用户名: 密码: 验证码:
SiCNO陶瓷先驱体合成与陶瓷块体制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选用固态氨基甲酸铵作为氨源,以反应釜作为反应容器,采用溶剂热合成SiCNO陶瓷先驱体先驱体经热解、球磨、热压烧结后,制备出无定形SiCNO陶瓷块体材料。采用X射线衍射、成分分析、FT-IR红外光谱分析、STA-IR-MS分析、XPS荧光光谱分析、扫描电镜、透射电镜和能谱等手段,研究了SiCNO先驱体合成机理、热解历程及其热稳定性;探讨了TiCxNy原位增强SiCNO块体材料的可行性;采用激光热导仪和高温热膨胀仪测试了热压烧结制得的块体材料热扩散系数和热膨胀系数。
     溶剂热合成SiCNO先驱体最大的优点是可以实现反应按化学计量比进行,简化了实验设备,提高了反应的安全性。首先将固态氨基甲酸铵和溶剂置入反应釜中,而后甲基乙烯基二氯硅烷(MS)与乙烯基三氯硅烷(TS)按照设定比例加入反应釜中,在70±10oC密闭情况下保温36小时后,即获得相应的SiCNO陶瓷先驱体
     当摩尔比MS:TS大于3:2时,液相先驱体产率几乎不变;当摩尔比MS:TS小于3:2时,随着摩尔比值的进一步降低,液相先驱体产率表现出线性下降。乙烯基三氯硅烷自身含有三个Si-Cl键,氨解过程中表现出体缩聚的特征,甲基乙烯基二氯硅烷则表现出线缩聚特征。当两者在强力搅拌情况下,摩尔比MS:TS大于3:2时,乙烯基三氯硅烷自身不能相互接触,生成的先驱体由于缺乏体缩聚致使空间交联程度较低,先驱体以液相形式溶解于溶剂中。当MS:TS小于3:2时,过量的乙烯基三氯硅烷自身相互接触,发生体缩聚,产物四聚体由于空间交联程度增大从溶剂环己烷中脱溶,且随着乙烯基三氯硅烷相对含量的增加而液相先驱体呈现线性下降趋势。
     乙烯基三氯硅烷的相对含量对液相先驱体的陶瓷化产率影响较大,当摩尔比MS:TS大于3:2时,体缩聚使得液相先驱体的交联程度增大、热稳定增加,进而出现液相先驱体的陶瓷化产率随着乙烯基三氯硅烷相对含量的增加而增加的趋势;当摩尔比MS:TS小于3:2时,由于过量的四聚体以固相先驱体的形式得以析出,剩余的液相先驱体其成分基本一致,因此,液相先驱体的陶瓷化产率几乎没有变化。
     氨基甲酸铵在超过58oC时,分解产生的氨迅速与氯硅烷发生氨解反应,生成聚硅氮烷;与此同时,氨基甲酸铵分解的另一个产物二氧化碳与聚硅氮烷反应,生成聚硅氮烷氨基甲酸酯;在受热的情况下,聚硅氮烷氨基甲酸酯继续脱水,转化为硅异氰酸酯。
     作为一种新型的SiCNO陶瓷先驱体,硅异氰酸酯的热解过程与传统聚硅氮烷有一定的区别。硅异氰酸酯多为低聚物,300oC之前,由于其分子量较低,热解初期伴随有小分子量物质挥发的同时,一部分异氰酸酯官能团及大部分甲基和少量的乙烯基官能团发生断裂,先驱体失重达39wt.%。
     在陶瓷化转变过程中,未来得及断裂的异氰酸酯官能团,含有的共轭双键随着温度进一步升高,发生自身加成,使得剩余部分先驱体热稳定性大幅增加,而聚硅氮烷则主要靠原有价键的断裂与重新交联来提高其自身热稳定性。硅异氰酸酯热解至800oC时,先驱体基本完成有机—无机转变,1100oC时完成陶瓷化转变。
     无定形SiCN(M)块体陶瓷目前主要通过“温压烧结工艺”加以制备,由于诸多因素限制,该工艺制备的块体陶瓷尺寸小,不能满足实际需要。本文根据无定形SiCNO材料高温下表现出的粘流性,首次采用热压烧结工艺制备出50mm的无定形SiCNO块体材料,研究了烧结温度对块体材料的组织转变和性能影响。1500oC热压烧结后获得的无定形SiCNO块体材料,其力学性能基本上与文献报道相一致,无定形粉体在致密化过程中伴随着活性自由碳原子的扩散偏聚,这种碳偏聚区造成块体材料的弹性模量降低。当热压烧结温度超过1550oC后,无定形SiCNO开始分解,析出Si2N2O晶体相,块体材料在一定程度上获得增强增韧。
     本文探讨了金属钛粉原位增强SiCNO的可行性,钛加入后,在1500oC下热压烧结,钛借助活性自由碳原子,夺取SiCNO基体中的氮原子,原位生成具有TiN晶体结构的TiCxNy,同时,SiCNO基体中的氮原子被活性自由碳所替换。反应过程中钛原子向基体扩散,生成相TiCxNy密度大于钛,造成钛粉颗粒原位出现孔洞,并对复合材料的力学性能造成一定影响。当钛粉微量加入时,金属钛粉起到原位增强基体作用,随着钛粉加入量的增加,原位产生的孔洞也逐渐增加,除复合材料的弹性模量随之增加外,其弯曲强度和断裂韧性随之下降。
     无定形SiCNO块体材料表现出低的热膨胀系数和高的热导率,具有良好的抗热震性;其电导在10-2S·cm-1量级,表现出一定的半导体特性。大尺寸SiCNO块体陶瓷的成功制备,为该类材料的实际应用奠定了基础。
SiCNO precursor was synthesized with solid ammonium carbamate asammonia resourse via solov-thermal route. The SiCNO bulk ceramics were preparedby hot press sintering after the precurosr were pyrolyzed and billed. The synthesisand pyrolys mechanisms of SiCNO precursor as well as the thermal stability werestudied by XRD, elemental analysis, FT-IR, STA-IR-MS, XPS, SEM, TEM and EDS.In-Situ TiCxNycrystal reinforcing amorphous SiCNO ceramic bulks were alsodiscussed. The coefficient of thermal diffusion as well as the thermal expansion andthe electrical conductivity of SiCNO ceramic bulks were measured.
