用户名: 密码: 验证码:
先驱体浸渍裂解工艺制备C_f/UHTC_p/SiC复合材料及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展高超声速飞行器迫切需要零(微)烧蚀复合材料,为此必须提高现有耐超高温复合材料的抗烧蚀性能和抗氧化性能,并兼顾其力学性能,本文利用碳纤维的增强增韧机制、UHTC的耐超高温和零(微)烧蚀特性、SiC的抗氧化特性,采用PIP工艺制备了一系列2D C_f/UHTC_p/SiC复合材料。研究了PIP的工艺参数、UHTC_p种类和含量等对2D C_f/UHTC_p/SiC复合材料结构和性能的影响,同时系统地研究了复合材料的力学性能和抗烧蚀性能,探讨了复合材料的抗烧蚀机理。
     PIP法制备2D C_f/UHTC_p/SiC复合材料包括两个步骤:(1)材料成型过程,即预制体的制备;(2)致密化过程,即通过多次先驱体浸渍-裂解过程使预制体致密化。本文首先研究了复合材料的成型和致密化工艺,结果表明:碳布涂刷叠层工艺是制备复合材料预制体的理想方法,成型过程中,PCS/DVB配比是影响预制件完整性和UHTC_p含量的关键参数,当mPCS:mDVB=1:3时最有利于成型和提高材料中UHTC_p含量;在致密化过程中,采用单组分(PCS/xylene)真空浸渍致密化预制体,浸渍效率高,制得的材料具有结构完整、致密度高、力学性能和抗烧蚀性能好的优势。
     分别研究了三种UHTC_p(ZrB_2、ZrC、TaC)含量、模压压力以及热处理温度对复合材料结构和性能的影响。添加UHTC_p能明显提高材料的抗烧蚀性能,总体上,随着UHTC_p含量的提高,复合材料的抗烧蚀性能明显提高,但材料中碳纤维含量下降,力学性能随之下降。在成型时辅助压力能同时提高材料中UHTC_p和碳纤维的含量,提高材料的抗烧蚀性能和力学性能,若在交联固化时也辅以压力,则能进一步提高材料的抗烧蚀性能和力学性能。
     对于2D C_f/ZrB_(2p)/SiC而言,采用mPCS:mDVB:mZrB_(2p)=1:3:8.9的成型料浆,加7MPa压力进行模压-交联,1400℃处理制得的材料力学性能最优,材料中ZrB_2含量为25.5vol%,碳纤维含量为22.6vol%,SiC含量为32.5vol%,材料的弯曲强度和弯曲模量分别为252.0MPa和35.5GPa,经氧乙炔焰烧蚀考核60秒,试样表面温度达到2200℃,质量烧蚀率和线烧蚀率分别为0.0260g/s和0.0198mm/s;提高热处理温度,材料的力学性能急剧下降,但抗烧蚀性能明显提高,其中1800℃处理制得试样弯曲强度和弯曲模量分别只有27.1MPa和26.1GPa,在同样抗烧蚀考核条件下的质量烧蚀率和线烧蚀率明显降低,分别为0.0161mm/s和0.0141g/s。如何提高材料的抗烧蚀性能,同时又能兼顾材料的力学性能是应该关注的重点。
     对于2D C_f/ZrC_p/SiC而言,采用mPCS:mDVB:mZrC_p=1:3:23.3的料浆配比、加7MPa压力进行模压-交联、1600℃处理制得材料具有最佳结构和性能,材料中ZrC_p含量高达33.3vol%,碳纤维含量为20.3vol%,SiC含量为26.5vol%,材料的弯曲强度和弯曲模量分别为168.7MPa和31.0GPa,经氧乙炔焰烧蚀考核60秒,表面温度为2243℃,质量烧蚀率为0.0073g/s,线烧蚀率为0.0037mm/s。
     采用mPCS:mDVB:mTaC_p=1:3:34.0的料浆配比、加7MPa压力进行模压-交联、1600℃处理制得的2D C_f/TaC_p/SiC复合材料具有理想的结构和性能,材料中TaC_p含量为30.5含量,SiC含量为26.0含量,碳纤维含量为26.9vol%,弯曲强度和弯曲模量分别为210.9MPa和34.4GPa,质量烧蚀率为0.0193g/s,线烧蚀率为0.0142mm/s。
     系统研究了三种材料的常温力学性能、高温力学性能和抗氧化性能。三种2D C_f/UHTC_p/SiC复合材料的力学性能主要取决于碳纤维含量,其中2D C_f/ZrB_(2p)/SiC的拉伸强度为78.5MPa,2D C_f/ZrC_p/SiC的拉伸强度为67.4MPa,2D C_f/TaC_p/SiC的拉伸强度为118.9MPa;三种材料的剪切强度和断裂韧性分别均在30MPa和10MPa·m1/2左右。针对碳布叠层增强材料存在层间结合较弱,剪切强度不高的问题,论文又开展了Z向穿刺工艺对改善材料层间结合和提高材料力学性能的研究,制得2D C_f/ZrB_(2p)/SiC-Zpin试样的弯曲强度为247.8MPa,弯曲模量为37.8GPa,剪切强度为37.4MPa,和未穿刺试样相比,剪切强度提高20.6%,明显改善了材料构件的可加工性和材料使用时的可靠性。三种材料的抗压强度基本相当,在x、y、z三个方向测得的抗压强度均在250.0MPa左右。
     与2D C_f/SiC相比,2D C_f/UHTC_p/SiC具有更高的高温强度。2D C_f/ZrB_(2p)/SiC在1800℃时的弯曲强度为143.9MPa,强度保留率达74.1%,2000℃时的弯曲强度下降严重,仅为61.8MPa;2D C_f/ZrC_p/SiC在1800℃时的弯曲强度达165.9MPa,强度保留率为81.8%,2000℃时的弯曲强度为168.5MPa,强度保留率为83.1%,材料表现出优异的耐超高温性能;1800℃时2D C_f/TaC_p/SiC的弯曲强度是98.0MPa,2000℃时的弯曲强度为122.2MPa。
     在1200℃氧化环境中,由于2D C_f/ZrB_(2p)/SiC和2D C_f/TaC_p/SiC表面能形成B_2O3和Ta2O5自愈合结构,表现出较好的抗氧化性能,2D C_f/ZrB_(2p)/SiC氧化后的弯曲强度为184.3MPa,强度保留率为69.2%;2D C_f/TaC_p/SiC氧化后的弯曲强度高达197.6MPa,强度保留率为74.1%;由于ZrC氧化产物ZrO_2在此温度下为粉末状,无法形成自愈合机制,2D C_f/ZrC_p/SiC氧化后完全失去承担载荷的能力。
     分别研究了三种材料在两种考核环境中、不同考核工况下的抗烧蚀性能,结果表明:复合材料中UHTC_p在抗烧蚀性能上起到重要作用,三种复合材料的抗烧蚀性能均优于2D C_f/SiC。在氧乙炔考核环境中,当试样表面温度为2200℃左右时,2D C_f/ZrB_(2p)/SiC的质量烧蚀率和线烧蚀率为0.0062g/s和0.0052mm/s,2D C_f/ZrC_p/SiC的质量烧蚀率和线烧蚀率为0.0104g/s和0.0111mm/s,2D C_f/TaC_p/SiC的质量烧蚀率和线烧蚀率为0.0134g/s和0.0187mm/s,根据线烧蚀率由低到高的顺序为2D C_f/ZrB_(2p)/SiC、2D C_f/ZrC_p/SiC、2D C_f/TaC_p/SiC;当表面温度为2600℃左右时,三种试样的质量烧蚀率和线烧蚀率均明显上升,但试样表现出的抗烧蚀性能有所变化,根据线烧蚀率由低到高的顺序分别为2D C_f/ZrC_p/SiC、2D C_f/ZrB_(2p)/SiC、2D C_f/TaC_p/SiC;在等离子风洞中的烧蚀考核环境更加苛刻,试样的质量烧蚀率和线烧蚀率又进一步上升,此时,根据线烧蚀率由低到高的顺序分别为2D C_f/TaC_p/SiC、2D C_f/ZrC_p/SiC、2D C_f/ZrB_(2p)/SiC。
     探讨了三种材料在不同考核环境中的抗烧蚀机理,研究认为:在氧乙炔焰中,试样的烧蚀主要为热化学烧蚀和热物理烧蚀,同时伴有一定的气流冲刷和机械剥蚀。当试样表面温度为2200℃左右时,2D C_f/ZrB_(2p)/SiC表面形成的氧化熔融层黏度较高,能抵抗气流的冲刷并阻止氧向材料内部扩散,材料表现出较好的抗烧蚀性能;当表面温度为2600℃左右时,熔融物黏度明显下降,在气流冲刷下被吹除,材料的质量烧蚀率和线烧蚀率均明显增高。对于2D C_f/ZrC_p/SiC而言,当表面温度为2200℃左右时,表面还无法形成粘稠的熔融层,不利于阻隔氧向材料内部扩散;当表面温度达到2600℃左右时,烧蚀表面形成的玻璃态熔融层具有较高的黏度,能抵抗气流的冲刷和阻挡氧向材料内部破坏,材料表现出优异的抗烧蚀性能;对于2D C_f/TaC_p/SiC而言,TaC氧化产物Ta2O5的熔点只有1870℃左右,在两种考核工况下,均无法在烧蚀表面形成比较黏稠熔融层,不能对材料内部结构提供阻氧保护作用,2D C_f/TaC_p/SiC表现出较差的抗烧蚀性能。
