用户名: 密码: 验证码:
泡沫铝合金先驱体半固态熔体搅拌法制备与质量评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:泡沫铝合金是一种具有孔状结构的轻质功能材料,具有低密度、高强韧、耐冲击、高比强度、高比刚度、高效散热、隔热、阻燃等一系列独特性能。先驱体是采用二步法制备泡沫铝合金的必备原料。论文以获得含有均匀分布发泡剂的先驱体为目标,提出了一种泡沫金属先驱体制备的新方法——半固态熔体搅拌法,并围绕这一制备技术,开展了如下研究:
     (1)设计研究和制造了半固态熔体搅拌法制备泡沫铝合金先驱体的试验装置。该装置包括能够促进发泡剂均匀分布的机械搅拌装置、能够直接高效地添加发泡剂的添加器、先驱体的快速取样装置、加热系统、以及数据采集系统五部分。
     (2)提出了基于数字图像技术的泡沫铝合金先驱体及泡沫铝合金件的内部结构和质量的表征与评价技术。重点研究了泡沫铝合金先驱体试样的处理、图像采集、处理和分析方法,并综合竖直和水平两个方向的数字化评价,获得先驱体质量的三维评价体系,该体系可以定量表征先驱体和泡沫铝合金中发泡剂及气孔的大小、数量和三维分布,能够定量表征发泡剂的集聚和团簇程度,能够客观、准确地反映先驱体的质量优劣及缺陷位置,为泡沫铝合金等多孔材料的质量综合评价提供了一种较为准确的方法。
     (3)研究得到了合金成分、搅拌温度、搅拌表观黏度、搅拌时间等工艺参数对发泡剂在先驱体中的分布、分解情况以及初生气泡的形貌尺寸及分布状况的影响规律,最终形成制备含有均匀分布发泡剂的铝合金先驱体制备工艺方案。
     (4)研究了发泡剂在半固态熔体搅拌混合过程的分解和气泡的长大行为,建立了气泡的长大模型,探讨了半固态熔体约束条件下气泡的极限尺寸及影响因素,并导出了半固态条件下初生气泡尺寸的控制模型,为先驱体内发泡剂分布和预发气泡的控制提供了依据。
     本论文提出的制备和评价方法对于降低先驱体制备成本、提高制备效率及泡沫铝质量,进而加速泡沫金属的产业化应用步伐具有重要的参考价值。今后还需加强这一技术的工程化应用研究,扩大其应用范围。
     图86幅,表9个,参考文献103篇。
ABSTRACT:Metal foam is a lightweight functional material with series of performances such as hole-like structure, low-density, high-toughness, high impact resistance, high specific strength, high stiffness, efficient cooling, insulation, fire-retardant and etc. Precursor is the basic and only raw material for the two-step processing of metal foam. The aim of this paper to propose a new approach to obtain the precursor with uniform distributing blowing agents-processing precursor by semi-solid melt stirring, and the following researches were carried out about this approach:
     (1) The equipment of processing aluminum precursor was designed and manufactured which to obtain precursor by semi-solid melt stirring method. The equipment includes five main parts:the stirring part which to distribute blowing agents by mechanical stirring; the adding part which is adding to add blowing agents directly and efficiently, the sampling part which to obtain precursor samples, the controlling part which to adjust temperature and the data part which to collect the experiments'datas.
     (2) The characterization and evaluation method for quality and internal sturcture of both aluminum precursors and metal foam parts was proposed through diagital image technology. The main researches were focused on precursor sample treatment, image acquisition, image handling and data analysis. And it is to obtain the digital evaluation of precursor on both vertical and horizontal directions as well as the three-dimensional evaluation system. This3D system could quantitatively characterize the blowing agents or pores in precursors and aluminum foam by size, quantity and the three-dimensional distribution. Also this system could characterize agglomeration and degree of cluster of blowing agents, which could indicate objectively and accurately the quality of the precursor and defect locations. This3D system provided an alternative method for the quality evaluation of both precursor and metal foam parts.
     (3) The distribution and decomposition effects on blowing agents and the initial bubbles morphology in precursors were studied by changing processing parameters such as alloy composition, stirring temperature, stirring apparent viscosity, stirring time and quantity of blowing agents, and the technique of processing aluminum precursors with uniformly distributed blowing agents inside was carried out ultimately.