     One of benefits from solvo-thermal route synthesizing SiCNO precursor wasthat the reaction can be forced to occur according to chemical stoichiometric ratios.In addition, the experiments were simplified and the safty improved largely. Solidammonium carbamate and solvent were first put into autoclave, then methyl vinyldichlorosilane (MS) and vinyl triclorosilicane were dropped into the autoclaveaccording to the designed chemical mole ratios. After heating36h at70±10oC inclosed circumstance, SiCNO precursors were finally obtained.
     When mole ratios of MS to TS were above1.5, the liquid precursor yields werealmost the same. At the mole ratios below1.5, the liquid precursor yields would bedropped with a decrease in mole ratio. For the reason of three Si-Cl groups in TS,the ammonolysis of TS behaved body poly-condensation, however, the ammonolysisof MS behaved linear poly-condensation.Under stronger agitation, TS can not touchitself and the final precursors were liquid for the absence of body poly-condensationwhen mole ratios of TS: MS were above3:2. On the contrary, when the ratios werebelow3:2, SiCNO precursors began to precipitate in solid state from the solvent forthe massive TS touched itself, the body poly-condenstation led to an increase incross-linking and the precursor with big molecular weight was produced. With anincrease in TS content, it was showed there was a linear decreasing tendency for theyield of SiCNO liquid precursor.
     The content of TS had an important effect on the ceramic yield for SiCNOliquid precursor. When mole ratios of MS to TS were above1.5, the ceramic yieldsof SiCNO precursors were improved with an increase in TS content. However, whenthe mole ratios were below1.5, the chance of excessive TS fragment contactingitself was increased. Once they were connected with themselves rather than DS,solid precursor precipited. So the composition of liquid precursors was much as thesame. It was almost the same for the ceramic yields of liquid precursors.
     At temperatures over58oC, ammonium carbamate will decomose into ammonia and carbon dioxide. After ammonia reacted with chlorosilane quickly,carbon dioxide could react with polysilazane and polysilane ammonium carbamatebe produced. When it was heated, a dehydration occured and siloxane isocyanatewas obtained.
     There were many differences between traditional polysilazane and siloxaneisocyanate. Siloxane isocyanate was lower polymer. For low molecular, largenumbers of small molecurlars, isocyanate and methyl as well as part of vinyl groupswere evaporated during pyrolysis.
     During pyrolysis, the self polycondensation of isocyanate groups occurred witha further increase in temperature. The higher molecular made the thermal stability ofthe polymer improved. A transformation of organic—inorganic was finished at800oC and SiCNO ceramic could be obtained after being pyrolyzed at1100oC.
     Amorphous SiCN(M) ceramic bulks can be obtained by “warm press” sintering.However, only small size of parts was prepared by this process. According to lowviscosity of SiCN materials at high teperature, this work tried to use hot-presssintering and prepared amorphous SiCNO ceramic bulks with a diameter of50mm.The effect of sintering temperature on structure and properites was studied. Whenthe sintering temerpature was at1500oC, the mechanical properties of SiCNOceramic bulks were in accordance with the related literature except elastic modulus.Free carbon precipitating from the matrix and clusting were observed by SEM andresposible for the low elastic modulus. At sintering temperature above1500oC,Si2N2O crystal phase was observed by TEM.
     Titanium was filled into SiCNO and In-situ TiCxNyreiforcing SiCNO ceramicbulk was prepared. With the aid of active free carbon, titanium atom deprivednitrogen atom from the amorphous SiCNO matrix and TiCxNywas produced. Freecarbon atom substituted the deprived nitrogen atom. As titanium atom diffusedtowards amorphous matrix, the macro holes were produced, which had an effect onthe composite mechanical properties. When a bit of titanium was filled, themechanical properties were improved largely. With an increase in titanium content,the bending strength and fracture toughness were decreased, but the elastic moduluswas increased for the production of high elastic modulus phase TiCxNy.
     Amorphous SiCNO ceramic bulks expressed low coefficient of thermalexpansion, high thermal conductivity and high electrical conductivity (102S·cm-1).The successful preparation of amorphous SiCNO ceramic bulks with large scalemade the practical applicaiton possible for the other related materials.
引文
[1] Verbeek, Wolfgang. Production of Shaped Articles of HomogeneousMixtures of Silicon Carbide and Nitride. U.S. Patent. No.3853567.1973.
    [2] Yajima S, Hayashi J, Omorj M, Okamura K. Development of a SiliconCarbide Fibre with High Tensile Strengh[J]. Nature.1976,261:683-685.
    [3] Yajima S, Hasegawa Y, Okamure K, Matsuzawa T. Development of HighTensile Strength Silicon Carbide Fibre Using an Organosilicon PolymerPrecursor[J]. Nature,1978,273:525-527.
    [4]张长瑞,郝元恺.陶瓷基复合材料[M].长沙:国防科技大学出版社,2001:273-302.
    [5] Seyferth D. Synthesis of Some Organosilicon Polymers and Their PyrolyticConversion to Ceramics[M]. In: M. Zeigler J, Fearon F W G. Silicon-BasedPolymer Science,1989,224:565-591.
    [6]李光亮.有机硅高分子化学[M].北京:科学出版社,1998.
    [7]周宁琳.有机硅聚合物导论[M].北京:科学出版社,2000.
    [8]冯圣玉,张洁,李美江,朱庆增.有机硅高分子及其应用[M].北京:化学工业出版社,2004.
    [9]冯圣玉,粟付平,李美江等译.含硅聚合物—合成与应用[M].北京:化学工业出版社,2008.
    [10] Seyferth D. Preceramic Polymers: Past, Present, and Future[M]. In:Interrante L V, Caspar L A, Ellis A B. Materials Chemistry—An EmergingDiscipline. Advances in Chemistry Series245. American Chemical Society,Washington DC.1995,131-160.
    [11] Krüger C R, Rochow E G. Polyorganosilazanes[J]. Journal of PolymerScience: Part A,1964,2:3179-3189.