     在等离子风洞中,由于考核时间短(10s),所以热物理烧蚀、气流冲刷和机械剥蚀决定了复合材料的抗烧蚀性能。在相同的气流冲刷和机械剥蚀条件下,由于ZrB_2熔点只有3040℃,而ZrC和TaC的熔点分别高达3530℃和3880℃,所以在样品表面温度为2800℃的情况下,ZrB_2、ZrC、TaC基体的抗剥蚀能力依次增强,从而2D C_f/TaC_p/SiC复合材料表现出最好的抗烧蚀性能,2D C_f/ZrC_p/SiC次之,2D C_f/ZrB_(2p)/SiC最差。在等离子风洞中严重的气流冲刷和机械剥蚀作用下,复合材料中的叠层碳纤维布很容易逐层剥离,从而表现出比氧乙炔焰环境更大的质量烧蚀率和线烧蚀率。
The development of hypersonic vehicles is in great need of high temperature resistant ceramic matrix composites with little ablation or even no ablation and enough mechanical properties and oxidation resistance. In this dissertation, 2D C_f/UHTC_p/SiC composites were designed and fabricated by PIP route from the viewpoint of availability and applicability. In the composites, carbon fibers were used as reinforcement to provide strength and toughness, ultra high temperature ceramics (UHTC) were used to provide high temperature and ablation resistance, SiC was used to provide oxidation resistance. The influence of PIP route and different UHTC and its content on the microstructures and properties of 2D C_f/UHTC_p/SiC composites were investigated. Also, the mechanical and anti-ablation properties of the composites were studied, and anti-ablation mechanism was discussed.
     The manufacturing of 2D C_f/UHTC_p/SiC composites via PIP included two steps: (1) the formation of the composites, namely fabrication of the body; (2) the densification of the composites, namely several infiltration/pyrolysis cycles were repeated to densify the body. Firstly, the formation and densification process of 2D C_f/UHTC_p/SiC composites were investigated. For 2D composites, brushing with slurry, stacking and curing of carbon fiber cloth was proper to fabricate the body of composites. The mass ratio of PCS/DVB was a key parameter to achieve a balance between content of UHTC and integrality of the body, and mPCS:mDVB=1:3 was proved to be desirable. Repeating cycles of vacuum infiltration with PCS/xylene and pyrolysis was found to be desirable for densification of the body.
     The influence of UHTC_p (ZrB_2, ZrC and TaC) content, molding pressure and heat treatment temperature on microstructure and properties of the composites was researched respectively. Incorporation of UHTC_p could remarkably increase the anti-ablation property of the composites. With UHTC_p contents increasing, the anti-ablation property of the composites was increased obviously. At the same time, the volume content of carbon fibers decreased, resulting in decrease in flexural strength of the composites. Increasing molding pressure could enhance mechanical and anti-ablation properties of the composites as a result of the increase of contents of UHTC_p and carbon fibers. The anti-ablation and mechanical properties could be increased further if curing was conducted with pressure.
     2D C_f/ZrB_(2p)/SiC composites, which prepared with a mass ratio (mPCS:mDVB:mZrB_(2p)) of 1:3:8.9, a molding-curing pressure of 7MPa, and a heat-treatment temperature of 1400℃, showed the best mechanical properties which were 252.0MPa in flexural strength and 35.5GPa in modulus. The volume content of ZrB_2, .carbon fibers and SiC in the composites were 25.5vol%, 22.6vol% and 32.5vol%, respectively. When ablated in oxyacetylene flame for 60 seconds, the surface temperature of the composites reached 2200℃. Under the circumstances, the mass loss rate and linear recession rate were 0.0260g/s and 0.0198mm/s, respectively. Increasing heat treatment temperature would improve anti-ablation property markedly, and decrease mechanical properties sharply at the same time. The composites fabricated with a heat treatment temperature of 1800℃exhibited very low mechanical properties which were 27.1MPa in flexural strength and 26.1GPa in modulus and improved anti-ablation with a linear recession rate of 0.0161mm/s and a mass loss rate of 0.0141g/s. Based the above results, it is proposed that much attention should be paid to how improve anti-ablation property not at the sacrifice of mechanical properties.
