用户名: 密码: 验证码:
基于压力感知步态的运动人体行为识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信息网络时代,生物特征识别技术作为新兴的前沿科学技术得到很快的发展。人们逐渐在对自己的认识方式和行为方式所产生的变化中,开始了自己新的生活和新的实践。基于信息网络,人体固有的生理特性(如指纹、脸像、虹膜等)和行为特征(如笔迹、声音、步态等),通过计算系统与光学、声学、生物传感器以及生物统计学原理等科学技术,在进行个人身份鉴别和运动人体行为识别中,迅速地推进了生物特征识别理论研究和技术的发展。
     作为生物特征识别技术之一,步态识别旨在从运动人体的行为中,寻找和提取个体之间的变化特征,以实现自动行为识别。步态识别技术对系统分辨率要求不高,信息采集设备适应人的生活习性,具有非侵犯性以及难以隐藏等特点。国内外大量学者十分关注,积极开展深入的理论和技术研究,正逐步在智能监控、临床医学、康复治疗、运动分析、智能人工腿设计、身份识别等众多领域得到很好的应用,成为第二代生物特征识别技术的代表。
     本论文面向自动化领域人体行为识别的前沿研究方向,以运动人体的步态为研究对象,针对人体复杂多变运动行为的特点,基于模式识别、统计学习理论、信号处理等基础理论,从步态的采集、表征与识别三个方面开展运动人体行为识别研究。在建立步态识别系统的基础之上,重点研究了基于生理参数特征提取的步态识别算法、基于足底压力感知的跌倒行为识别算法以及基于支持向量机的运动人体行为识别算法,通过步态识别系统,进行了大量的实验测试,验证算法的有效性。
     主要研究成果包括以下四个方面:
     ①系统深入地研究了国内外学者在步态识别技术和运动人体行为识别技术,对取得的理论与实践成果进行了综述研究。
     ②研究了步态识别软硬件实验系统。基于不改变人的重力平衡和行走习惯、适应不同人的需要、便于穿戴,灵活性好的需求,研究开发了具有实时采集数据与信息传输等功能的步态识别软硬件实验系统。本系统由鞋垫压力感知模块、微处理器数据采集模块、步态数据传输模块以及后台步态数据处理模块组成。采用鞋垫式足底压力测量方法,可连续测量足底压力、时间等参数,实时监测和反馈信息,为算法研究提供了实验验证平台。
     ③提出了基于生理参数特征提取的步态识别算法。针对足部压力测量系统输入原始数据量大、维度高、难以应用的问题,采用压力传感器获取运动人体足底压力信息,基于步态特征研究与步态特征定义,分析足底压力信息中的潜在规律,提取运动人体步态生理参数特征,建立生理参数与步态特征之间的关系模型,实现运动人体步态的自动识别。
     ④提出了基于足底压力感知的跌倒行为识别算法。面向跌倒行为识别的实际需求,基于足底压力感知理论与识别技术,深入研究了跌倒行为压力变化特征,定义了跌倒的步态特征,抽取跌倒行为的步态特征矩阵,构建基于步态特征矩阵的二分类支持向量机模型,实现跌倒行为自动识别。并通过实验系统验证了算法的可靠性和准确性。
     ⑤提出了基于支持向量机的运动人体行为识别算法。从人体日常运动过程的原始压力数据中分析步态特征,通过定义运动行为特征,构建了特征向量矩阵,描述并区别各种运动的压力变化特征。基于多分类支持向量机和遗传算法,构建基于遗传算法的支持向量机优化模型,实现运动人体走、跑、跳等行为的自动识别。步态识别实验系统实验结果表明,本算法识别运动人体行为具有较高的可靠性和准确性。
     综上所述,本文对压力感知步态、特征提取,系统构建的方法和理论研究,所提出基于生理参数特征提取的步态识别算法、足底压力感知的跌倒行为识别算法以及基于支持向量机的运动人体行为识别算法,是运动人体行为识别新的探索。步态感知启发了我们新的思考,当人们穿上特殊的鞋子,漫步于树叶、草丛之上,能够完成自己童年时的梦想。那么,信息网络将促进生物特征识别前沿技术的快速发展,新兴的多模态发展趋势,将使我们在压力感知步态识别运动人体行为研究方向上开展更加深入的研究。
In information network era, biological feature recognition technology is rapidly developed as an emerging advancing front technology. People begin their new life and practice when they gradually realize the chang of cognition and behavior way. On the basis of information network, human inherent physiological property(fingerprint, face image, ins, etc.) and behavior characteristics(handwriting, voice, gait, etc.) advance the development of biological feature recognition theoretic study and technology according to technologies such as computing system and optics, acoustics, biosensor and biostatistics, in the recognition of person and human motion behavior.
     As one of the biological feature recognition technologies, gait recognition aims to find and extract variation between individuals from human motion behaviors to achieve automatic behavior identification. Because gait recognition technology has the characteristics of low requirement on the system resolution, data collection equipment satisfying people’s habits, non-invasive and difficult to hide, a large number of scholars aborad and at home have been deeply attracted to study on it. Gait recognition technology is gradually playing its role in intelligent monitoring, clinical, rehabilitation, movement analysis, design of intelligent artificial legs, and many other areas of identity, it has become the second-generation biometric identification technology representatives.
     This paper study on human motion recognition from three aspects: the collection, token and recognition of gait based on the fundamental theory of pattern recognition, statistic learning theory, signal processing, etc. On the basis of establishing the gait recognition system, it focus on the research of gait recognition algorithm based on physiological parameter feature extraction, fall recognition algorithm based on plantar pressure sensing and human motion recognition algorithm based on support vector machine. A mase of experiments have been done on gait recognition system to validate the validity of the algorithms.