     (4)The decomposition behaviors of blowing agents as well as the growing behavior of intial bubbles in the semi-solid melt during stirring were studied in this paper. A growing model of bubbles in semi-solid melt was established, which exports the control model of the limit bubble size and its impacting factors in the semi-solid melt. And this model provided basises for the control of intial bubbles and blowing agents distribution in the procursor.
     This processing and evaluation methods presented by this paper were of reference value for reducing the cost of processing aluminum precursor, improving production efficiency and quality of the aluminum foam, even accelerating the pace of industrial applications of the metal foam. And the author believed that the engineering applications of this technology need to be strengthened in the future so as to expand the scope of its application.
引文
[1]Sosnik.A.USPatent,2434775.1948
    [2]Elliott. J.E.USPatent,75289.1956
    [3]MRASHBYMetal Forms:A Design Guide. Butterworth-Heinemann.2000
    [4]H.P.DEGISCHER, BRIGITTE.KRISZT.Cellular Metals.Beijing.Chemical Industry Press.2005
    [5]卢天健,何德坪,陈常青等.超轻多孔金属材料的多功能特性及应用.力学进展,2006.Vo136.P517-535
    [6]John Banhart. Manufacture, characterization and application of cellular metals and metal foams. Progress in Materials Science.2001.46. P559-632
    [7]F.Gagliardi, D.Umbrello.Forging of metallic foams to reproduce biomechanical components. Materials science & engineering A.2008(480).P510-516
    [8]D.M.Elzey, H.N.GWadley.The limits of solid state foaming. Acta Materialia.2001.49.P849-859
    [9]M. Shiomia, S.Imagamab, K.Osakadab. Fabrication of aluminium foams from powder by hot extrusion and foaming. Journal of Materials Processing Technology 2010.210.P1203-1208
    [10]戴长松,张亮等.泡沫材料的最新研究进展.稀有金属材料与工程程.2005.No.34.P337-340
    [11]李兵,姚广春,王永,罗洪杰.纯铝基泡沫铝材料的制备工艺.东北大学学报.2007.No.8.Vol.28.P1159-1162
    [12]刘欣,薛向欣,张瑜等.泡沫铝复合材料的研究.材料导报.:2001.No.01.Vol.21.P79-82
    [13]N.K, Bourne, K.Bennett, A.M.Milne. The shock response of aluminium foams. Scripta Materialia.2008.58.P154-157.
    [14]毛春升,钟绍华等.泡沫铝技术及其在车辆中的应用.汽车工艺与材料.2006.No.5.P5-8
    [15]祖国胤,姚广春,李红斌等.冷轧复合工艺制备超轻Mg-Li合金复铝板.功能材料.2007.No.1.P151-155
    [16]祖国胤,郝亮,张敏等.轧制复合对泡沫夹芯板组织与性能的影响.东北大学学报(自然科学版),2007.No.12.Vol.28.P1725-1728
    [17]Kaptay.GInterfacial criteria for stabilization of liquid foams by solid particles. Colloids and surfaces.2004.230.P67-80
    [18]张钱城,卢天健,何德坪等.闭孔泡沫铝的孔结构控制.西安交通大学学报.2007.No.3.Vol.41.P255-272
    [19]何德坪,何思渊,尚金堂等.超轻多空金属的进展与物理学.物理学进展.2006.No.3&4.卷26.P346-350
    [20]Zhenlun Song, Steven R.nutt. Rheology of foaming aluminum melts. Materials Science & Engineering A.2007.458.P108-115
    [21]S.Esmaeelzadeh, A.Simchi. Foamability and compressive properties of AlSi7-3 TiH2 powder compact. Materials letters.2008.62.P1561-1564
    [22]周向阳,刘希泉,李劫等.采用新型发泡剂制备泡沫铝.中国有色金属学.2006.No.16.P1983-1987
    [23]A.R. Kennedy. The effect of TiH2 heat treatment on gas release and foaming in Al-TiH2 preforms. Scripta Materialia.2002.47.P763-767
    [24]方吉祥,杨志懋,丁秉钧等.SiO2/TiH2包裹粉体的制备及其释氢特性.高等学校学报2005.NO.126.P1225-1227
    [25]方吉祥,赵康,谷臣清等.化学法制备A1203包裹TiH2颗粒发泡剂.中国有色金属学报.2002.No.12.P1205-1209
    [26]www.alulight.com
    [27]I.Duarte, John Banhart. A study of aluminium foam formations kinetics and microstructure. Acta Materialia.2000.Vol.48.P2349-2362
    [28]Francisco Garcia-Moreno, John Banhart. Foaming of blowing agent-free aluminum podwer compacts. Colloids and surfaces.2007,Vol.309.P264-269
    [29]Dirk Lehmhus, John Banhart. Properties of heat-treated aluminum foams. Materials science and engineering A.2003.Vol.349.P98-110
    [30]S.Asavavisithchi, A.R.Kennedy. Effect of powder oxide content on the expansion and stability of PM-route Al foam.Journal of collide and interface science.2006.vol.297.P715-723
    [31]魏莉,李振江,姚广春等.泡沫铝发泡过程中气泡的稳定性.东北大学学报(自然科学版)2004. No.11.Vol.26.P1090-1094.