     2D C_f/ZrC_p/SiC composites, which prepared with a mass ratio (mPCS:mDVB:mZrC_p) of 1:3:23.3, a molding-curing pressure of 7MPa, and a heat-treatment temperature of 1600℃, showed the best mechanical properties which were 168.7MPa in flexural strength and 31.0GPa in modulus. The volume content of ZrC, carbon fibers and SiC in the composites were 33.3vol%, 20.3vol% and 26.5vol%, respectively. When ablated in oxyacetylene flame for 60 seconds, the surface temperature of the composites reached 2243℃. Under the circumstances, the linear recession rate and mass loss rate were 0.0037mm/s and 0.0073g/s, respectively.
     2D C_f/TaC_p/SiC composites, which prepared with a mass ratio (mPCS:mDVB:mTaC_p) of 1:3:34.0, a molding-curing pressure of 7MPa, and a heat-treatment temperature of 1600℃, showed the best mechanical properties which were 210.9MPa in flexural strength and 34.4GPa in modulus. The volume content of TaC, carbon fibers and SiC in the composites were 30.5vol%, 26.9vol% and 26.0vol%, respectively. The linear recession rate and mass loss rate were 0.0142mm/s and 0.0193g/s, respectively.
     The mechanical properties in room and high temperature and anti-oxidation property of the three composites were investigated. The mechanical properties of 2D C_f/UHTC_p/SiC composites were mainly decided by carbon fiber content. The tensile strengths of 2D C_f/ZrB_(2p)/SiC, 2D C_f/ZrC_p/SiC and 2D C_f/TaC_p/SiC were 78.5MPa, 67.4MPa and 118.9MPa, respectively. The shear strength and fracture toughness of the three 2D C_f/UHTC_p/SiC composites were~30.0MPa and~10MPa·m1/2 respectively. In order to improve the interlaminar bonding between carbon fiber cloth, z-pin through-thickness reinforcements was prepared. The resultant 2D C_f/ZrB_(2p)/SiC-Zpin composites showed 37.4MPa in shear strength which was increased by 20.6%. The improvement in shear strength was beneficial to the machinability and reliability of the composites. The flexural strength and flexural modulus of the resultant composites was almost the same as the unpinned sample. The compressive strengths in x, y, z directions of the three composites were all about 250.0MPa.
     The 2D C_f/UHTC_p/SiC composites exhibited better high temperature resistance compared with 2D C_f/SiC composites. The flexural strength of 2D C_f/ZrB_(2p)/SiC composites at 1800℃was 143.9MPa, 74.1% of original strength, and the flexural strength at 2000℃was only 61.8MPa. The flexural strength of 2D C_f/ZrC_p/SiC composites at 1800℃was 165.9MPa, 81.8% of original strength, and the flexural strength at 2000℃was 168.5MPa, 83.1% of original strength. The flexural strength of 2D C_f/TaC_p/SiC composites at 1800℃and 2000℃were 98.0MPa and 122.2MPa, respectively.
     Due to the formation of B_2O3 and Ta2O5 with self-healing ability, the 2D C_f/ZrB_(2p)/SiC and 2D C_f/TaC_p/SiC composites showed desirable oxidation resistance. After oxidized at 1200℃in static air, 2D C_f/ZrB_(2p)/SiC composites showed 184.3MPa in flexural strength, 69.2% of original strength, and 2D C_f/TaC_p/SiC composites showed 197.6MPa in flexural strength, 74.1% of original strength. However, 2D C_f/ZrC_p/SiC composites showed little strength after oxidation because the ZrO2 resulting from oxidation of ZrC had no self-healing ability.
     The anti-ablation properties of the three composites in two testing environments and different testing conditions were investigated. It was evident that UHTC_p played a key role in deciding anti-ablation property. The results indicated that the three composites exhibited anti-ablation property superior to 2D C_f/SiC composites due to the incorporation of UHTC_p. When ablated in oxyacetylene flame and surface temperature of composites reached 2200℃, 2D C_f/ZrB_(2p)/SiC composites showed the best anti-ablation property, 2D C_f/ZrC_p/SiC composites were placed in the middle, and 2D C_f/TaC_p/SiC composites showed the worst. The mass loss rate and linear recession rate of the three composites were 0.0062g/s and 0.0052mm/s, 0.0104g/s and 0.0111mm/s, and 0.0134g/s and 0.0187mm/s, respectively. In case of surface temperature of 2600℃, the mass loss rate and linear recession rate of the three composites were all increased markedly, and 2D C_f/ZrC_p/SiC composites showed the best anti-ablation property, 2D C_f/ZrB_(2p)/SiC composites were placed in the middle, 2D C_f/TaC_p/SiC composites showed the worst. When tested in plasma wind tunnel, the mass loss rate and linear recession rate of the three composites were further increased due to the more serious environment. Under the circumstance, 2D C_f/TaC_p/SiC composites showed the best anti-ablation property, 2D C_f/ZrC_p/SiC composites were placed in the middle, and 2D C_f/ZrB_(2p)/SiC composites showed the worst.
     Anti-ablation mechanisms of the three composites in different testing environments were discussed. In oxyacetylene flame, ablation of the composites was mainly ascribed to thermal chemical and thermal physical ablation, accompanied by airflow erosion and mechanical denudation to a certain extent. At the surface temperature of 2200℃, a layer of melted coating with high viscosity formed on the surface of 2D C_f/ZrB_(2p)/SiC composites, which could prevent the diffusion of oxygen and resist airflow erosion. Accordingly, the composites showed good anti-ablation property. Increasing surface temperature from 2200℃to 2600℃led to the decrease in viscosity of melted coating. In this case, the melted coating was prone to be blew away by airflow, resulting in the increase of mass loss rate and linear recession rate. As for 2D C_f/ZrC_p/SiC composites, viscous coating could not form until surface temperature of the composites reached 2600℃. Consequently, 2D C_f/ZrC_p/SiC composites showed better anti-ablation property at surface temperature of 2600℃than 2200℃. Viscous coating could not form on surface of 2D C_f/TaC_p/SiC composites at surface temperature of 2200℃and 2600℃because the melting point of Ta2O5 derived from oxidation of TaC is 1870℃. As a result, the composites exhibited the worst anti-ablation property.
     In plasma wind tunnel, thermal chemical ablation can be ignored because testing time is only 10 seconds. So, thermal physical ablation, airflow erosion and mechanical denudation play a significant role in determining anti-ablation property of the three composites. The melting points of ZrB_2, ZrC and TaC are 3040℃, 3530℃and 3880℃, respectively. Accordingly, when surface temperature reached 2800℃, 2D C_f/TaC_p/SiC composites showed the best anti-ablation property, 2D C_f/ZrC_p/SiC composites were placed in the middle and 2D C_f/ZrB_(2p)/SiC composites exhibited the worst, which were decided by anti-denudation ability of ZrB_2, ZrC and TaC at 2800℃. It was easier for stacked carbon fiber cloths to be blew away in plasma wind tunnel due to more serious airflow erosion and mechanical denudation than in oxyacetylene flame. As a result, the composites showed worse anti-ablation property in plasma wind tunnel.