     The main research findings include the following four areas:
     ①The gait recognition system has been studied. The hardware of the system should not change or influence an individual’s weight balance and walking habits. Also, it should be flexible to meet different individuals’needs, be convenient to wear and be capable of data gathering and transmitting in real time. This paper researchs on the insole-based plantar pressure measuring method. The sensors is located on the positions that has to be measured. Because of the closely touch between insole and the feet, the parameters such as plantar pressure and time can be determined continuously and monitored and fed back in real time. The size of insole is adjustable,thus can be used in various kinds of shoes. The design of the insole pressure sensing module, the microcomputer-based data gathering module, the gait data transmission module and the background data processing module are also studied. At the meanwhile, the software and hardware is developed to establish a prototype system.
     ②Gait is the motion gesture of human body during the motion process. The way to gain the information from the physiological parameters in motion to recognize the gait is the key of the study. The method to extract physiological parameter feature can solve the mass data and high dimensions problems of the input of plantar pressure measurement. This paper adopts pressure sensor to apperceive human motion, and gains human plantar pressure by contact data gathering. After the experiments and algorithm analysis, the eigenvalue of physiological parameter correlative to gait is defined. Then, the gait recognition algorithm based on physiological parameter feature extraction is proposed.
     ③Fall is a typical gesture of human actions. The fall of elders is a dangerous action. This paper describles all the pressure change characteristics related to fall and studies on the gait feature matrix by the pressure sensing of fall events. The plantar pressure related gait feature during falling is defined and extracted. Binary support vector machine model is established and the fall recognition algorithm based on plantar pressure sensing is proposed. The experiments proved that it has high reliability and veracity on fall detection and recognition.
     ④This paper studies on a new recognition method to apperceive human motions such as walking, running and jumpping by plantar pressure. It extracts gait feature from the initial pressure data of those motion, defines motion feature, establishs eigenvector matrix, describes and distinguishs the pressure change characteristics of motions. The optimization problem of SVM model is analyzed based on multi-classification SVM and genetic algorithm. The human motion recognition algorithm based on support vector machine is proposed. According to the validating of the experiment system, the reliability and veracity on motion recognition is proved. This method can be used to measure the amount of exercise.
     To sum up, the algorithms proposed in this paper are a new exploration in human motion recognition fields. Information network will advance the development of the biological feature recognition technology. Emerging multi-mode developing trend makes us a further reseach on human motion recognition by pressure sensing gait.
引文
[1] S.Hesse. Botulinum toxin A for the treatment of lower limb spasticity: Complex gait analysis before and after injection[J]. European Journal of Neurology, 1995, 11 (2): 69-71.
    [2] B.Abernethy, R.BurgessLimerick, C.Engstrom, etc. Temporal coordination of human gait[J]. In Motor Control and Sensory Motor Integration - Issues and Directions, 1995, 111:171-196.
    [3] T.P.Andriacchi. Gait analysis and total knee replacement[J]. In Current Concepts in Primary and Revision Total Knee Arthroplasty, 1996: 29-36.
    [4] T.Zielinska. Modelling of walking machine gait: Methods utilising hypothesis regarding the knowledge of living creature locomotion[J]. In Large Scale Systems: Theory and Applications 1995, 1995, 1: 835-840.
    [5] S.Strambi, B.Rossi, M.C.Carboncini. Kinesiological evaluation of gait disorders in paraplegics: Case study[C]. In Fourth National Congress of the Gruppo Di Studio Intersocietario Di Riabilitazione Neurologica, 1995: 139-143.
    [6] S.Hirokawa, M.Solomonow, R.Baratta, etc. Energy expenditure and fatiguability in paraplegic ambulation using reciprocating gait orthosis and electric stimulation[J]. Disability and Rehabilitation, 1996, 18 (3): 115-122.
    [7] J.Juang, C.S.Lin. Gait synthesis of a biped robot using backpropagation through time algorithm[C]. In Icnn - 1996 Ieee International Conference on Neural Networks, 1996, 1: 1710-1715.
    [8] V.Maynard, A.M.O.Bakheit, J.Oldham, etc. Intra-rater and inter-rater reliability of gait measurements with CODA mpx30 motion analysis system[J]. Gait Posture, 2003, 17 (1): 59-67.
    [9] Y.Feng, W.Grooten, P.Wretenberg, etc. Effects of arm suspension in simulated assembly line work: muscular activity and posture angles[J]. Appl Ergon, 1999, 30 (3): 247-253.
    [10] G.Fernandez, J.Grieco, M.C.Armada. Multi-variable following pseudolink control of a two-dimensional flexible manipulator[J]. Application of Multi-Variable System Techniques, 1998: 265-274.
    [11] M.Fahmy, A.R.W.Ismail, S.S.Asfour. Analysis of kinematic data: A comparative study of several techniques[J]. Advances in Occupational Ergonomics and Safety 1997, 1997: 279-282.
    [12] Y.Yamasaki, N.Nishijima, K.Minematsu, etc. Three-dimensional analysis of condylar movement during mandibular movement in children[J]. Int Congr Ser, 1995: 457-461.
    [13] P.Blelloch, C.Coe. Buffet simulation for the Kistler K-1 launch vehicle[J]. Collection of the41st Aiaa/Asme/Asce/Ahs/Asc Structures, Structural Dynamics, and Materials Conference and Exhibit, 2000: 494-502.