    [32]魏莉,姚广春,张晓明等.粉末冶金法制备泡沫铝材料.东北大学学报(自然科学版).2003.No.11.Vol.24.P1071-1074
    [33]朱勇钢,陈锋,梁晓军等.粉末冶金发泡时泡沫铝合金结构及泡壁的微观组织演变.中国有色金属学报.2004.Vol.14.P1106-1111
    [34]T. Mukai, T.Miyoshi, S.Nakano, H.Somekawa, K.Higashi. Compressive response of a closed-cell aluminum foam at high strain rate. Scripta Materialia 2006.Vol.54.P 533-537
    [35]Mukai, H.Kanahashi, T.Miyoshi. Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading. Scripta Materialia,1999.Vol.40.P921-927
    [36]Marco Haesche, Jorg Weise, Francisco Garcia-Moreno, John Banhart. Influence of particle additions on the foaming behaviour of AlSi11/TiH2 composites made by semi-solid processing. Materials Science & Engineering A.2008.Vol.480.P283-288
    [37]魏莉,唐骥,姚广春等.粉末冶金法制备泡沫铝合金时增粘过程的基础研究.铸造.2005.No.13.Vol.54.P229-233
    [38]宋振纶,何德坪.铝熔体泡沫形成过程中粘度对孔结构影响.材料研究学报.1997.No.3.Vol.11.P275-279
    [39]马立群,何德坪.新型泡沫铝的制备及其孔结构的控制.材料研究学报.1994.No.3.Vol.8.P11-17
    [40]李乃哲,陈策,何德坪等.多孔铝合金的孔隙率梯度及控制.中国有色金属学报.2004.No.3.Vol.14.P378-385
    [41]尚金堂,何思渊,何德坪等.铝及其合金熔体的增黏及泡沫化特性.材料研究学报.2006.No.4.Vol.20.P361-365
    [42]杨东辉,何德坪.氢化钛热分解特性与小孔径低孔隙率泡沫铝合金.中国有色金属学报.2004. No.12.Vol.14.P2021-2029
    [43]张艳菊毛卫民赵振铎等.半固态A356铝合金的稳态流变性能.金属学报.2006.No.2.Vol.42.P163-166.
    [44]张先念,张恒华,邵光杰等.半固态金属流变仪的研制.特种铸造及有色合金.2005.Vol.125.P507-510.