引文
[1]周瑞发,韩雅芳,李树索.高温结构材料, 2006,北京:国防工业出版社.
    [2] L. Scatteia, A. Riccio, G. Rufolo, et al. PRORA-USV SHS: Ultra High Temperature Ceramic Materials for Sharp Hot Structures. AIAA, 2005.
    [3]邱哲明.固体火箭发动机材料与工艺,北京:宇航出版社.
    [4] Stanley R. Levine, Elizabeth J. Opila, Michael C. Halbig, et al. Evaluation of ultra-high temperature ceramics for aeropropulsion use. Journal of the European Ceramic Society, 2002, 22: 2757-2768.
    [5]邹武.陶瓷基复合材料应用研究“九五”国防预言项目论证报告[R].中国航天科技集团第四研究院第四十三所内部资料, 1996.
    [6] Doug F. The Advanced Ceramics Industry "An Increasingly Strategic Material"[R]. 2004, USACA.
    [7] T. A. JACKSON, D. R. EKLUND,A. J. FINK. High speed propulsion: Performance advantage of advanced materials. JOURNAL OF MATERIALS SCIENCE, 2004, 39: 5905 - 5913.
    [8]傅恒志.未来航空发动机材料面临的挑战与发展趋向.航空材料学报, 1998, 18(4): 52-61.
    [9]甘永学.纤维增强陶瓷基复合材料的研究及其在航天领域的应用.宇航材料工艺, 1994, 24(5): 1-5.
    [10] Srtanley R.Levine, Elizabeth J.Opila, Jonathan A. Lorincz, et al. UHTC Composites for Leading Edges. 2004, NASA Glenn Research Center.
    [11]《难熔金属科学与工程》,第七届全国难熔金属学术交流会文集, 1991陕西科学出版社.
    [12]陈伟,邝用庚,周武平, et al.中国高温用钨铜复合材料的研究现状.稀有金属材料与工程, 2004, 33(1): 11-14.
    [13] Zhang-Jian Zhou, Juan Du, Shu-Xiang Song, et al. Microstructural characterization of W/Cu functionally graded materials produced by a one-step resistance sintering method. Journal of Alloys and Compounds, 2007, 428: 146.
    [14] ZhangJian Zhou, ShuXiang Song, Juan Du, et al. Performance of W/Cu FGM based plasma facing components under high heat load test. Journal of Nuclear Materials, 2007, 363-365: 1309.
    [15] M. B. Dickerson, P. J. Wurm, J. R. Schorr, et al. Near net-shape, ultra-high melting, recession-resistant ZrC/W-based rocket nozzle liners via the displacive compensation of porosity (DCP) method. JOURNAL OF MATERIALS SCIENCE, 2004, 39: 6005-6015.
    [16]宋桂明,王玉金,周玉, et al. ZrCp/W复合材料的烧实行能.稀有金属材料与工程, 2001, 30(2): 4.
    [17]周玉,王玉金,宋桂明. TiCp/W及ZrCp/W复合材料的组织结构与性能.材料导报, 2004, 18(8): 5.
    [18]苏君明,陈林泉,王书贤, et al.石墨渗铜喉衬的烧蚀特性[J].固体火箭技术, 2004, 27(1): 69-72.
    [19]日本炭素学会编.新?炭材料入门.中国金属学会炭素材料专业委员会编译, 1996.
    [20]苏君明. T704高密高强石墨砸固体火箭发动机中的实验与应用.碳-石墨材料论文汇编, 1986, 8.
    [21]廖寄乔,黄伯云,黄志峰, et al.热解碳微观结果的表征.理化检验-物理分册, 2002, 38(11): 501-506.
    [22]苏君明,陈林泉,王书贤, et al.石墨渗铜喉衬材料的微观结构与抗热震性能.固体火箭技术, 2003, 26(3): 58-61.
    [23]陈林泉,王书贤,张胜勇, et al.石墨渗铜喉衬材料的烧蚀机理分析.固体火箭技术, 2004, 27(1): 57-59.
    [24] S. F Maustafa, S. A El-Badry, A. M Sanad, et al. Friction and wear of copper graphite composites made with Cu-coated and uncoated graphite powders Wear, 2002(253): 699-710.
    [25] Sung S. Hwang, Alexander L. Vasiliev,Nitin P. Padture. Improved processing and oxidation-resistance of ZrB2 ultra-high temperature ceramics containing SiC nanodispersoids. Materials Science and Engineering A, 2007, 464: 216-225.
    [26] Shiro Shimada. Microstructural observation of ZrO2 scales formed by oxidation of ZrC single crystals with formation of carbon. Solid State Ionics, 1997, 101~103: 749-754.
    [27]闫联生,李贺军,崔红, et al.超高温抗氧化复合材料研究进展.材料导报, 2004, 18(12): 41-44.
    [28] K. Edamoto, Y. Shirotori, T. Sato, et al. Photoemission spectroscopy study of the oxidation of HfC(1 0 0). Applied Surface Science, 2005, 244: 174-178.
    [29] Shiro Shimada. A thermoanalytical study on the oxidation of ZrC and HfC powders with formation of carbon. Solid State Ionics, 2002, 149: 319- 326.
    [30] B. P. Das, M. Panneerselvam,K.J. Rao. A novel microwave route for the preparation of ZrC–SiC composites. Journal of Solid State Chemistry, 2003, 173: 196-202.
    [31] Qingfeng Tong, Jingli Shi, Yongzhong Song, et al. Resistance to ablation of pitch-derived ZrC/C composites. Carbon, 2004, 42: 2495-2501.
    [32]田庭燕,张玉军,孙峰, et al. ZrB2-SiC复合材料抗氧化性能研究.陶瓷, 2006(5): 19-21.
    [33] T.A. Parthasarathy, R.A. Rapp, M. Opeka, et al. A model for the oxidation of ZrB2, HfB2 and TiB2. Acta Materialia, 2007, 55: 5999-6010.
    [34] Frederic Monteverde, Stefano Guicciardi,Alida Bellosi. Advances in microstructure and mechanical properties of zirconium diboride based ceramics. Materials Science and Engineering A, 2003, 346: 310-319.
    [35] Xinghong Zhang, Ping Hu, Jiecai Han, et al. Ablation behavior of ZrB2-SiC ultra high temperature ceramics under simulated atmospheric re-entry conditions. Composites Science and Technology, 2008, 68: 1718-1726.