    [14] R.E.Meyerson. Development status of the Kistler Aerospace K-1 reusable launch vehicle[J]. Space 98, 1998: 175-181.
    [15] Anon. Vicon unveils new mocap cameras, sensors[J]. Comput Graph World, 2007, 30 (5): 4-4.
    [16] V.Sarb, V.Gherman, L.Naghiu, etc. Reserches upon the energy and working indexes of the VICON MH-90 S Twin silo harvesting combine[J]. B U Agr Med Vet Agr, 2004, 60: 157-160.
    [17]杨晓超,周越,张一等.基于增强步态能量图和Gabor特征的辨别共同向量身份识别[J].上海交通大学学报, 2008, 42 (12): 1988-1992.
    [18]杨晓超,周越,署光等.基于Gabor相位谱和流型学习的步态识别方法[J].电子学报, 2009, 37 (4): 753-757.
    [19]李政,杨衍明,袁波.步态仪中的分区域编码测量方法[J].中国生物医学工程学报, 2001, 12 (6): 557-559, 570.
    [20]王人成,黄昌华,王季军等.基于摄像机的人体运动分析系统标志点图像处理[J].清华大学学报(自然科学版), 1999, 39(2): 75-78.
    [21]王人成,黄昌华,王季军等.基于普通摄像机的人体运动信息检测系统[J].生物医学工程学杂志, 1999, 16 (4): 448-452.
    [22]王人成,朱德有,莫明军等.行走和跑步两种步态模式的实验分析[J].中国康复医学杂志, 2002, 17 (4): 233-235.
    [23] J.Aggarwal, Q.K.Cai. Human motion analysis: A review[C]. Ieee Nonrigid and Articulated Motion Workshop, 1997: 90-102.
    [24] G.Xu, Y.Hu, Z.Gao, etc. Artificial Intelligent based Human Motion Pattern Recognition and Prediction for the Surface Electromyographic Signals[C]. 2009 International Conference on Information Technology and Computer Science, 2009, (1): 289-292.
    [25] A.Bissacco, S.Soatto. Hybrid Dynamical Models of Human Motion for the Recognition of Human Gaits[J]. Int J Comput Vision, 2009, 85 (1): 101-114.
    [26] H.Yasin, S.Khan. Trained Table based Recognition & Classification (TTRC) Approach in Human Motion Reconstruction & Analysis[C]. 2008 International Conference on Emerging Technologies, 2008: 217-222.
    [27] M.Vafadar, A.Behrad. Human hand gesture recognition using motion orientation histogram for interaction of handicapped persons with computer[J]. Lect Notes Comput Sc, 2008: 378-385.
    [28] K.Schindler, L.van.Gool. Combining densely sampled form and motion for human action recognition[J]. Pattern Recogn, 2008: 122-131.
    [29] C.Ott, D.Lee, Y.Nakamura. Motion Capture based Human Motion Recognition and Imitationby Direct Marker Control[C]. 2008 8th Ieee-Ras International Conference on Humanoid Robots, 2008: 406-412.
    [30] D.M.Gavrila. The analysis of human motion and its application for visual surveillance[C]. Second Ieee Workshop on Visual Surveillance (Vs'99), 1999: 3-5.
    [31] R.Parent, K.Johnson, J.X.Chang, etc. Modeling human motion from video for use in gait analysis[J]. J Am Med Inform Assn, 1999: 1134-1134.
    [32] C.L.Huang, C.C.Lin. Model-based human body motion analysis for MPEG IV video encoder[C]. International Conference on Information Technology: Coding and Computing, 2001: 435-439.
    [33] H.Fujiyoshi, A.J.Lipton. Real-time human motion analysis by image skeletonization[C]. Fourth Ieee Workshop on Applications of Computer Vision - Wacv'98, 1998: 15-21.
    [34] H.Fujiyoshi, A.J.Lipton, T.Kanade. Real-time human motion analysis by image skeletonization[J]. Ieice T Inf Syst, 2004, (1): 113-120.
    [35] S.E.Kim, C.J.Park, R.H.Lee, etc. Analysis of 3D human motion in a computer vision-based motion capture system[C]. Korus 2003: 7th Korea-Russia International Symposium on Science and Technology, 2003: 329-334.
    [36] Y.Luo, T.D.Wu, J.N.Hwang. Object-based analysis and interpretation of human motion in sports video sequences by dynamic Bayesian networks[J]. Comput Vis Image Und, 2003, 92 (2-3): 196-216.
    [37] B.Ozer, T.Lv, W.Wolf. Human detection and motion analysis at security points[J]. P Soc Photo-Opt Ins, 2003: 118-128.
    [38] F.F.Huo, E.Hendriks, P.Paclik, etc. Markerless Human Motion Capture and Pose Recognition[C]. 2009 10th International Workshop on Image Analysis for Multimedia Interactive Services, 2009: 13-16.
    [39] H.Y.Meng, N.Pears, C.Bailey. Motion Feature Combination for Human Action Recognition in Video[J]. Comm Com Inf Sc, 2008, 21: 151-163.
    [40] L.Y.Ma, Z.J.Liu. Human Motion Recognition in Video[C]. Fifth International Conference on Fuzzy Systems and Knowledge Discovery, 2008, (4): 49-53.
    [41] T.Haga, K.Sumi, Y.Yagi. Human detection in outdoor scene using spatio-temporal motion analysis[C]. Proceedings of the 17th International Conference on Pattern Recognition, 2004, 14: 331-334.
    [42] S.Nishida. Motion-based analysis of spatial patterns by the human visual system[J]. Curr Biol, 2004, 14 (10): 830-839.