    [12] Birot M, Pillot J P, Dunoguès J. Comprehensive Chemistry ofPolycarbosilanes, Polysilazanes, and Polycarbosilazanes as Precursors ofCeramics[J]. Chemical Reviews,1995,95:1443-1477.
    [13] Brewer S D, C. Haber P. Alkylsilazanes and Some Related Compounds[J].Journal of the American Chemical Society,1948,70[11]:3888-3891.
    [14] Fessenden R, Fessenden J S. The Chemistry of Silicon-NitrogenCompounds[J]. Chemical Reviews,1961,61:361-388.
    [15] Seyferth D, Wiseman G H. High-Yield Synthesis of Si3N4/SiC CeramicMaterials by Pyrolysis of a Novel Polyorganosilazane[J]. Journal of theAmerican Ceramic Society,1984,67[7]: C132-C133.
    [16] Dando N R, Perrotta A J, Strohmann C, Stewart R M, Seyferth D.Methylhydridopolysilazane and Its Pyrolytic Conversion to Si3N4/SiCCeramics[J]. Chemistry of Materials,1993,5:1624-1630.
    [17] Laine R M, Blum Y D, Tse D, Glaser R. Synthetic Routes of Oligosilazanesand Polysilazanes[M]. In: Zeldin M, Wynne K J, Allcock H. Inorganic andOrganometallic Polymers. ACS Symposium Series360. American ChemicalSociety. Washington DC,1988,124-142.
    [18] Weinmann M, Zern A, Aldinger F. Stoichiometric Silicon Nitride/SiliconCarbide Composites from Polymeric Precursors[J]. Advanced Materials,2001,13:1704-1708.
    [19] H rz M, Zern A, Berger F, Haug J, Müller K, Aldinger F, Weinmenn M.Novel Polysilazanes as Precursors for Silicon Nitride/Silicon CarbideComposites without “Free” Carbon[J]. Journal of the European CeramicSociety,2005,25:99-110.
    [20] Seifert H J, Peng J, Aldinger F. Phase Equilibria and Thermal Analysis ofSi-C-N Ceramics[J]. Journal of Alloys and Compounds,2001,320:251-261.
    [21] Burns G T, Chandra G. Pyrolysis of Preceramic Polymers in Ammonia:Preparation of Silicon Nitride Powders[J]. Journal of the American CeramicSociety,1989,72[2]:333-337.
    [22] Gonon M F, Hampshire S, Disson J P, Fantozzi G. A Polysilazane Precursorfor Si-C-N-O Matrix[J]. Journal of the European Ceramic Society,1995,15:683-688.
    [23] Bahloul D, Pereira M, Goursat P, Choong Kwet Yive N S, Corriu R J P.Preparation of Silicon Carbonitrides from an Organosilicon Polymer: I,Thermal Decomposition of the Cross-linked Polysilazane[J]. Journal of theAmerican Ceramic Society,1993,76[5]:1156-1162.
    [24] Choong Kwet Yive N S, Corriu R J P, Leclercq D, Mutin P H, Vioux A.Silicon Carbonitride from Polymeric Precursors: Thermal Cross-Linking andPyrolysis of Oligosilazane Model Compounds[J]. Chemistry of Materials,1992,4:141-146.
    [25] Lücke J, Hacker J, Suttor D, Ziegler G. Synthesis and Characterization ofSilazane-Based Polymers as Precursors for Ceramic Matrix Composites[J].Applied Organometallic Chemistry,1997,11:181-194.
    [26] Ziegler G, Kleebe H J, Motz G, Müller H, Trαβl S, Weibelzahl W. Synthesis,Microstructure and Properties of SiCN Ceramics Prepared from TailoredPolymers[J]. Materials Chemistry and Physics,1999,61:55-63.
    [27] Seyferth D, Wiseman G H. Polysilazane Routes to Siicon Nitride[J].Polymeric Preprints.1984,25:10-12.
    [28] Penn B G, Ledbetter III F E, Clemons J M, Daniels J G. Preparation ofSilicon Carbide-Silicon Nitride Fibers by the Controlled Pyrolysis ofPolycarbosilazane Precursors[J]. Journal of Applied Polymer Science,1982,27:3751-3761.
    [29] Wynne K J, Rice R W. Ceramics via Polymer Pyrolysis[J]. Annual Review ofMaterials Science,1984,14:297-334.
    [30] Blum Y, Laine R M. Catalytic Methods for the Synthesis of Oligosilazanes[J].Organometallics,1986,5:2081-2086.
    [31] Gabriel A O, Riedel R. Preparation of Non-Oxidic Silicon Ceramics by AnAnhydrous Sol-Gel Process[J]. Angewandte Chemie,1997,109:371-373.
    [32] Kienzle A, Obermeyer A, Riedel R, Aldinger F, Simon A. Synthese andStructure of the First Oligomeric Cyclic Dimethylsilyl-SubstitutedCarbodiimide[J]. Chemische Berichte,1993,126:2569-2571.
    [33] Obermeyer A, Kienzle A, Weidlein J, Riedel R, A. Simon. Crystal andMolecular Structures of (Me2SiNCN)4(1) and Me3SiNCNSiMe3(2)[J].Zeitschrift für Anorganische und Allgemeine Chemie,1994,620:1357-1363.
    [34] Riedel R, Greiner A, Miehe G, Dressler W, Fuess H, Bill J, Aldinger F. TheFirst Crystalline Solids in the Ternary Si-C-N System[J]. AngewandteChemie International Edition in English,1997,36[6]:603-606.
    [35] Kienzle A, Bill J, Aldinger F, Riedel R. Nanosized Si-C-N-Powder byPyrolysis of Highly Crosslinked Silylcarbodiimide[J]. NanoStructuredMaterials,1995,6:349-352.
    [36] Mera G, Riedel R, Poli F, Müller K. Carbon-Rich SiCN Ceramics Derivedfrom Phenyl-Containing Poly (silylcarbodiimides)[J]. Journal of theEuropean Ceramic Society,2009,29:2873-2883.
    [37]谢皎,李亚利,侯峰,安海娇.无氧溶胶-凝胶反应合成SiCN干凝胶及陶瓷研究[J].稀有金属材料与工程,2007,36[Suppl.1]:228-231.
