, Keryer G, et al. Non-metal transition in a non-crystallinecarbon [J]. Solid State Communication,1974,14:1183-1187.
    [172] Hu T J, Li X D, Li G Y, et al. SiC fibers with controllable thickness of carbonlayer prepared directly by preceramic polymer pyrolysis routes [J]. Material Scienceand Engineering B,2010,176:706-710.
    [173] Cordelair J, Greil P. Electrical conductivity measurements as a microprobe forstructure transitions in polysiloxane derived Si-O-C ceramics [J]. Journal of EuropeanCeramic Society,2000,20(12):1947-1957.
    [174] Trassl S, Motz G, Rossler E, et al. Characterization of the free-carbon phase inprecursor-derived Si-C-N ceramics. I. Spectroscopic methods [J]. Journal of theAmerican Ceramic Society,2002,85(1):239-244.
    [175] Trassl S, Motz G, Rossler E, et al. Characterisation of the free-carbon phase inprecursor-derived SiCN ceramics [J]. Journal of Non-Crystalline Solids,2001,293~295:261-267.
    [176] Haluschka C, Engel C, Riedel R. Silicon carbonitride ceramics derived frompolysilazanes Part II. Investigation of electrical properties [J]. Journal of EuropeanCeramic Society,2000,20(9):1365-1374.
    [177] Haluschka C, Kleebe H, Franke R, et al. Silicon carbonitride ceramics derivedfrom polysilazanes Part I. Investigation of compositional and structural properties [J].Journal of European Ceramic Society,2000,20(9):1355-1364.
    [178] Ferraro J R, Nakamoto K, Brown C W. Introductory raman spectroscopy[M].Amsterdam: Elsevier,2003.
    [179] Jiang T, Wang Y, Wang Y, et al. Quantitative raman analysis of free carbon inpolymer-derived ceramics [J]. Journal of the American Ceramic Society,2009,92(10):2455-2458.
    [180] Gouadec G, Colomban P. Non-destructive mechanical characterization of SiCfibers by Raman spectroscopy [J]. Journal of European Ceramic Society,2001,21:1249-1259.
    [181] Havel M, Colomban P. Raman and Rayleigh mapping of corrosion andmechanical aging in SiC fibres [J]. Composites Science and Technology,2005,65:353-358.
    [182] Nakashima S, Higashihira M, Maeda K, et al. Raman scattering characterizationof polytype in silicon carbide ceramics: comparison with X-ray diffraction [J]. Journalof the American Ceramic Society,2003,86(5):823-829.
    [183] Sasaki Y, Nishina Y, Sato M, et al. Raman study of SiC fibres made frompolycarbosilane [J]. Journal of Materials Science,1987,22:443-448.
    [184]杨南如,岳文海.无机非金属材料图谱手册[M].武汉:武汉工业大学出版社,2000.
    [185] Tuinstra F, Koenig J L. Characterization of graphite fiber surfaces with Ramanspectroscopy [J]. Journal of Comosite Materials,1970,4:492-499.
    [186] Mernagh T P, Cooney R P, Johnson R A. Raman spectra of graphon carbon black[J]. Carbon,1984,22(1):39-42.
    [187] Cancado L G, Takai K, Enoki T, et al. General equation for the determination ofthe crystallite size La of nanographite by Raman spectroscopy [J]. Applied PhysicsLetters,2006,88:163106.
    [188] Suzuki K, Kumagawa K, Kamiyama T, et al. Characterization of themedium-range structure of Si-Al-C-O, Si-Zr-C-O and Si-Al-C Tyranno fibers by smallangle X-ray scattering [J]. Journal of Materials Science,2002,37:949-953.
    [189] Narisawa M, Okamura K, Itoi Y. Electrical resistivity of Si-Ti-C-O fibres afterrapid heat treatment [J]. Journal of Materials Science,1995,30(13):3401-3406.
    [190] Ichikawa H, Machino F, Mitsuno S, et al. Synthesis of Continuous SiliconCarbide Fibre. Part5Factors affecting stability of polycarbosilane to oxidation [J].Journal of Materials Science,1986,21:4352-4358.
    [191] Lux F. Models proposed to explain the electrical conductivity of mixtures made ofconductive and insulating materials [J]. Journal of Materials Science,1993,28:285-301.
    [192] Mclachlan D S. An equation for the conductivity of binary mixtures withanisotropic grain structures [J]. Journal of Physical Chemistry: Solid State Physics,1987, C20:865.
    [193]朱华,花银群.电磁材料的电磁参数及测量[J].金属功能材料.2006,13(6):42-45.
    [194]徐记伟,时家明.雷达吸波材料电磁参数的测量方法[J].舰船电子对抗.2007,30(6):46-49.
    [195]王磊.改性SiCf/Epoxy复合材料的吸波性能和力学性能研究[D].长沙:国防科学技术大学,2007.
    [196]刘旭光.异型截面碳化硅纤维制备及其吸波性能[D].长沙:国防科学技术大学,2010.
    [197]杨尚林,王俊山,郑卫,等.结构吸波材料的设计与性能预报[J].哈尔滨工程大学学报.2003,24(5):544-547.
    [198]罗发,周万诚,赵东林.结构吸波材料中纤维的电性能和吸波性能[J].材料工程.2000(2):37-40.
    [199]邢丽英,刘俊能.电阻渐变型结构吸波材料的研究与发展[J].航空材料学报.2000,20(03):187-191.
    [200]何燕飞,龚荣洲,李享成,等.多层复合吸波材料的制备及其吸波性能[J].无机材料学报.2006,21(06):1449-1453.
    [201]刘海韬.夹层结构SiCf/SiC雷达吸波材料设计、制备及性能研究[D].长沙:国防科学技术大学,2010.
    [202]陈志彦.连续Si-Fe-C-O纤维及其结构吸波材料的制备和性能研究[D].长沙:国防科学技术大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700