    [43] J.Rett, J.Dias. Visual based human motion analysis: Mapping gestures using a puppetmodel[C]. Progress in Artificial Intelligence, 2005: 398-409.
    [44] T.Saito, N.Suzuki, A.Hattori, etc. Motion analysis system using DSVC (dynamic spatial video camera) and 4D human modeling[C]. CARS 2005: Computer Assisted Radiology and Surgery, 2005: 1281,1376-1376.
    [45] W.Lao, L.J.Han, P.H.N.With. A matching-based approach for human motion analysis[J]. Advances in Multimedia Modeling, 2007: 405-414.
    [46] W.L.Lao, J.G.Han, P.H.N.With. Multi-module human motion analysis from a monocular video - art. no. 65060M[C]. P Soc Photo-Opt Ins, 2007.
    [47] Y.Wada, H.Yamashita, T.Nishimura, etc. On kinematics analysis of human body motion[C]. P Soc Photo-Opt Ins, 1997: 610-615.
    [48] H.Kawamoto, Y.Sankai. Function analysis method of human's motion control system[J]. Ieee Sys Man Cybern, 2000: 3877-3882.
    [49] D.T.Chen, H.Wactlar, M.Y.Chen, etc. Recognition of Aggressive Human Behavior Using Binary Local Motion Descriptors[J]. Ieee Eng Med Bio, 2008: 5238-5241.
    [50] C.S.Chan, H.H.Liu, D.Brown, etc. A Fuzzy Qualitative Approach to Human Motion Recognition[C]. Ieee Int Conf Fuzzy, 2008: 1244-1251.
    [51] A.N.Rajagopalan, R.Chellappa. Higher-order spectral analysis of human motion[C]. 2000 International Conference on Image Processing, 2000: 230-233.
    [52] J.Xiong, Z.J.Liu. Human motion recognition based on hidden Markov models[C]. Advances in Computation and Intelligence, 2007: 464-471.
    [53] T.Okawa, E.Sato, T.Yamaguchi. Information support system with case-based reasoning using motion recognition in human-centered city[C]. Proceedings of Sice Annual Conference, 2007, (1-8): 607-610.
    [54] K.Tabb, N.Davey, R.Adams, etc. Analysis of human motion using snakes and neural networks[C]. Articulated Motion and Deformable Objects, 2000: 48-57.
    [55] M.R.Dawso. Gait recognition final report[J]. Department of Computing imperia college of seiene, 2002.
    [56] G.Johansso. Visual perception of biological motion and a model for its analysis[J]. Pereeption and Psychophysies, 1973.
    [57] C.Song, T.Zheng, L.Deng, etc. Gait based detection and identification of humans[C]. ISTM/2005: 6th International Symposium on Test and Measurement, 2005: 8525-8528.
    [58] S.A.Niyogi, E.H.Adelson. Analyzing and recognition walking figures in XYT[C]. 1994: 469-474.
    [59] N.Boulgouris, D.V.Hatzinakos, K.N.Plataniotis. Gait recognition: A challenging signalprocessing technology for biometric identification[J]. Ieee Signal Proc Mag, 2005, 22 (6): 78-90.
    [60] I.P.I.Pappas, M.R.Popovic, T.Keller, etc. A reliable gait phase detection system[J]. Ieee T Neur Sys Reh, 2001, 9 (2): 113-125.
    [61] I.P.Pappas, T.I.Keller, S.Mangold, etc. A reliable gyroscope-based gait-phase detection sensor embedded in a shoe insole[J]. Ieee Sens J, 2004, 4 (2): 268-274.
    [62] M.M.Skelly, H.J.Chizeck. Real-time gait event detection for paraplegic FES walking[J]. Ieee T Neur Sys Reh, 2001, 9 (1): 59-68.
    [63] J.H.Han, W.J.Lee, T.B.Ahn, etc. Gait analysis for freezing detection in patients with movement disorder using three dimensional acceleration system[J]. P Ann Int Ieee Embs, 2003, 25: 1863-1865.
    [64] S.Ghoussayni, C.Stevens, S.Durham, etc. Assessment and validation of a simple automated method for the detection of gait events and intervals[J]. Gait Posture, 2004, 20 (3): 266-272.
    [65] M.Hansen, M.K.Haugland, A.Sinkjaer. Evaluating robustness of gait event detection based on machine learning and natural sensors[J]. Ieee T Neur Sys Reh, 2004, 12 (1): 81-88.
    [66] R.T.Lauer, B.T.Smith, D.Coiro, etc. Feasibility of gait event detection using intramuscular electromyography in the child with cerebral palsy[J]. Neuromodulation, 2004, 7 (3): 205-213.
    [67] S.W.Lee, K.Mase, K.Kogure. Detection of spatio-temporal gait parameters by using wearable motion sensors[C]. P Ann Int Ieee Embs, 2005: 6836-6839.
    [68] J.M.Jasiewicz, J.H.J.Allum, J.W.Middleton, etc. Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals[J]. Gait Posture, 2006, 24 (4): 502-509.
    [69] L.Havasi, Z.Szlavik, T.Sziranyi. Detection of gait characteristics for scene registration in video surveillance system[C]. Ieee T Image Process, 2007, 16 (2): 503-510.
    [70] A.Mostayed, M.M.G.Mazumder, S.Kim, etc. Abnormal gait detection using discrete Fourier transform[C]. Mue: 2008 International Conference on Multimedia and Ubiquitous Engineering, 2008: 36-40.