    [38] Lasocki Z, Dejak B, Kulpinski J, Lesniak E, Piechucki S, Witekowa M.Silicon-Nitrogen-Containing Rings and Polymers[M]. In: Zeldin M, WynneK J, Allcock H R. Inorganic and Organometallic Polymers. The ACSSymposium Series,1988,360:166-178.
    [39] Bouquey M, Brochon C, Bruzaud S, Mingotaud A F, Schappacher M, SoumA. Ring-Opening Polymerization of Nitrogen-Containing CyclicOrganosilicon Monomers[J]. Journal of Organometallic Chemistry,1996,521:21-27.
    [40] Blum Y D, Schwartz K B, Laine R M. Preceramic Polymer Pyrolysis[J].Journal of Materials Science,1989,24:1707-1718.
    [41] Peuckert M, Vaahs T, Brück M. Ceramics from Organometallic Polymers[J].Advanced Materials,1990,2[9]:398-404.
    [42] Choong K Y N S, Corriu R J P, Leclercq D, Mutin P H, Vioux A.Thermogravimetric Analysis/Mass Spectrometry Investigation of theThermal Conversion of Organosilicon Precursors into Ceramics under Argonand Ammonia.2. Poly(silazanes)[J]. Chemistry of Materials,1992,4:1263-1271.
    [43] Riedel R, Passing G, Sch nfelder H, Brook R J. Synthesis of DenseSilicon-Based Ceramics at Low Temperatures[J]. Nature,1992,355[20]:714-717.
    [44] Schmide H, Borchardt G, Müller A, Bill J. Formation Kinetics of CrystallineSi3N4/SiC Composites from Amorphous Si-C-N Ceramics[J]. Journal ofNon-Crystalline Solids,2004,341:133-140.
    [45] Trαβl S, Suttor D, Motz G, R ssler E, Ziegler G. Structural Characterisationof Silicon Carbonitride Ceramics Derived from Polymeric Precursors[J].Journal of the European Ceramic Society,2000,20:215-225.
    [46] Galusek D, Reschke S, Riedel R, Dre ler W, ajgalik P, Len é Z, Majling J.In-Situ Carbon Content Adjustment in Polysilazane Derived AmorphousSiCN Bulk Ceramics[J]. Journal of the European Ceramic Society,1999,19:1911-1921.
    [47] Gregori G, Kleebe H J, Brequel H, Enzo S, Ziegler G. MicrostructureEvolution of Precursors-Derived SiCN Ceramics upon Thermal Treatmentbetween1000and1400℃[J]. Journal of Non-Crystalline Solids,2005,351:1393-1402.
    [48] Liew L A, Zhang W, Bright V M, An L, Dunn M L, Raj R. Fabrication ofSiCN Ceramic MEMS Using Injectable Poymer-Precursor Technique[J].Sensors and Actuators A,2001,89:64-70.
    [49] Lee D H, Par K H, Hong L Y, Kim D P. SiCN Ceramic Patterns Fabricated bySoft Lithography Techniques[J]. Sensors and Actuators A,2007,135:895-901.
    [50] Haluschka C, Engel C, Riedel R. Silicon Carbonitride Ceramics Derivedfrom Polysilazanes Part Ⅱ. Investigation of Electrical Properties[J]. Journalof the European Ceramic Society,2000,20:1365-1374.
    [51] Chen C W, Chang T C, Liu P T, Tsai T M, Huang H C, Chen J M, Tseng C H,Liu C C, Tseng T Y. Investigation of the Electrical Properties and Reliabilityof Amorphous SiCN[J]. Thin Solid Films,2004,447-448:632-637.
    [52] Chou T H, Fang Y K, Chiang Y T, Lin C I, Yang C Y. A Low Cost inN-SiCN/P-SiCN Homojunction for High Temperature and High GainUltraviolet Detecting Applications[J]. Sensors and Actuators A,2008,147:60-63.
    [53] Kolb R, Fasel C, Kunzmann V L, Riedel R. SiCN/C-Ceramic Composite asAnode Material for Lithium Lion Batteries[J]. Journal of the EuropeanCeramic Society,2006,26:3903-3908.
    [54] Jansen M, J schke B, J schke T J. Amorphous Multinary Ceramics in theSi-B-N-C System[J]. Structure and Bongding,2002,101:137-191.
    [55] Zern A, Mayer J, Janakiraman N, Weinmann M, Bill J, Rühle M. QuntitativeEFTEM Study of Precursor-Derived Si-B-C-N Ceramics[J]. Journal of theEuropean Ceramic Society,2002,22:1621-1629.
    [56] Shaffer P T B, Island G, Whitney E D, Snyder N Y. Silicon CarbideContaining Boron and Nitrogen in Solid Solution. US Patent3,554,717.1971.
    [57] Riedel R, Bill J, Kienzle A. Boron-Modified Inorganic Polymers-Precursorsfor the Synthesis of Multicomponent Ceramics[J]. Applied OrganometallicChemistry,1996,10:241-256.
    [58] Bill J, Kamphowe T W, Müller A, Wichmann T, Zern A, Jalowieki A, MayerJ, Weinmann M, Schuhmacher J, Müller K, Peng J Q, Seifert H J. Aldinger F.Precursor-Derived Si-(B-) C-N Ceramics: Thermolysis, Amorphous State andCrystallization[J]. Applied Organometallic Chemistry,2001,15:777-793.
    [59] Weinmann M, Haug R, Bill J, Aldinger F, Schuhmacher J, Müller K.Boron-Containing Polysilylcarbodi-imides: A New Class of MolecularPrecursors for Si-B-C-N Ceramics[J]. Journal of Organometallic Chemistry,1997,541:345-353.
    [60] Jürgen Seifert H, Aldinger F. Phase Equilibria in the Si-B-C-N System[J].Structure and Bonding,2002,101:1-58.
    [61] Riedel R, Mera G, Hauser R, Klonczynski A. Silicon-Based Polymer-DerivedCeramics: Synthesis Properties and Applications-A Review[J]. Journal of theCeramic Society of Japan,2006,114[6]:425-444.
    [62] Kroke E, Li Y L, Konetschny C, Lecomte E, Fasel C, Riedel R. SilazaneDerived Ceramics and Related Materials[J]. Materials Science andEngineering, Reports: A Review Journal,2000,26:97-199.