    [36] M. GASCH, D. ELLERBY, E. IRBY, et al. Processing, properties and arc jet oxidation of hafnium diboride/silicon carbide ultra high temperature ceramics. JOURNAL OF MATERIALS SCIENCE, 2004, 39 5925 - 5937.
    [37] Frédéric Monteverde,Alida Bellosi. The resistance to oxidation of an HfB2–SiC composite. Journal of the European Ceramic Society, 2005, 25: 1025.
    [38] XueyingLi, Xinghong Zhang, Jiecai Han, et al. A technique for ultrahigh temperature oxidation studies of ZrB2-SiC. Materials Letters, 2008, In press.
    [39] W. G. FAHRENHOLTZ, G. E. HILMAS, A. L. CHAMBERLAIN, et al. Processing and characterization of ZrB2-based ultra-high temperature monolithic and fibrous monolithic ceramics. JOURNAL OF MATERIALS SCIENCE, 39:5951 - 5957.
    [40] E. OPILA, S. LEVINE,J. LORINCZ. Oxidation of ZrB2- and HfB2-based ultra-high temperature ceramics: Effect of Ta additions. JOURNAL OF MATERIALS SCIENCE, 2004, 39: 5969 - 5977.
    [41] Fr′ed′eric Monteverde,Raffaele Savino. Stability of ultra-high-temperature ZrB2–SiC ceramics under simulated atmospheric re-entry conditions. Journal of the European Ceramic Society, 2007.
    [42] Myl`ene Brach, Diletta Sciti, Andrea Balbo, et al. Short-term oxidation of a ternary composite in the system AlN–SiC–ZrB2. Journal of the European Ceramic Society, 2005, 25: 1771-1780.
    [43] E. WUCHINA, M. OPEKA, S. CAUSEY, et al. Designing for ultrahigh-temperature applications: The mechanical and thermal properties of HfB2, HfCx, HfNx andαHf(N). JOURNAL OF MATERIALS SCIENCE, 2004, 39: 5939 - 5949.
    [44]吴世平,杨飞宇,张幸红, et al.碳短纤维对ZrB2-SiC基超高温陶瓷力学性能的影响.材料工程, 2007(5): 15-18.
    [45] A. R Canfield. Carbon/Carbon Nozzle Development. AIAA, 1985, 1096.
    [46]苏君明. C/C复合材料在固体火箭发动机喉管的应用现状及发展趋势.碳-石墨材料论文汇编, 1992, 7.
    [47] Chi Weidong, Shen Zengmin, Zhang Xuejun, et al. Study of Manufacture and Properties of C/C Composites from Carbon Cloth New Carbon Materials, 2001, 16(3): 55-57.
    [48]张红波,尹健,熊翔. C/C复合材料烧蚀性能的研究进展.材料导报, 2005, 19(7): 97-103.
    [49]黄海明,杜善义,吴林志, et al. C/C复合材料烧蚀性能分析.复合材料学报, 2001, 18(3): 76-80.
    [50] Nathan S. Jacobson,Donald M. Curry. Oxidation microstructure studies of reinforced carbon/carbon. Carbon, 2006, 44: 1142-1150.
    [51] Qian-Gang Fu, He-Jun Li, Xiao-Hong Shi, et al. Silicon carbide coating to protect carbon/carbon composites against oxidation. Scripta Materialia, 2005, 52: 923-928.
    [52] Fu Qian-Gang, Li He-Jun, Shi Xiao-Hong, et al. Oxidation protective glass coating for SiC coated carbon/carbon composites for application at 1773 K. Materials Letters, 2006, 60: 431-434.
    [53] J.I. Kim, W.-J. Kim, D.J. Choi, et al. Design of a C/SiC functionally graded coating for the oxidation protection of C/C composites. Carbon, 2005, 43: 1749.
    [54] V. Wunder, N. Popovska, A. Wegner, et al. Multilayer coatings on CFC composites for high-temperature applications. Surface and Coatings Technology, 1998, 100-101: 329-333.
    [55] W. Krenkel,F. Berndt. C/C–SiC composites for space applications and advanced friction systems. Materials Science and Engineering A, 2005, 412: 177-182.
    [56] Kristoffer Krnel, Zmago Stadler,Tomaˇz Kosmaˇc. Preparation and properties of C/C–SiC nano-composites. Journal of the European Ceramic Society, 2006.
    [57] L.M. Manocha, S. Manocha, Ketan B. Patela, et al. Oxidation behaviour of Carbon/Carbon Composites impregnated with silica and silicon oxycarbide. Carbon, 2000, 38: 1481.
    [58] Hanwei He, Kechao Zhou, Xiang Xiong, et al. Investigation on decomposition mechanism of tantalum ethylate precursor during formation of TaC on C/Ccomposite material. Materials Letters, 2006.
    [59]崔红,苏君明,李瑞珍, et al.添加难熔金属碳化物提高C/C复合材料抗烧蚀性能的研究.西北工业大学学报, 2000, 18(4): 669.
    [60] Sufang Tang, Jingyi Deng, Shijun Wang, et al. Ablation behaviors of ultra-high temperature ceramic composites. Materials Science and Engineering A, 2007, 465: 1-7.
    [61]王俊山,李仲平,许正辉, et al.难熔金属及其化合物与C/C复合材料相互作用研究.难熔金属及其化合物与C/C复合材料相互作用研究, 2006(2): 50-55.
    [62]黄海明,杜善义,施惠基.含钽(Ta)C/C复合材料烧蚀分析.复合材料学报, 2003, 20(3): 4.
    [63] Naslain R. CVI composites.In: Warren R ed. Ceramic Matrix Composites, London: Chapman and Hall, 1992: 199~243.
    [64] Eesmann T M, Sheldon B W,Lowden R A. Vapor-phase Fabrication and Properties of Continuous-filament Ceramic Composites. Science, 1991:, 253: 1104~1109.
    [65] Tanaka T, Tamari N, Kondoh I, et al. Fabrication of three-dimensional Tyranno fibre reinforced SiC composite by the polymer precursor method[J]. Ceram.International, 1998, 24: 365-370.
    [66]肖加余,郝元凯.高性能复合材料. 1, 2004,北京:化学工业出版社.
    [67] Jemet J F,Lamicq P J. Composite Thermo-structures: An Overview of the French Experiences[J]. In: Naslain R ed. High Temperature Ceramic Matrix Composites. Bordeaux: Woodhead, 1993: 215-229.
    [68] Stanley R L, Ahmed K N,Samuel L V. Flight-vehicle material structures, and dynamics assessment and future Directions Vol.3. Ceramics and ceramic-matrix composites. New York: The American Society of Mechanical Engineers, 1992.
    [69]张长瑞,郝元恺.陶瓷基复合材料-原理、工艺、性能与设计, 2000,长沙:国防科学技术大学出版社.