    [71] A.Mostayed, M.M.G.Mazumder, S.Kim, etc. Abnormal Gait Detection Using Discrete Wavelet Transform in Fourier Domain[J]. Ifmbe Proc, 2008, 21 (1-2): 383-386.
    [72] C.Bauckhage, J.K.Tsotsos, F.E.Bunn. Automatic detection of abnormal gait[J]. Image Vision Comput, 2009, 27 (1-2): 108-115.
    [73]王科俊,贲晛烨.基于线性插值的步态识别算法[J].华中科技大学学报(自然科学版), 2010, 38 (2): 41-44.
    [74] A.Miller. Gait event detection using a multilayer neural network[J]. Gait Posture, 2009, 29 (4):542-545.
    [75] A.Ishihara, S.M.Reed, P.J.Rajala-Schultz, etc. Use of kinetic gait analysis for detection, quantification, and differentiation of hind limb lameness and spinal ataxia in horses[J]. Javma-J Am Vet Med A, 2009, 234 (5): 644-651.
    [76] M.Hanlon, R.Anderson. Real-time gait event detection using wearable sensors[J]. Gait Posture, 2009, 30 (4): 523-527.
    [77] N.Mezghani, K.Boivin, K.Turcot, etc. Hierarchical analysis and classification of asymptomatic and knee osteoarthritis gait patterns using a wavelet representation of kinetic data and the nearest neighbor classifier[J]. J Mech Med Biol, 2008, 8 (1): 45-54.
    [78]叶波,文玉梅,何卫华.多分类器信息融合的步态识别算法[J].中国图象图形学报, 2009, 14 (8): 1627-1637.
    [79] P.S.Huang, C.J.Harris, M.S.Nixon. Canonical space representation for recognizing humans by gait and face[C]. 1998 Ieee Southwest Symposium on Image Analysis and Interpretation, 1998: 180-185.
    [80]杨晓超,周越,署光等.基于Gabor相位谱和流型学习的步态识别方法[J].电子学报, 2009, 37 (4): 753-757.
    [81] Z.Y.Liu, S.Sarkar. Simplest representation yet for gait recognition: Averaged silhouette[C]. Proceedings of the 17th International Conference on Pattern Recognition, 2004: 211-214.
    [82]彭彰,吴晓娟,杨军.基于肢体长度参数的多视角步态识别算法[J].自动化学报, 2007, 33 (2): 211-214.
    [83] N.V.Boulgouris, Z.X.Chi. Gait representation and recognition based on radon transform[C]. 2006 Ieee International Conference on Image Processing, 2006: 2665-2668.
    [84]王科俊,侯本博.步态识别综述[J].中国图象图形学报, 2007, 12 (7): 1152-1160.
    [85] T.H.W.Lam, R.S.T.Lee. A new representation for human gait recognition: Motion silhouettes image (MSI)[C]. Advances in Biometrics, 2006: 612-618.
    [86] N.Lynnerup, J.Vedel. Person identification by gait analysis and photogrammetry[J]. J Forensic Sci, 2005, 50 (1): 112-118.
    [87] R.Heliot, R.Pissard-Gibollet, B.Espiau, etc. Continuous identification of gait phase for robotics and rehabilitation using microsensors[C]. 2005 12th International Conference on Advanced Robotics, 2005: 686-691.
    [88] D.Xu, S.C.Yan, D.C.Tao, etc. Human gait recognition with matrix representation[J]. Ieee T Circ Syst Vid, 2006, 16 (7): 896-903.
    [89] S.Hong, H.Lee, I.F.Nizami, etc. A new gait representation for human identification: Mass vector[J]. C Ind Elect Appl, 2007: 669-673.
    [90] D.L.Tan, K.Q.Huang, S.Q.Yu, etc. Recognizing night walkers based on one pseudoshape representation of gait[C]. 2007 Ieee Conference on Computer Vision and Pattern Recognition, 2007, (1-8): 3843-3850, 3930.
    [91] H.Lee, S.Hong, I.F.Nizami, etc. A Noise Robust Gait Representation: Motion Energy Image[J]. Int J Control Autom, 2009, 7 (4): 638-643.
    [92] J.A.F.Balista, M.N.Soriano, C.A.Saloma. Compact time-independent pattern representation of entire human gait cycle for tracking of gait irregularities[J]. Pattern Recogn Lett, 2010, 31 (1): 20-27.
    [93] Z.Tang, J.Pauli. Automatic identification of functional kinematic bone features from MRT segmentation for gait analysis[J]. Materialwiss Werkst, 2009, 40 (10): 725-731.
    [94] G.I.Zdragkas, J.N.Avaritsiotis. Gait Analysis and Automatic Gait Event Identification Using Accelerometers[C]. 8th Ieee International Conference on Bioinformatics and Bioengineering, 2008, (1-2): 1134-1139.
    [95] R.T.Collins, R.Gross, J.B.Shi. Silhouette-based human identification from body shape and gait[C]. Fifth Ieee International Conference on Automatic Face and Gesture Recognition, 2002: 366-371.
    [96] G.Shakhnarovich, T.Darrell. On Probabilistic combination of face and gait cues for identification[C]. Fifth Ieee International Conference on Automatic Face and Gesture Recognition, 2002: 176-181.
    [97] P.J.Phillips, S.Sarkar, I.Robledo, etc. The gait identification challenge problem: Data sets and baseline algorithm[C]. 16th International Conference on Pattern Recognition, 2002, (1): 385-388.
    [98] L.Wang, W.M.Hu, T.N.Tan. A new attempt to gait-based human identification[C]. 16th International Conference on Pattern Recognition, 2002, (1): 115-118.