    [63] Aldinger F, Weinmann M, Bill J. Precursor-Derived Si-B-C-N Ceramics[J].Pure and Applied Chemistry,1998,70[2]:439-448.
    [64] Jansen M, Jüngermann H. A New Class of Promising Ceramics Based onAmorphous Inorganic Networks[J]. Synthesis and Reactivity of Solids,1997,2:150-157.
    [65] Riedel R, Kienzle A, Dressler W, Ruwisch L, Bill J, Aldinger F. ASilicoboron Carbonitride Ceramic Stable to2,000℃[J]. Nature,1996,382:796-798.
    [66] Müller A, Zern A, Gerstel P, Bill J, Aldinger F. Boron-Modified Poly(propenylsilazane)-Derived Si-B-C-N Ceramics: Preparation and HighTemperature Properties[J]. Journal of the European Ceramic Society,2002,22:1631-1643.
    [67] Schiavon M A, Sorarù G D, Yoshida I V P. Poly (borosilazanes) as Precursorsof Si-B-C-N Glasses: Synthesis and High Temperature Properties[J]. Journalof Non-Crystalline Solids,2004,348:156-161.
    [68] Schmidt W R, Heald D M N, Jones D M, Marchetti P S, Raker D, Maciel G E.Poly (borosilazane) Precursors to Ceramic Nanocomposites[J]. Chemistry ofMaterials,1999,11:1455-1464.
    [69] Wang Z C, Aldinger F, Riedel R. Novel Silicon-Boron-Carbon-NitrogenMaterials Thermally Stable up to2200℃[J]. Journal of the AmericanCeramic Society,2001,84[10]:2179-2183.
    [70] Weinman M, Haug R, Bill J, Guire M D, Aldinger F. Boron-modifiedPolysilylcarbodi-imides as Precursors for Si-B-C-N Ceramics: Synthesis,Plastic-forming and High-Temperature Behavior[J]. Applied OrganometallicChemistry,1998,12:725-734.
    [71] Müller A M, Gerstel P, Weinmann M, Bill J, Aldinger F. Si-B-C-N CeramicPrecursors Derived from Dichlorodivinylsilane and Chlorotrivinylsilane.1.Precursor Synthesis[J]. Chemistry of Materials,2002,14:3398-3405.
    [72] Müller A M, Peng J Q, Seifert H J, Bill J, Aldinger F. Si-B-C-N CeramicPrecursors Derived from Dichlorodivinylsilane and Chlorotrivinylsilane.2.Ceramization of Polymers and High-Temperature Behavior of CeramicMaterials[J]. Chemistry of Materials,2002,14:3406-3412.
    [73] Nghiem Q D, Jeon J K, Hong L Y, Kim D P. Polymer Derived Si-C-B-NCeramics via Hydroboration from Borazine Derivatives andTrivinylcyclotrisilazane[J]. Journal of Organometallic Chemistry,2003,688:27-35.
    [74] Jeon J K, Nghiem Q D, Kim D P, Lee J. Olefin Hydroboration of Borazinewith Vinylsilanes as Precursors of Si-B-C-N Ceramics[J]. Journal ofOrganometallic Chemistry,2004,689:2311-2318.
    [75] Riedel F, Ruswisch L M, An L, Raj R. Amorphous Silicoboron CarbonitrideCeramic with Very High Viscosity at Temperatures above1500℃[J]. Journalfo the American Ceramic Society,1998,81[12]:3341-3344.
    [76] Su K, Remsen E E, Zank G A, Sneddon L G. Synthesis, Characterization, andCeramic Conversion Reactions of Borazine-Modified Hydridopolysilazanes:New Polymeric Precursors to SiNCB Ceramic Composites[J]. Chemistry ofMaterials,1993,5:547-556.
    [77] Wideman T, Su K, Remsen E E, Zank G A, Sneddon L G. Synthesis,Characterization, and Ceramic Conversion Reactions of Borazine/SilazaneCopolymers: New Polymeric Precursors to SiNCB Ceramics[J]. Chemistry ofMaterials,1995,7:2203-2212.
    [78] Wideman T, Cortez E, Remsen E, Zank G A, Carroll P J, Sneddon L G.Reactions of Monofunctional Boranes with Hydridopolysilazane: Synthesis,Characterization, and Ceramic Conversion Reactions of New ProcessiblePrecursors to SiNCB Ceramic Materials[J]. Chemistry of Materials,1997,9:2218-2230.
    [79] Wideman T, Fazen P J, Su K, Remsen E E, Zank G A, Sneddon L G.Second-Generation Polymeric Precursors for BN and SiNCB CeramicMaterials[J]. Applied Organometallic Chemistry,1998,12:681-693.
    [80] Weinmann M, Schuhmacher J, Kummer H, Prinz S, Peng J Q, Seifert H J,Christ M, Müller K, Bill J, F. Aldinger. Synthesis and Thermal Behavior ofNovel Si-B-C-N Ceramic Precursors[J]. Chemistry of Materials,2000,12:623-632.
    [81] Weinmann M, Kamphowe T W, Schuhmacher J, Müller K, Aldinger F.Design of Polymeric Si-B-C-N Ceramic Precursors for Application inFiber-Reinforced Composite Materials[J]. Chemistry of Materials,2000,12:2112-2122.
    [82] Weinmann M, H rz M, Berger F, Müller A, Müller K, Aldinger F.Dehydrocoupling of Tris(hydridosilylethyl)boranes and Cyanamide: A NovelAccess to Boron-Containing Polysilylcarbodiimides[J]. Journal ofOrganometallic Chemistry,2002,659:29-42.
    [83] Gerstel P, Müller A, Bill J, Aldinger F. Synthesis and High-TemperatureBehavior of Si/B/C/N Precursor-Derived Ceramics without “Free Carbon”[J].Chemistry of Materials,2003,15:4980-4986.
    [84] Wang Z C, Gerstel P, Kaiser G, Bill J, Aldinger F. Synthesis ofUltrahigh-Temperature Si-B-C-N Ceramic from Polymeric Waste Gas[J].Journal fo the American Ceramic Society,2005,88[10]:2709-2712.