    [45]戴戈,何德坪,尚金堂等.铝合金熔体泡沫化过程中粘度的变化.材料研究学报.2005.No.1.Vol.19.P35-41
    [46]左孝青,梅俊熊恒,周芸等.泡沫铝二次发泡工艺用先驱体中TiH2发泡剂的分散性.中国有色金属学报.2008.Vol.1.P78-84
    [47]F. von Zeppelin, M. Hirscher, H. Stanzick, J. Banhart. Desorption of hydrogen from blowing agents used for foaming metals. Composites Science and Technology.2003 Vol.63.P2293-2300
    [48]周向阳,张华,刘希泉等.泡沫铝两步法制备工艺用新型发泡剂的热分解行为.中国有色金属学报.2008.Vol.18.P2265-2269
    [49]A.R.Kennedy. The effect of TiH2 heat treatment on gas release and foaming in Al-TiH2 preforms. Scripta Materialia.2002.Vol.47.P763-767
    [50]A.R.Kennedy, V.H.Lopez. The decomposition behavior of as-received and oxidized TiH2 foaming-agent powder. Materials science and engineering A.2003.Vol.357.P258-263
    [51]Jixiang Fang, Bingjun Ding,Zhimao Yang, Kang Zhao, Chenqing Gu. The effect of SiO2 and Al2O3 coating on the surface of TiH2 powders on gas release. Journal of Colloid and Interface Science.2005.Vol.283.Pl-4
    [52]方吉祥,赵康,谷臣清.化学法制备Al2O3包裹TiH2颗粒发泡剂.中国有色金属学报.2002.Vol.12.P1205-1210
    [53]左孝青,张金娅,王茗等.泡沫铝发泡过程热力学.昆明理工大学学报.2003. Vol.10.P45-51
    [54]Biljana Matijasevic, John Banhart. Improvement of aluminum foam technology by tailoring of blowing agent. Scripta Materialia.2006.Vol.54.P503-508
    [55]Olusegun.J.Ilegbusi, Matthew.W.Ballas. Modeling pore growth in semi-solid alloy foams.Journal of Materals Processing Technology.2006.Vol.178.P88-97
    [56]V.Gergely. T.W.Clyne.Drainage in standing liquid metal foams:modeling and experimental observations. Acta Materialia.2004.Vol.52.P3047-3058
    [57]左孝青,潘晓亮,高芝等.泡沫铝气泡长大动力学.中国有色金属学报2006. No.16. Vol.12. P2040-2046
    [58]YPJeon, C.G.Kang, S.M.Lee. Effects of cell size on compression and bending strength of aluminum-foamed material by complex stirring in induction heating. Journal of Materials Processing Technology 2008.Vol.ⅹ.Pⅹⅹ.
    [59]Michael F.Ashby.泡沫金属设计指南.化学工业出版社.2006
    [60]Marco Haesche, Jorg Weise, Francisco Garcia-Moreno, John Banhart. Influence of particle additions on the foaming behavior of AlSil1/TiH2 composites made by semi-solid processing. Materials science & engineering A.2008.Vol.480.P283-288
    [61]左孝青,梅俊,熊恒.泡沫铝二次发泡工艺用先驱体中TiHH2发泡剂的分散性.中国有色金属学报.2008.No.1.Vol.18.P78-84
    [62]周向阳,刘希泉,李吉力等.泡沫铝泡体均匀性的定量表征.中国有色金属学报.2008.No.1.Vol.18.P85-90
    [63]Flemings.M.C.Metall Trans,1991.Vol.22.P957-960
    [64]杨东辉.氢化钦热分解反应动力学与铝合金熔体泡沫化过程研究.东南大学博士论文.2005.P20-22
    [65]罗洪杰,吉海宾,杨国俊等.氢化钛的分解行为及其在制备泡沫铝中的应用.东北大学学报.2007.Vol.28.P87-90
    [66]Sakamoto.M, Hirai.S, Akiyama.S. Effects of calcium addition on the foamability of molten aluminum. Journal of Japan Instit ute of L ight Metals,1987. Vol.37.P42-47.
    [67]王怡红,赵军,宋苇等.TiH2的SiO2凝胶包裹对其释氢的影响。东南大学学报1999.No.6.Vol.29.P145-148
    [68]张艳菊,毛卫民,赵振铎.半固态A356铝合金的稳态流变性能.金属学报.2006.No.2.Vol.42.P163-166
    [69]周志华,毛卫民,刘政.半固态A1Si4Mg2铝合金的稳态流变性能.材料研究学报.2006.No.1.Vol.20.P5-9
    [70]唐靖林,曾大本.初生相形态对半固态A356合金瞬态流变行为的影响.材料工程.2000.No.8.P43-45
    [71]唐靖林,殷雅俊,范钦珊,曾大本.液一固温区A356合金剪切速率阶梯变化的瞬态流变行为.金属学报.2001. No.10.Vol.37.P1031-1036
    [72]秦孝华,范存淦,韩维新,戎利建,李依依.液态机械搅拌法制备陶瓷颗粒增强铝基复合材料.金属学报.2002.No.8.Vol.38.P885-887
    [73]Ma.L, Song.Z. Scripta Materials.1998.Vol.39.P 1523-1525
    [74]方吉祥,赵康,谷臣清.Al2O3/TiH2包覆粉体的制备及其释氢性能的研究.高等学校化学学报.2002. No.9.Vol.23.P1784-1786
    [75]胡汉起.金属凝固原理.北京.机械工业出版社(第2版).2007
    [76]大角泰章.金属氢化物的性质与利用.北京.化学工业出版社,1980.