    [99] C.Y.Yam, M.S.Nixon, J.N.Carter. On the relationship of human walking and running: Automatic person identification by gait[C]. 16th International Conference on Pattern Recognition, 2002, (1): 287-290.
    [100] A.Kale, N.Cuntoor, B.Yegnanarayana, etc. Gait analysis for human identification[C]. Audio-and Video-Based Biometric Person Authentication, 2003: 706-714.
    [101] A.Kale, A.Sundaresan, A.N.Rajagopalan, etc. Identification of humans using gait[J]. Ieee T Image Process, 2004, 13 (9): 1163-1173.
    [102] A.Kale, A.K.RoyChowdhury, R.Chellappa. Fusion of gait and face for human identification[C]. 2004 Ieee International Conference on Acoustics, Speech, and Signal Processing, 2004, (5): 901-904.
    [103] R.T.Lauer, C.A.Laughton, M.Orlin, etc. Wavelet decomposition for the identification of EMG activity in the gait cycle[C]. Proceedings of the Ieee 29th Annual Northeast Bioengineering Conference, 2003: 142-143.
    [104] A.A.Shafie, Z.Baharum. Biped gait analysis for identification[C]. Sensors: Asiasense 2003 - Asian Conference on Sensors, 2003: 275-279.
    [105] D.Tolliver, R.T.Collins. Gait shape estimation for identification[C]. Audio-and Video-Based Biometric Person Authentication, 2003: 734-742.
    [106] L.Wang, T.Tan, H.Z.Ning, etc. Silhouette analysis-based gait recognition for human identification[J]. Ieee T Pattern Anal, 2003, 25 (12): 1505-1518.
    [107] J.McKinney, M.Campbell, S.Dobrowolski, etc. Identification of gait mutations using specific assays and gene 2 scanning.[J]. Genet Med, 2004, 6 (4): 356-356.
    [108] M.Ekinci, M.Aykut. Human identification using gait[C]. 2006 IEEE 14th Signal Processing and Communications Applications, 2006, (1-2): 257-260.
    [109] M.Ekinci. A new attempt to silhouette-based gait recognition for human identification[C]. Advances in Artificial Intelligence, 2006: 443-454.
    [110] M.Ekinci. A new approach for human identification using gait recognition[C]. Computational Science and Its Applications - Iccsa 2006, 2006: 1216-1225.
    [111] P.L.Fox, J.Jia. Identification of EPRS domains required for formation of the GAIT mRNP: Key roles of WHEP-TRS repeats[J]. Faseb J, 2006, 20 (5): 1372-1372.
    [112] T.H.W.Lam, R.S.T.Lee. Human identification by using the motion and static characteristic of gait[C]. 18th International Conference on Pattern Recognition, 2006: 996-999.
    [113] S.Hong, H.Lee, S.J.An, etc. Fusion of Multiple Gait Features for Human Identification[C]. 2008 International Conference on Control, Automation and Systems, 2008, (1-4): 1826-1830.
    [114] M.Danoudis, N.Shields, B.Bilney, etc. Identification of the spatiotemporal and observational gait characteristics of adults with frontal gait apraxia[J]. Movement Disord, 2008, 23: 266-266.
    [115] D.Ioannidis, D.Tzovaras, K.Moustakas. Gait identification using the 3d protrusion transform[C]. Ieee Image Proc, 2007: 349-352.
    [116] T.K.M.Lee, S.Ranganath, S.Sanei. Frontal view-based gait identification using largest Lyapunov exponents[C]. 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, 2006: 1421-1424.
    [117] D.Ming, Z.J.Xue, L.Meng, etc. Identification of Humans Using Infrared Gait Recognition[C]. 2009 Ieee International Conference on Virtual Environments, Human-Computer Interfaces and Measurement Systems, 2009: 319-322.
    [118] Y.Makihara, R.Sagawa, Y.Mukaigawa, etc. Adaptation to walking direction changes for gaitidentification[C]. 18th International Conference on Pattern Recognition, 2006, (1-2): 96-99.
    [119] C.Toulotte, A.Thevenon, E.Watelain, etc. Identification of healthy elderly fallers and non-fallers by gait analysis under dual-task conditions[J]. Clin Rehabil, 2006, 20 (3): 269-276.
    [120] R.Chellappa, A.K.Roy-Chowdhury, A.Kale. Human identification using gait and face[C]. Proc Cvpr Ieee, 2007: 3909-3910, 3930.
    [121] S.Chen, W.Huang, T.Ma, etc. Towards feature fusion for human identification by gait[C]. Proceedings of the Fourth International Conference on Image and Graphics, 2007: 678-682, 1041.
    [122] D.Gafurov, E.Snekkenes, P.Bours. Gait authentication and identification using wearable accelerometer sensor[C]. 2007 IEEE Workshop on Automatic Identification Advanced Technologies, 2007: 220-225.
    [123] M.H.Cheng, M.F.Ho, C.L.Huang. Gait analysis for human identification through manifold learning and HMM[C]. Ieee Int Symp Circ S, 2007: 969-972.
    [124] J.W.Lu, E.H.Zhang. Gait recognition for human identification based on ICA and fuzzy SVM through multiple views fusion[J]. Pattern Recogn Lett, 2007, 28 (16): 2401-2411.
    [125] K.Sugiura, Y.Makihara, Y.Yagi. Gait identification based on multi-view observations using omnidirectional camera[J]. Lect Notes Comput Sc, 2007: 452-461.
    [126] N.Pandey, W.Abdulla, Z.Salcic. Gait-based person identification using multi-view sub-vector quantisation technique[C]. 2007 9th International Symposium on Signal Processing and Its Applications, 2007, (1-3): 109-112.