    [85] Cao F, Li X D, Kim D P. Efficient Curing of Polymethylsilane by Borazineand Reaction Mechanism Study[J]. Journal of Organometallic Chemistry,2003:688:125-131.
    [86] Jansen M. Highly Stable Ceramics Through Single Source Precursors[J].Solid State Ionics,1997,101-103:1-7.
    [87] Baldus P, Jansen M, Sporn D. Ceramic Fibers for Matrix Composites inHigh-Temperature Engine Applications[J]. Science,1999,285:699-703.
    [88] Jüngermann H, Jansen M. Synthesis of An Extremely Stable Ceramic in theSystem Si/B/C/N Using1-(Trichlorosilyl)-1-(Dichloroboryl) Ethane as ASingle-Source Precursor[J]. Materials Research Innovations,1999,2:200-206.
    [89] J schke T, Jansen M. Synthesis and Characterization of New AmorphousSi/B/C/N Ceramics with Increased Carbon Content through Single-SourcePrecursors[J]. Comptes Rendus Chimie,2004,7:471-482.
    [90] J schke T, Jansen M. Improved Durability of Si/B/C/N Random InorganicNetworks[J]. Journal of the European Ceramic Society,2005,25:211-220.
    [91] J schke T, Jansen M. Synthesis, Crystal Structure, and SpectroscopicCharacterization of the Borazine Derivatives [B{CH2(SiCl3)}NH]3and
    [B{CH2(SiCl2CH3)}NH]3[J]. Zeitschrift für Anorganische und AllgemeineChemie,2004,630:239-243.
    [92] Bernard S, Weinmann M, Gerstel P, Miele P, Aldinger F. Boron-ModifiedPolysilazane as A Novel Single-Source Precursor for SiBCN Ceramic Fibers:Synthesis, Melt-Spinning, Curing and Ceramic Conversion[J]. Journal ofMaterials Chemistry,2004,15:289-299.
    [93] Lee J, Butt D P, Baney R H, Bowers C R, Tulenko J S. Synthesis andPyrolysis of Novel Polysilazane to SiBCN Ceramic[J]. Journal ofNon-Crystalline Solids,2005,351:2995-3005.
    [94] Srivastava D, Duesler E N, Paine R T. Synthesis of Silylborazines and TheirUtilization as Precursors to Silicon-Containing Boron Nitride[J]. EuropeanJournal of Inorganic Chemistry,1998:855-859.
    [95] Cowley A H, Sisler H H, Ryschkewitsch G E. The Chemistry of Borazine. Ⅲ.B-Silyl Borazines[J]. Journal of the American Chemistry Society,1960,82:501-502.
    [96] Takamizawa M, Kobayashi T, Hayashida A, Takeda Y. Method for thePreparation of An Inorganic Fiber Containing Silicon, Carbon, Boron andNitrogen. US Patent.4,604,367.1986.
    [97] Haberecht J, Krumeich F, Grützmacher H, Nesper R. High-Yield MolecularBorazine Precursors for Si-B-C-N Ceramics[J]. Chemistry of Materials,2004,16:418-423.
    [98] Haberecht J, Nesper R, Grützmacher H. A Construction Kit for Si-B-C-NCeramic Materials Based on Borazine Precursors[J]. Chemistry of Materials,2005,17[9]:2340-2347.
    [99] Lee S H, Weinmann M, Aldinger F. Processing and Properties of C/Si-B-C-NFiber-Reinforced Ceramic Matrix Composites Prepared by PrecursorImpregnation and Pyrolysis[J]. Acta Materialia,2008,56:1529-1538.
    [100] Lee S H, Weinmann M, Gerstel P, Aldinger F. Extraordinary ThermalStability of SiC Particulate-Reinforced Polymer-Derived Si-B-C-NComposites[J]. Scripta Materialia,2008,59:607-610.
    [101] Lee S H, Weinmann M. C fiber/SiCfiller/Si-B-C-Nmatrix Composites withExtremely High Thermal Stability[J]. Acta Materialia,2009,57:4374-4381.
    [102] apek J, H eben S, Zeman P, VI ek J, erstvy R, Hou ka J. Effect of the GasMixture Composition on High-Temperature Behavior of MagnetronSputtered Si-B-C-N Coatings[J]. Surface&Coatings Technolegy,2008,203:466-469.
    [103] apek J, VI ek J, Potocky, Hou ka J, Soukup Z, Kala J, Jedrzejowski P,Klemberg-Sapieha J E, Martin L. Mechanical and Optical Properties ofQuaternary Si-B-C-N Films Prepared by Reactive Magnetron Sputtering[J].Thin Solid Films,2008,516:7286-7293.
    [104] Kala J, Vernhes R, H eben S, VI ek J, Klemberg-Sapieha J E, Martinu L.High-Temperature Stability of the Mechanical and Optical Properties ofSi-B-C-N Films Prepared by Magnetron Sputtering[J]. Thin Solid Films,2009,518:174-179.
    [105] Kumar R, Cai Y, Gerstel P, Rixecker G, Aldinger F. Processing,Crystallization and Characterization of Polymer Derived Nano-CrystallineSi-B-C-N Ceramics[J]. Journal of Materials Science,2006,41:7088-7095.
    [106] Greil P, Seibold M. Modelling of Dimensional Changes duringPolymer-Ceramic Conversion for Bulk Component Fabrication[J]. Journal ofMaterials Science,1992,27:1053-1060.
    [107] Greil P. Active-Filler-Controlled Pyrolysis of Preceramic Polymers[J].Journal of the American Ceramic Society,1995,78[4],835-848.
    [108] Yang H, Deschatelets P, Brittain S T, Whitesides G M. Fabrication of HighPerformance Ceramic Microstructures from A Polymeric Precursor UsingSoft Lithography[J]. Advanced Materials,2001,13:54-58.
    [109] L ffelholz J, Jansen M. Novel Access to Polyboro-and PolyalumosilazanesSuitable as Precursors for Ternary Nitride[J]. Advanced Materials,1995,7[3]:289-292.
    [110] Zheng C M, Li X D, Wang H, Zhao D F, Hu T J. Evolution of Crystallizationand Its Effects on Properties during Pyrolysis of Si-Al-C-(O) PrecursorsFibers[J]. Journal of Materials Science,2008,43:3314-3319.