    [70]史可顺.高温陶瓷复合材料进展.硅酸盐学报, 1993, 21(1): 77-87.
    [71]陈朝辉.先驱体结构陶瓷. 1, 2003,长沙:国防科技大学出版社.
    [72] H.G. Wulz,U. Trabandt. Large integral hot CMC structures designed for future reusable launchers. AIAA-97-2485.
    [73] Doug Freitag. The Advanced Ceramics Industry“An Increasingly Strategic Material”. USACA report, 2004.
    [74]闫联生,王涛,邹武, et al.国外复合材料推力室技术研究进展.固体火箭技术, 2003, 26(1): 64-70.
    [75] S. T. SCHWAB?, C. A. STEWART, K. W. DUDECK, et al. Polymeric precursors to refractory metal borides. JOURNAL OF MATERIALS SCIENCE, 2004, 39: 6051 - 6055.
    [76]赵稼祥.先进制造与材料应用技术[J].纤维复合材料, 1996(6): 27-31.
    [77]赵稼祥.碳纤维的发展与应用[J].纤维复合材料, 1996(4): 46-50.
    [78]贺福,王茂章著.碳纤维及其复合材料[M].科学出版社,北京, 1997.
    [79] Ostertag R, Haug T, Woltersdorf J, et al. Structure and properties of interlayers in polymer-derived C/SiC composites. J. Eur. Ceram. Soc., 1994, 14(5): 427-439.
    [80]尹洪峰,徐永东,张立同, et al.纤维增韧陶瓷基复合材料界面相的作用及其设计[J].硅酸盐学报, 1999, 3: 23-28.
    [81] Kearns R J,Hay R S. The role of the fiber-matrix interface in ceramic composites[J]. Am. Ceram. Soc. Bull, 1989, 68(2): 229-430.
    [82] Dhakate S R, Parashar V K, Raman V, et al. Influence of ceramic interphase on the mechanical properties of T-300 carbon composites[J]. J. Mater. Sci. Lett., 2000, 19: 1575-1577.
    [83]尹洪峰,徐永东,成来飞, et al.界面相对碳纤维增韧碳化硅复合材料性能的影响[J].硅酸盐学报, 2000, 28(1): 1-5.
    [84]肖鹏.高温陶瓷基复合材料制备工艺的研究.材料工程, 2000(2): 41-44.
    [85] James A. DiCarlo,Narottam P. Bansal. Fabrication routes for continuous fiber reinforced ceramic composites. NASA/TM-1998-208819.
    [86]聂景江,徐永东,张立同, et al.化学气相渗透法制备三维针刺C/SiC复合材料的烧蚀性能.硅酸盐学报, 2006, 34(10): 1238.
    [87]张立同,成来飞,徐永东.新型碳化硅陶瓷基复合材料的研究进展.航空制造技术, 2003(1): 24.
    [88] Ziegler G, Richter I,Suttor D. Fiber-reinforced composites with polymer-derived matrix: processing, matrix formation and properties[J]. Composites Part A, 1999, 30: 411-417.
    [89]王建方.碳纤维在PIP工艺制备陶瓷基复合材料过程中的损伤机理研究[D].长沙:国防科学技术大学博士学位论文, 2003.
    [90]何新波.连续纤维增强碳化硅陶瓷基复合材料研究.长沙:中南工业大学博士学位论文, 2000.
    [91] K. Suzuki, S.Kume,K. Nakano. Fabrication and characterization of 3D C/SiC composites via slurry and PCVI joint process. Key Engineering Materials, 1999, 164-165: 113-116.
    [92]马江.先驱体液相浸渍工艺制备纤维增强碳化硅复合材料[硕士学位论文].国防科技大学, 2000.
    [93] G. B. ZHENG. The properties of carbon fibre/SiC composites fabricated through impregnation and pyrolysis of polycarbosilane[J]. J. Mater. Sci., 1999, 34: 827~834
    [94] Yoshida Hideti. J. ceram. Soc. Jpn, 1994, 102(11): 1016~1021.
    [95]何新波,张长瑞,周新贵, et al.先驱体转化-热压烧结碳纤维增韧碳化硅复合材料的显微结构[J].航空材料学报, 1999, 19(3): 43-50.
    [96] A. Mühlratzer. Production, Properties and Applications of Ceramic Matrix Composites. DKG, 1999, 74(4): 30~35.
    [97]郑文伟,陈朝辉,姚俊涛.碳纤维编织物中真空浸渍引入SiC微粉的工艺研究[J].航空材料学报, 2005, 25(2): 55-58.
    [98]陈朝辉,李永清,张长瑞, et al.先驱体法陶瓷基复合材料研究的进展[R].国防科技大学内部资料汇编, 1997.
    [99]郑文伟.连续碳纤维增强碳化硅的制备工艺结构性能研究[D长沙:国防科技大学硕士学位论文, 1995.
    [100]赵稼祥.日本先进材料技术的研究与进展[R].出国考察报告, 1997.
    [101]王其坤,胡海峰,陈朝辉, et al.聚钛碳硅烷先驱体转化法制备3D C_f/Si-Ti-C-O复合材料研究.材料工程, 2006,增刊1: 278-280.
    [102] Qikun Wang, Haifeng Hu, Wenwei Zheng, et al. Preparation and Property Study of 3D C_f/Si-Ti-C-O Composites Fabricated with Polytitanocarbosilane by PIP Process. Key Engineering Materials., 2007, 336-338: 1242-1244.
    [103] Yoshihiro Hirata, Tsuyoshi Matsura,Kazunori Hayata. Infiltration and Pyrolysisof Polytitanocarbosilane in an Si-Ti-C-O Fabric/Mullite Porous Composite. J. Am. Ceram. Soc, 2000, 83(5): 1044.
    [104] Zheng G B, Sano H, Uchiyama Y, et al. The properties of carbon fibre/SiC composites fabricated through impregnation and pyrolysis of polycarbosilane[J]. J. Mater. Sci., 1999, 34 827-834.
    [105]王建方,陈朝辉,刘维民, et al.不同碳纤维表面状态对C_f/SiC复合材料性能的影响[J]材料导报, 2002, 16(3): 67-69.
    [106]王松. PIP工艺中碳纤维损伤控制及C/SiC复合材料推力室制备技术研究[D].国防科学技术大学博士学位论文, 2005.
    [107] Ke Jian, Zhao-hui Chen, Qing-song Ma, et al. Effects of pyrolysis processes on the microstructures and mechanical Properties of C_f/SiC composites using polycarbosilane[J]. Material science and engineering A, 2005, 390(1-2): 154-158.
    [108]李辉,张立同,曾庆丰, et al. 2D C/SiC复合材料的可靠性评价.复合材料学报, 2007, 24(4): 95-100.
    [109]张钧,徐永东,张立同, et al. 3D C/SiC复合材料基体裂纹间距分布规律.航空材料学报, 2003, 23(3): 11-14.