    [127] Y.Pratheepan, J.V.Condell, G.Prasad. Individual Identification Using Gait Sequences under Different Covariate Factors[J]. Lect Notes Comput Sc, 2009: 84-93.
    [128] X.Zhou, B.Bhanu. Feature fusion of side face and gait for video-based human identification[J]. Pattern Recogn, 2008, 41 (3): 778-795.
    [129] S.Chiou, C.Pan, A.Bhattacharya. Kinematics and kinetics of gait on stilts: Identification of risk factors associated with construction stilt use[J]. Ergonomics, 2008, 51 (12): 1814-1829.
    [130] H.Yu, P.Nava, R.Brower, etc. Identification of human gait using fuzzy interential reasoning[C]. 2007 Ieee 10th International Conference on Rehabilitation Robotics, 2007, (1-2): 656-660.
    [131] J.Xiao, J.Su, B.Zheng, etc. Research on gait identification system in intelligent bionic leg on different terrain[C]. Proceedings of the 2007 Chinese Control and Decision Conference, 2007: 383-386.
    [132] K.Bashir, T.Xiang, S.Gong. G. Feature selection on gait energy image for human identification[C]. Int Conf Acoust Spee, 2008: 985-988.
    [133] T.Ding. A robust identification approach to gait recognition[C]. Proc Cvpr Ieee, 2008:2277-2284.
    [134] M.Danoudis, N.Shields, B.Bilney, etc. Identification of the spatiotemporal and observational gait characteristics of adults with frontal gait apraxia[J]. Movement Disord, 2008, 23: 266-266.
    [135] R.Michnik, J.Jurkojc, J.Pauk. Identification of muscles pressures during gait of children with foot disabilities[J]. Mechanika, 2009, (6): 48-51.
    [136] S.Dutta, A.Chatterjee, S.Munshi. An automated hierarchical gait pattern identification tool employing cross-correlation-based feature extraction and recurrent neural network based classification[J]. Expert Syst, 2009, 26 (2): 202-217.
    [137]路远.基于模糊支持向量机的步态识别[J].计算机工程, 2009, 35 (21): 189-191.
    [138] J.Ni, L.B.Liang. A Gait Recognition Method Based on Features Fusion and SVM[C]. Proceedings of the 2009 Second Pacific-Asia Conference on Web Mining and Web-Based Application, 2009: 43-46.
    [139]韩鸿哲,王志良,刘冀伟.基于线性判别分析和支持向量机的步态识别[J].模式识别与人工智能, 2005, 18 (2): 160-164.
    [140] D.Ming, Y. R.Bai, C.Zhang, etc. Novel Gait Recognition Technique Based on SVM Fusion of PCA-Processed Contour Projection and Skeleton Model Features[C]. 2009 Ieee International Conference on Computational Intelligence for Measurment Systems and Applications, 2009: 1-4.
    [141] Y.Ma, B.Li, Y.Tang, etc. Automatic gait recognition based on SVM[C]. Proceedings of the International Conference Information Computing and Automation, 2008, (1-3): 496-499.
    [142] B.Ye, Y.M.Wen. Gait recognition based on DWT and SVM[J]. Int C Wavel Anal Pat, 2007: 1382-1387.
    [143] J.N.Wu, J.Wang. PCA-Based SVM for automatic recognition of gait patterns[J]. J Appl Biomech, 2008, 24 (1): 83-87.
    [144] B.Ye, Y.M.Wen. Gait recognition based on KPCA and SVM[C]. Progress in Intelligence Computation and Applications, 2007: 386-391.
    [145] J.N.Wu, Y.Fang, J.Wang. KPCA-based SVM for automated gait patterns recognition[J]. Dynam Cont Dis Ser B, 2006: 3164-3168.
    [146]文玉梅,叶波.基于小波变换和支持向量机的步态识别算法[J].中国图象图形学报, 2007, 12 (6): 1055-1063.
    [147] M.Holland. Super Searchers on Madison Avenue: Top advertising and marketing professionals share their Online research strategies[J]. Online Inform Rev, 2004, 28 (1): 85-86.
    [148] M.C.Holland, C.R.Stanley. Comparison of (Al,Ga)As(110) grown by molecular beam epitaxy with As-2 and As-4[J]. J Vac Sci Technol B, 1996, 14 (3): 2305-2308.
    [149] L.Yang, C.M.Chew, T.Zielinska, etc. Reliable and adjustable biped gait generation for slopes using a GA optimized Fourier series formulation[J]. Cism Cour L, 2006, (487): 187-194.
    [150] Z.Tang, C.J.Zhou, Z.Q.Sun. Humanoid walking gait optimization using GA-based neural network[J]. Advances in Natural Computation, 2005: 252-261.
    [151] D.K.Pratihar, K.Deb, A.Ghosh. Optimal path and gait generations simultaneously of a six-legged robot using a GA-fuzzy approach[J]. Robot Auton Syst, 2002, 41 (1): 1-20.
    [152] M.Ekinci, E.Gedikli. A novel approach on silhouette based human motion analysis for gait recognition[C]. Advances in Visual Computing, Proceedings, 2005: 219-226.
    [153] N.Jin, F.Mokhtarian. Human motion recognition based on statistical shape analysis[C]. AVSS 2005: Advanced Video and Signal Based Surveillance, 2005: 4-9.
    [154] D.Ormoneit, M.J.Black, T.Hastie, etc. Representing cyclic human motion using functional analysis[J]. Image Vision Comput, 2005, 23 (14): 1264-1276.