    [111] An L, Wang Y G, Bharadwaj L, Zhang LG, Fan Y, Jiang D P, Sohn Y H, DesaiW H, Kapat J, Chow L C. Silicoaluminum Carbonitride with AnomalouslyHigh Resistance to Oxidation and Hot Corrosion[J]. Advanced EngineeringMaterials,2004,6[5]:337-340.
    [112] Dhamne A, Xu W X, Fookes B G, Fan Y, Zhang L G, Burton S, Hu J Z, Ford J,An L. Polymer-Ceramic Conversion of Liquid Polyaluminasilazanes forSiAlCN Ceramics[J]. Journal of the American Ceramic Society,2005,88[9]:2415-2419.
    [113] Wang Y G, An L. Oxidation of Polymer-Derived SiAlCN Ceramics[J].Journal of the American Ceramic Society,2005,88[11]:3075-3080.
    [114] Wang Y G, Fei W F, An L. Oxidation/Corrosion of Polymer-Derived SiAlCNCeramics in Water Vapor[J]. Journal of the American Ceramic Society,2006,89[3]:1079-1082.
    [115] Wang Y G, Fan Y, Zhang L G, Zhang W G, An L. Polymer-Derived SiAlCNCeramics Resist Oxidation at1400℃[J]. Scripta Materiallia,2006,55:295-297.
    [116] Salles V, Foucaud S, Laborde E, Champion E, Goursat P. Synthesis ofSiCNAl(O) Pre-Alloyed Nanopowders by Pyrolysis of An AluminosilazaneAerosol[J]. Journal of the European Ceramic Society,2007,27:357-366.
    [117] Salles V, Foucaud S, Goursat P, Champion E. Synthesis under NH3andThermal Behaviour of SiCNAlO2Polymer-Derived Nanopowders[J].Journal of the European Ceramic Society,2008,28:1259-1266.
    [118] Müller A, Gerstel P, Butchereit E, Nickel K G, Aldinger F. Si/B/C/N/AlPrecursor-Derived Ceramics: Synthesis, High Temperature Behaviour andOxidation Resistance[J]. Journal of the Euroupean Ceramic Society,2004,24:3409-3417.
    [119] Fan X L, Feng C X, Song Y C, Li X D. Preparation of Si-C-O-N-B CeramicFibers from Polycarbosilane[J]. Journal of Materials Science Letters,1999,18:629-630.
    [120] Chu Z Y, Feng C X, Song Y C. Development of A New Si-C-O-N-B CeramicFiber Using A Hybrid Precursor of Polycarbosilane and Polyborosilazane[J].Journal of Materials Science Letters,2003,22:725-728.
    [121] Wen G, Li F, Song L. Structural Characterization and Mechanical Propertiesof SiBONC Ceramics Derived from Polymeric Precursors[J]. MaterialsScience and Engineering A,2006,432:40-46.
    [122] Li F, Wen G, Bai H W, Song L. Synthesis and Structural Characterization ofAmorphous Nano-Sized SiBONC Ceramic Powders Via Polymer Pyrolysis[J].Journal of Non-Crystalline Solids,2007,353:379-383.
    [123] Funayama O, Nakahara H, Tezuka A, Ishii T, Isoda T. Development ofSi-B-O-N Fibers from Polyborosilazane[J]. Journal of Materials Science,1994,29:2238-2244.
    [124] Bois L, Haridon P L, Laurent Y, Gouin X, Grange P, Létard J F, Birot M,Pillot J P, Dunoguès J. Characterization of A Boro-Silicon OxynitridePrepared by Thermal Nitridation of A Polyborosiloxane[J]. Journal of Alloysand Compounds,1996,232:244-253.
    [125] Zhang J B, Wen G, Lei T Q, Zhou Y. Preparation and Characterization ofSiBON Powders[J]. Journal of Materials Science Letters,2001,20:1695-1697.
    [126] Babonneau F, Bois L, Yang C Y, Interrante L V. Sol-Gel Synthesis of ASiloxypolycarbosilane Gel and Its Pyrolytic Conversion to SiliconOxycarbide[[J]. Chemistry of Materials,1994,6:51-57.
    [127] Bois L, Maquet J, Babonneau F, Mutin H, Bahloul D. StructuralCharacterization of Sol-Gel Derived Oxycarbide Glasses.1. Study of thePyrolysis Process[J]. Chemistry of Materials,1994,6:796-802.
    [128] Bois L, Maquet J, Babonneau F, Bahloul D. Structural Characterization ofSol-Gel Derived Oxycarbide Glasses.2. Study of the Thermal Stability of theSilicon Oxycarbide Phase[J]. Chemistry of Materials,1995,7:975-981.
    [129] Sorar ù G D, Andrea G D, Campostrini R, Babonneau Mariotto F G.Structural Characterization and High-Temperature Behavior of SiliconOxycarbide Glasses Prepared from Sol-Gel Precursors Containing Si-HBonds[J]. Journal of the American Ceramic Society,1995,78[2]:379-387.
    [130] Bodet R, Jia N, Tressler R E. Microstructural Instability and the ResultantStrength of Si-C-O (Nicalon) and Si-N-C-O (HPZ) Fibres[J]. Journal of theEuropean Ceramic Society,1996,16:653-664.
    [131] Liu Q, Shi W, Babonneau F, Interrante L V. Synthesis ofPolycarbosilane/Siloxane Hybrid Polymers and Their Pyrolytic Conversionto Silicon Oxycarbide Ceramics[J]. Chemistry of Materials,1997,9:2434-2441.
    [132] Sorarù G D, Modena S, Guadagnino E, Colombo P, Egan J, Pantano C.Chemical Durability of Silicon Oxycarbide Glasses[J]. Journal of theAmerican Ceramic Society,2002,85[6]:1529-1536.
    [133] Bréquel H, Parmentier J, Walter S, Badheka R, Trimmel G, Masse S,Latournerie J, Dempsey P, Turquat C, Chomel A D, Prum L L N, JayasooriyaU A, Hourlier D, Kleebe H J, Sorarù G D, Enzo S, Babonneau F. SystematicStructural Characterization of the High-Temperature Behaviour of NearlyStoichiometric Silicon Oxycarbide Glasses[J]. Chemistry of Materials,2004,16:2585-2598.