    [77]TAO.Dongping. Properties of Liquid Alloys and Molten Slags. Yunnan Science and Technology Press.1997.No.1.P135-151.
    [78]Atkin.P.W. Physical Chemistry.Oxford University Press.1990
    [79]左孝青,潘晓亮,高芝.泡沫铝气泡长大动力学.中国有色金属学报.2006.No.12.Vol.16.P2040-2046
    [80]李光明,甘礼华,陈龙武,蒋凯雁.氢化钛的制备及其分解.应用化学.1998.No.1.Vol.15.P77-81
    [81]L J.Gibson and M. F. Ashby, in Cellular Solids, Structure and Properties. (2nd ed).Cambridge University Press.UK.1997.
    [82]Miyoshi T, Itoh M, Akiyama S, Kitahara A. Porous and cellular materials for structural applications.MRS Symp.Proc.1998.vol.521.P133-135.
    [83]J.Banhart. Manufacturing routes for metallic foams. Mateials Science.2000. Vol.52.P22-27.
    [84]A.sholt.P. Metal foams and porous metal structures.Int.Conf. Bremen. Germany,1999. Vol.14-16.P133-135.
    [85]Uslu.C, Lee.K.J, Sanders.TH. Conf. Synthesis of light-weightmetallic materials Ⅱ. USA. Orlando.1997. Vol.9-13.P141-145
    [86]Shapovalov.Ⅵ. Porous and cellular materials for structural applications. Conf.1998. Vol.521. P281-283
    [87]http://www.ergaerospace.com
    [88]http://www.seac.nl
    [89]Gibson.LJ, Ashby.MF. Cellular solids.Cambridge.UK.Cambridge University Press.1997.
    [90]李言祥,刘源,张华伟.GASAR和Gasarite研究进展.特种铸造及有色合金.2004.No.1.P9-11
    [91]张华伟.李言祥.刘源.固/气共晶定向凝固中的工艺判据.金属学报.2007.No.6.P43-48
    [92]刘源.李言祥.张华伟.金属-气体共晶定向凝固制备藕状多孔金属的研究.特种铸造及有色合金.2005.No.1.P25-28
    [93]BerryCB. US Patent 3,669,654,1972.
    [94]Hall CG. US Patent 3,692,513,1972.
    [95]J.Banhart, M.F.Asby. Proc. Metal foams and porous metal structures, MIT, Bremen,1999
    [96]LIU Wen, XING Shu-ming, ZHANG Lin. Development of Rheometer for Semi-solid High-melting Point Alloy. China Foundry.2005.No.4.Vol.2.P268-274
    [97]Wen LIU, Shuming XING, Peiwei BAO. Energy Dissipation and Apparent Viscosity of Semi-solid Metal during Rheological Processes-Part Ⅰ:Energy Dissipation. J.Mater.Sci.Technol.2007.No.3.Vol.23.P150-153
    [98]Wen LIU, Shuming XING, Peiwei BAO. Energy Dissipation and Apparent Viscosity of Semi-solid Metal during Rheological Processes-Part Ⅱ:Apparent Viscosity. J.Mater.Sci.Technol. 2007.No.5.Vol.23.P220-223
    [99]Shuming Xing, Jianbo Tan. Wen LIU. Study on key problems on industrializations of semisolid rheologic forming processes-Proceedings of the 8th S2P.2004.P851-855
    [100]Shuming Xing, Wen Liu, Jianbo Tan. Basic rules for rheologic forging process of semisolid alloy. Journal of University of Science and Technology. Beijing.2004. N0.6.V0l.Ⅱ. P566-571
    [101]谭建波,邢书明,刘文.半固态A356合金微观组织特征对充型能力的影响.中国有色金属学报.2006. No.4.Vol.16.P612-617
    [102]谭建波,邢书明,刘文.半固态A356合金流变充型的极限长度.中国有色金属学报.2006. No.6.Vol.16.P970-975
    [103]轻金属材料加工手册(下册).北京:冶金工业出版社,1980

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700