    [155] H.Su, F.G.Huang. Human gait recognition based on motion analysis[C]. Proceedings of 2005 International Conference on Machine Learning and Cybernetics, 2005: 4464-4468.
    [156] T.Tsuruga, S.Ino, T.Ifukube, etc. A basic study for a robotic transfer aid system based on human motion analysis[J]. Adv Robotics, 2000, 14 (7): 579-595.
    [157] Y.Weiss, E.H.Adelson. Adventures with gelatinous ellipses - constraints on models of human motion analysis[J]. Perception, 2000, 29 (5): 543-566.
    [158] S.Yonemoto, D.Arita, R.Taniguchi. Real-time human motion analysis and IK-based human figure control[C]. Workshop on Human Motion, 2000: 149-154,167.
    [159]张凯华,王兰美,李安国.基于LabVIEW的鞋垫式足底压力测试系统的设计与实现[J].传感器世界, 2009, 31 (3): 31-33 .
    [160] B.Dariush, H.Hemami, M.Parnianpour. Multi-modal analysis of human motion from external measurements[J]. J Dyn Syst-T Asme, 2001, 123 (2): 272-278.
    [161]罗炯.足底压力分布测量技术的应用特点[J].中国组织工程研究与临床康复, 2007, 11 (9): 1734-1737.
    [162] K.Kojima, T.Otobe, M.Hironaga, etc. Human motion analysis using the rhythm - An estimate method of dance motion with multivariate autoregressive model[C]. Robot and Human Communication, Proceedings, 2001: 194-199.
    [163] H.Lanshammar. Measurement and analysis of human motion - An Uppsala perspective[C]. Medicon 2001: Proceedings of the International Federation for Medical & Biological Engineering, 2001: 9-12.
    [164] V.Medved. Teaching instrumentation and methodology in human motion analysis[C]. P Ann Int Ieee Embs, 2001, 23: 4028-4029, 4132.
    [165] B.Bhanu, J.Han. Kinematic-based human motion analysis in infrared sequences[C]. Sixth Ieee Workshop on Applications of Computer Vision, 2002: 208-212, 336.
    [166] E.Calais, L.Legrand, Y.Voisin, etc. Contribution to a marker-free system for human motion analysis[J]. J Electron Imaging, 2002, 11 (3): 381-392.
    [167] S.L.Dockstader, M.J.Berg, A.M.Tekalp. Perpressure analysis of a kinematic human motion model[C]. Ieee International Conference on Multimedia and Expo, Proceedings, 2002, (1-2): 885-888, 1549.
    [168] S.L.Dockstader, K.A.Bergkessel, A.M.Tekalp. Feature extraction for the analysis of gait and human motion[J]. Int C Patt Recog, 2002: 5-8.
    [169] J.P.Luck, C.Debrunner, W.Hoff, etc. Development and analysis of a real-time human motion tracking system[C]. Sixth Ieee Workshop on Applications of Computer Vision, Proceedings, 2002: 196-202.
    [170] R.Hoshino, D.Arita, S.Yonemoto, etc. Real-time human motion analysis based on analysis of silhouette contour and color blob[C]. Articulated Motion and Deformable Objects, Proceedings, 2002: 92-103.
    [171] R.Mirchev, D.Errabelli, D.E.Golan. Analysis of motion of individual glycophorin c (GPC) molecules on intact human red blood cells (RBCs)[J]. Biophys J, 2002, 82 (1): 552-552.
    [172] H.Mori, J.Hoshino. Independent component analysis and synthesis of human motion[C]. 2002 Ieee International Conference on Acoustics, Speech, and Signal Processing, 2002: 3564-3567, 4194.
    [173] P.M.Pattany, I.H.Khamis, B.C.Bowen, etc. Effects of Physiologic human brain motion on proton spectroscopy: Quantitative analysis and correction with cardiac gating[J]. Am J Neuroradiol, 2002, 23 (2): 225-230.
    [174] J.Pers, M.Bon, S.Kovacic, etc. Observation and analysis of large-scale human motion[J]. Hum Movement Sci, 2002, 21 (2): 295-311.
    [175] N.F.Troje. Decomposing biological motion: A framework for analysis and synthesis of human gait patterns[J]. J Vision, 2002, 2 (5): 371-387.
    [176]洪水淙.外翻病理足及其手术方案的生物力学探讨[J].中国生物力学医学工程学报, 1988, 7 (2):86-92.
    [177]王志彬,王小同,师宜键等.足弓垫的生力学效应[J].中国运动学杂志, 1989, 8 (4):235-236.
    [178]刘金祥,王军,黄耀添.先天性马蹄内翻足术后远期足底压应力分析[J].中华小儿外科杂志, 1996, 17 (2):112.
    [179] R.Pilgram, K. D.Fritscher, R.Schubert. Modeling of the geometric variation and analysis of theright atrium and right ventricle motion of the human heart using PCA[C]. Cars 2004: Computer Assisted Radiology and Surgery, Proceedings, 2004: 1108-1113, 1417.
    [180] D.W.Van Lopik, M.Acar. A computational model of the human head and neck system for the analysis of whiplash motion[J]. Int J Crashworthines, 2004, 9 (5): 465-473.
    [181] S.R.Simon. Quantification of human motion: gait analysis - benefits and limitations to its application to clinical problems[J]. J Biomech, 2004, 37 (12): 1869-1880.
    [182]王兰美,王建.鞋垫式足底压力测量系统中压电式力传感器的设计[J].山东理工大学学报(自然科学版), 2007, 21 (5): 24-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700