    [134] Kroll P. Modeling the ‘Free Carbon’ Phase in Amorphous SiliconOxycarbide[J]. Journal of Non-Crystalline Solids,2005,351:1121-1126.
    [135] Chomel A D, Dempsey P, Latournerie J, Bahloul D H, Jayasooriya U A. Gelto Glass Transformation of Methyltriethoxysilane: A Silicon OxycarbideGlass Precursor Investigated Using Vibrational Spectroscopy[J]. Chemistryof Materials,2005,17:4468-4473.
    [136] Moderna S, Sorarù G D, Blum Y, Raj R. Passive Oxidation of An EffluentSystem: The Case of Polymer-Derived SiCO[J]. Journal of the AmericanCeramic Society,2005,88[2]:339-345.
    [137] Kleebe H J, Blum Y D. SiOC Ceramic with High Excess Free Carbon[J].Journal of the European Ceramic Society,2008,28:1037-1042.
    [138] Konetschny C, Galusek D, Reschke S, Fasel C, Riedel R. Dense SiliconCarbonitride Ceramics by Pyrolysis of Cross-Linked and Warm PressedPolysilazane Powders[J]. Journal of the European Ceramic Society,1999,19:2789-2796.
    [139] Colombo P, Mera G, Riedel R, Sorarù G D. Polymer Derived-Ceramics:40Years of Research and Innovation in Advanced Ceramics[J]. Journal of theAmerican Ceramic Society,2010,93[7]:1805-1837.
    [140] Greil P. Near Net Shape Manufacturing of Polymer Derived Ceramics[J].Journal of the European Ceramic Society,1998,18:1905-1914.
    [141] Jiang T, Hill A, Fei W F, Wei Y, Tellam M, Xu C Y, An L N. Making BulkCeramics from Polymeric Precursors[J]. Journal of the American CeramicSociety,2010,93[10]:3017-19.
    [142] Martínez-Crespiera S, Ionescu E, Kleebe H J, Riedel R. PressurelessSynthesis of Fully Dense and Crack-Free SiOC Bulk Ceramics viaPhoto-Crosslinking and Pyrolysis of a Polysiloxane[J]. Journal of theEuropean Ceramic Society,2011,31:913-19.
    [143] Ishihara S, Gu H, Bill J. Aldinger F, Wakai F. Densification ofPrecursor-Derived Si-C-N Ceramics by High-Pressure Hot IsostaticPressing[J]. Journal of the American Ceramic Society,2002,85[7]:1706-1712.
    [144] Esfehanian M, Oberacker R, Fett T, Hoffmann MJ, Development of DenseFiller-Free Polymer-Derived SiOC Ceramics by Field-Assisted Sintering.Journal of the American Ceramic Society.2008,91[11],3803-3805.
    [145]李义和.聚硅氮烷陶瓷先驱体的光固化改性研究[D].长沙:国防科技大学,2007:15.
    [146]张叔良,易大年,吴天明.红外光谱分析与新技术[M].中国医药科技出版社,北京:1993.
    [147]罗渝然.化学键能数据手册[M].北京:科学出版社,2005.
    [148]林梦海,谢兆雄.结构化学[M].北京:科学出版社,2008:140.
    [149]刘玉海,赵辉,李国平.异氰酸酯[M].北京:化学工业出版社,2004年3月第一版.
    [150] Sehlleier Y H, Verhoever A, Jansen M. Observation of Direct Bonds betweenCarbon and Nitrogen in Si-B-N-C Ceramic after Pyrolysis at1400oC[J].Angewandte Chemie International Edition in English,2008,47:3600-3602.
    [151]黄传峰,张福钢,张敬,闫慧芳.一氧化碳傅里叶红外光谱快速测定方法[J].中华劳动卫生职业病杂志2010,2:115-117.
    [152] Xu T H, Ma Q S, Chen Z H. High-tempertature behavior of siliconoxycarbide glasses in air environment[J]. Ceramic International.2011,37(7),2555-2559.
    [153] Liang T, Li Y L, Su D, Du H B. Silicon oxycarbide ceramics with reducedcarbon by pyrolysis of polysiloxanes in water vapor[J]. Journal of theEuropean Ceramic Society,2010,30:2677-2682.
    [154] Kortobi Y E, Cailerie J B E, Legrand A P. Local Composition of SiliconOxycarbides Obatined by Laser Spray Pyrolysis[J]. Chemistry of Materials,1997,9:632-639.
    [155] Jair C. C. Freitas, Francisco G. Emmerich, Tito J. Bonagamba.High-Resolution Solid-State NMR Study of the Occurrence and ThermalTransformations of Silicon-Containing Species in Biomass Materials[J].Chemistry of Materials,2000,12,711-718.
    [156] Chollon G, Hany R, Vogt U, Berroth K. A Silicon-29MAS-NMR Study ofα-Silicon Nitride and Amorphous Silicon Oxynitride Fibres[J]. Journal of theEuropean Ceramic Society,1998,18,535-541.
    [157] Wang Y G. Polymer-Derived Si-Al-C-N Ceramics: Oxidation, Hot-Corrosionand Structural Evolution[D]. Florida: the University of Central Florida.2006:57-62.
    [158] Freitas J C C, Moreira J S, Emmerich F G, Bonagamba T J. Development ofSi/C/N/O ceramics from pyrolysized and heat-treated rice hulls[J]. Journal ofNon-Crystalline Solids,2004,341:77-85.
    [159]梁英教,车荫昌,刘晓霞,李乃军.无机物热力学数据手册[M].沈阳:东北大学出版社,1993年8月第1版.
    [160]向其军,刘咏,刘伯威,张永红. TiN-SiC复合陶瓷材料的研制[J].硬质合金,2005,22(2):78-81.
    [161]向其军,刘咏,刘伯威.反应热压法制备TiN-SiC复合陶瓷材料[J].粉末冶金科学与工程,2004,9(2):151-155.
    [162]贾德昌,宋桂明.无机非金属材料性能[M].北京:科学出版社,2008:6-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700