    [110] Nejhad M. N. G, Chandramouli M. V,Yousefpour A. Processing and performance of continuous fiber ceramic composites by preceramic polymer pyrolysis:Ⅰ-filament winding[J]. Journal of Composite Materials, 2001, 35(24): 2207-2237.
    [111] Beyer. S, Knabe. H,Strobel. F. Development and Testing of C/SiC Components for Liquid Rocket Propulsion Applications[R] AIAA, 99-2896.
    [112] Tang Z.X,Postle R. Mechanics of three-dimensional braided structures for composite materials-Part II:prediction of the elastic moduli[J]. Composite Structures, 2001, 51: 451-457.
    [113] Tang Z.X,Postle R. Mechanics of three-dimensional braided structures for composite materials-part I: fabric structure and fibre volume fraction[J]. Composite Structures, 2000, 49: 451-459.
    [114] Brandt J, Drechsler K,Arendts F J. Mechanical performance of composites based on various three-dimensional woven-fibre preforms[J]. Composit.Sci.& Tech., 1996, 56: 381-386.
    [115]马青松,陈朝辉,郑文伟, et al. C_f/Si-O-C复杂形状应用构件的制备[J].材料工程, 2001, 12: 43-45.
    [116] Gregory N. Morscher. Stress-dependent matrix cracking in 2D woven SiC-fiber reinforced melt-infiltrated SiC matrix composites[J]. Composit.Sci.& Tech., 2004, 64: 1311-1319.
    [117] Shin D W,Tanaka H. Low temperature processing of ceramic woven fabric/ceramic matrix composites[J]. J.Am.Ceram.Soc, 1994, 77(1): 97.
    [118]所俊.先驱体PCS、PSZ制备碳纤维三维编织物增强陶瓷基复合材料的工艺及性能研究[D].长沙:国防科技大学硕士学位论文, 2001.
    [119]王涛,邹武,闫联生, et al.压力对先驱体转化法制备C_f/SiC性能影响[J].全国第十届复合材料学术会议论文集,长沙:湖南科学技术出版社, 1998, 10: 372-375.
    [120]李钒.先驱体转化制备C_f/SiC复合材料工艺与性能的研究[M].国防科学技术大学硕士学位论文, 2005.
    [121] Nakano K, Kamiya A, Nishino Y, et al. Fabrication and characterization of three-dimensional carbon fiber reinforced silicon carbide and silicon nitridecomposites[J]. J. Am. Ceram. Soc., 1995, 78(10): 2811-2814.
    [122]何新波,张长瑞,周新贵, et al.烧结温度对C_f/SiC复合材料界面的影响[J].国防科技大学学报, 2000, 22(4): 34-37.
    [123]王建方,陈朝辉,郑文伟, et al.热压工艺在C_f/SiC复合材料制备中的应用[J].航空材料学报, 2002, 22(3): 22-25.
    [124]谢征芳,陈朝辉,肖加余.活性填料在先驱体转化法纤维增强陶瓷基复合材料中的应用Ⅰ:复合材料的致密化模型[J].复合材料学报, 2002, 19(6): 37-42.
    [125] Greil P,Seibold M. Modeling of dimensional changes during polymer-ceramic conversion for bulk component fabrication[J]. J. Mater. Sci., 1992, 27: 1053-1060.
    [126]周游,江东亮,谭寿洪, et al.热解法制备的复相陶瓷的组成与结构[J].中国有色金属学报, 1995, 5(2): 709-711.
    [127]谢征芳.活性填料在先驱体转化陶瓷基复合材料及构件中的应用[D].长沙:国防科技大学博士学位论文, 2001.
    [128]郑文伟,陈朝辉,姚俊涛.炭纤维编织物中引入SiC微粉的超声工艺研究[J].材料工程, 2004(3): 31-34.
    [129]葛明龙,田昌义,孙纪国.碳纤维增强复合材料在国外液体火箭发动机上的应用[J].导弹与航天运载技术, 2003, 264(4): 22-26.
    [130] Jerry L. Uncooled C/SiC Composite Chamber Tested Successfully in Rocket Combustion Lab[R]. NASA Glenn's Research & Technology reports, 2003.
    [131] Doug F. The Advanced Ceramics Industry“An Increasingly Strategic Material”[R]. USACA report, 2004.
    [132]邹青,侯帅.再入太空船的全陶瓷体襟翼[J].飞航导弹, 2004, 10: 61-63.
    [133] Imuta M,Gotoh J. Development of High Temperature Materials Including CMCs for Space Application[J]. Key Eng.Mater., 1999(164-165): 439-444.
    [134] Schmidt S, Beyer S, Knabe H, et al. Advanced ceramic matrix composites materials for current and future propulsion technology applications[C]. Germany:IAC-03-S.3, 03 sep, 2003
    [135]钟徐,张中光.空间发动机用C/SiC、SiC/SiC复合材料的研究.上海航天动力机械研究所内部资料.
    [136]白世鸿,乔生儒,舒武炳, et al.先进结构陶瓷高温力学性能测试与表征.材料工程, 2000(10): 15.
    [137] Dong Han, Sheng-Ru Qiao, Mei Li, et al. Relationship between weight change and modulus decrease after thermo-exposure of 2D-C/SiC. Letters to the Editor / Carbon, 2006, 44: 2354-2357.
    [138] Georges Chollon, Roger Naslain, Calvin Prentice, et al. High temperature properties of SiC and diamond CVD-monofilaments. Journal of the European Ceramic Society, 2005, 25: 1929-1942.
    [139]乔生儒,李玫,韩栋, et al. 3D C/SiC的高温弯曲性能和后处理对弯曲性能的影响.机械强度, 2003, 25(5): 4.
    [140]简科,陈朝辉,陈国民, et al.裂解升温速率对聚碳硅烷先驱体转化制备C_f/SiC材料弯曲性能的影响[J].材料工程, 2003, 11: 11-13.
    [141]罗国清,乔生儒.加载速率对3D-C/SiC不同温度拉伸性能的影响.材料工程, 2003(10): 9.
    [142]刘兴法. 3D-C/SiC的高温拉-拉疲劳性能研究[D].西安:西北工业大学硕士学位论文, 2003.
    [143]杨忠学. 3D-C/SiC的高温拉伸蠕变性能[D].西安:西北工业大学硕士学位论文, 2003.
    [144]乔生儒,杨忠学,韩栋, et al. 3D C/SiC复合材料拉伸蠕变损伤和蠕变机理.材料工程, 2004(4): 4.
    [145]乔生儒,罗清泉,杜双明, et al. 3D C/SiC复合材料的高温拉伸性能.机械科学与技术, 2004, 23(3): 4.
    [146]白世鸿,乔生儒,舒武炳, et al.陶瓷材料高温断裂韧性评价.材料工程, 2000(11): 21.
    [147] Mario A,Alicia D. Infiltration of C/SiC composites with silica sol-gel solutions: PartⅠ. Infiltration by dropping. Mater.Res., 1999, 14(11): 4230-4238.
    [148] Mario A,Alicia D. Infiltration of C/SiC composites with silica sol-gel solutions: PartⅡ.Infiltration under isostatic pressure and oxidation resistance. Mater.Res., 1999, 14(11): 4239-4215.
    [149]李鸿鹏,马康民,李锋贺, et al.难熔金属在陶瓷基复合材料上的应用[J].航空维修与工程, 2004(3): 24-25.
    [150] Cheng L F, Xu Y D, Zhang L T, et al. Oxidation behavior of C/SiC composites with Si-W coating from room temperature to 1500℃. Carbon, 2000, 38(15): 2133-2138.
    [151]索相波,陈朝辉,王松, et al.聚硅氧烷封孔处理对C_f/SiC复合材料抗氧化性能的影响.航空材料学报, 2004, 24(6): 5.
    [152] France O,Macret J L. In: Processing of ESA Symposium, ESTEC. Noordwijk, 1990.
    [153]潘育松,徐永东,陈照峰, et al. 2D C/SiC复合材料烧蚀性能分析.兵器材料科学与工程, 2006, 29(1): 5.
    [154]潘育松,徐永东,陈照峰, et al.碳/碳化硅燃气舵的烧蚀及抗热震性.中国有色金属学报, 2006, 26(6): 976.
    [155]李伟. PIP工艺制备C_f/SiC复合材料孔隙结构及其传热传质特性研究[D].国防科技大学博士学位论文, 2008.
    [156]吉洪亮. C/SiC发汗冷却复合材料的孔隙结构设计、制备及其性能研究[D].国防科学技术大学博士学位论文, 2007.
    [157]王其坤,胡海峰,简科, et al.先驱体转化法2D C_f/SiC-Cu复合材料制备及其性能研究.新型碳材料, 2006, 21(2): 151-155.
    [158] Qikun Wang, Haifeng Hu,Zhaohui Chen. Preparation of 3D C/SiC-Cu composites via precursor pyrolysis and property investigation. Key Engineering Materials, 2008, 368-372: 1031-1033.
    [159]仇沱,马眷荣.工程陶瓷弯曲强度试验方法[M].北京:中国建筑材料科学研究院, 1986.
    [160] Annual Book of ASTM Standards[M] ASTM Test Method D2344-76, American Society for Testing and Materials, Philadelphia, PA, 1988.
    [161] 1988.10 GB75-70-03:高温结构陶瓷平面应变断裂性试验方法[M].北京:中国建筑材料科学研究院.
    [162]曹英斌.先驱体转化-热压工艺制备C_f/SiC复合材料工艺、结构、性能研究[D].长沙:国防科技大学博士学位论文, 2001.
    [163] Annual Book of ASTM Standards ASTM Test Method D3379-75, AmericanSociety for Testing and Materials, Philadelphia, PA, 1988:131.
    [164] GJB 323-87标准《氧乙炔烧蚀实验方法》.
    [165]王英华. X光衍射技术基础(第二版)[M].北京:原子能出版社, 1993.
    [166] Ke Jian, Zhao-Hui Chen, Qing-Song Ma, et al. Effects of pyrolysis temperatures on the microstructure and mechanical properties of 2D-C_f/SiC composites using polycarbosilane. ceramics International, 2007, 33: 73-77.
    [167]简科.先驱体浸渍裂解工艺制备2D C_f/SiC复合材料及构件的研究[D].国防科学技术大学博士学位论文, 2006.
    [168] Yongjie Yan, Zhengren Huang, Shaoming Dong, et al. Pressureless Sintering of High-Density ZrB2–SiC Ceramic Composites. J. Am. Ceram. Soc., 2006, 89(11): 3589-3593.
    [169] Xiao-Jun Zhou, Guo-Jun Zhang, Yao-Gang Li, et al. Hot pressed ZrB2–SiC–C ultra high temperature ceramics with polycarbosilane as a precursor. Materials Letters, 2007, 61: 960-963.
    [170] Katsumi Yoshida, Masamitsu Imai,Toyohiko Yano. Improvement of the mechanical properties of hot-pressed silicon-carbide-fiber-reinforced silicon carbide composites by polycarbosilane impregnation. Composites Science and Technology, 2001, 61: 1323-1329.
    [171]李伟,陈朝辉. PIP工艺制备C_f/SiC复合材料微观结构研究.稀有金属材料与工程, 2007, 36(增刊1): 611-614.
    [172] Boitier G, Chermant J L,Vicens J. Multiscale investigation of the creep behavior of 2.5D C_f/SiC composites[J]. J.Mater.Sci., 1999,34:2759-2767.
    [173] Holmes J W Shrensen B F, Vanswi E L,et al. Rate of strength decrease of fiber reinforced ceramic matrix composites during fatigue[J]. J.Am.Ceram.Soc.,2000,83(6) :1496-1475.
    [174] Holes J W. Frequency dependence of fatigue life and internal heating of a fiber reinforced ceramic matrix composites[J]. J.Am.Ceram.Soc.,1994,77(12):3284-3286.
    [175]矫桂琼王波,潘文革等.三维编织C/SiC复合材料的拉压实验研究[J].2004,21(3):111-115.
    [176]郭辉.二维编织C/SiC复合材料的力学性能研究[D].西安:西北工业大学学位论文, 2003.
    [177]矫桂琼管国阳,张增光.平纹编织C/SiC复合材料的剪切性能[J].机械科学与技术, 2005,24(5):515-517.
    [178]黄风雷张庆明,王汉军.3D C/SiC复合材料压缩失效规律研究[J].北京理工大学学报,1999, 12(s1):29-33.
    [179]白世鸿,陈彦,乔生儒, et al. SiC陶瓷高温弯曲强度的Weibull模量研究.机械强度, 2000, 22(4): 2.
    [180]宋桂明,杨跃平,周玉, et al.钨基复合材料烧蚀真温测量[J].矿冶, 2000, 9(3): 76-83.
    [181] GJB 323A-96标准《氧乙炔烧蚀实验方法》.
    [182]王俊山,李仲平,敖明, et al.掺杂难熔金属碳化物对炭/炭复合材料烧蚀微观结构的影响.新型炭材料, 2005, 20(2): 6.
    [183] D. Gaitonde,J. S. Shang. Numerical simulation of flow past the X24c reentry vehicle. AIAA-93-0319, 1993.
    [184]叶大伦.实用无机物热力学数据手册.冶金工业出版社,北京, 1981.
    [185] J. A. Dean. Lange’s. Handbook of Chemistry [M] McGraw-Hill Book Company. 15th Edition, New York, 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700