用户名: 密码: 验证码:
复杂工况下铁路货车篷布受力综合试验与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
货车篷布是铁路货物运输的重要工具之一,在我国铁路运输中占有重要的地位。随着铁路客货列车运行速度的进一步提高,传统的篷布苫盖方式和篷布类型已经不能满足铁路提速的要求,为适应铁路客货大提速的需要,新型篷布、篷布绳索和篷布绳网大批量投入实际运营,新型材料的采用及其结构的改变,使其受力情况发生变化,需要提出新型篷布、篷布绳索和篷布绳网标准和技术条件。目前我国铁路篷布、篷布绳索和篷布绳网标准和技术条件主要依据国外相关标准和现场经验制定,迄今为止,国内外相关学者从未对复杂工况下铁路货车篷布受力情况进行过系统研究和综合试验。面临我国铁路货运的快速发展,亟待对复杂工况下铁路货车篷布、篷布绳索和绳网的受力情况进行全面分析和评估,为制定符合我国铁路运输实际的篷布、篷布绳索和篷布绳网技术指标和安全运行条件提供依据。
     本文通过实车试验和数值模拟计算相结合的方法,首次对复杂工况下铁路货车篷布、篷布绳索和绳网受力进行综合研究。主要研究工作如下:
     1、实车试验研究
     (1)开发了一套货车篷布、篷布绳索和篷布绳网气动力实车测试系统,实现了复杂工况下铁路货车篷布受力的实时测量;通过实车试验得到了货车篷布绳索、绳网在复杂工况下(包括通过大风地区、明线运行和交会、通过隧道和隧道内交会)的气动拉力和篷布应力,为制定篷布、篷布绳索和篷布绳网技术指标提供了科学依据;
     (2)得到货物装载方案、苫盖篷布类型、列车运行速度、横风风速、隧道断面、隧道长度及挡风设施对篷布、篷布绳索和篷布绳网所受气动力的影响规律。
     2、流场数值模拟研究
     (1)首次采用零厚度壁面模拟货车篷布,建立了各种复杂工况下篷布内外空间三维流场计算模型;得到货车在不同运行工况下篷布受到的气动升力,为进一步开展篷布强度计算提供依据;
     (2)得到了货车在大风地区运行时,货车运行速度、横风风速、货物装载高度、货物装载形状、货物沉降以及挡风设施对篷布气动力的影响规律;得到了货车通过隧道及隧道内交会时,货车运行速度、交会客车速度以及隧道断面面积对篷布气动力的影响规律;得到了货车明线运行及与客车明线交会时,货车运行速度以及交会车速度对篷布气动力的影响规律。
     3、篷布结构强度研究
     (1)建立了空气动力效应影响下的篷布结构强度分析模型,推导出索膜结构强度分析的索、膜非线性有限元求解方程。采用三角形等参膜单元模拟篷布,采用空间两节点索单元模拟篷布绳索,建立了索膜结构载荷分析模型;
     (2)采用基于计算流体动力学(CFD)和计算结构动力学(CSD)的准静态耦合方法对货车篷布强度进行了详细的受力分析。首先通过流场数值模拟技术得到复杂工况下货车篷布表面压力分布;其次通过所建立的篷布索膜结构强度计算模型,以篷布表面压力分布为加载载荷,运用非线性有限元分析方法对不同运行工况下的篷布气动载荷强度进行数值模拟计算;得到了泊松比、篷布绳索预张力、横风风速、货车速度以及交会客车速度对篷布强度的影响规律;
     (3)采用索膜结构分析理论对不同运行工况下的篷布强度进行校核,当货车160km/h明线运行和通过隧道、与动车组250km/h在明线和隧道内交会时,无绳网篷布所受最大主应力小于篷布许用应力,满足篷布安全运行要求;货车120km/h速度在大风地区运行,横风风速小于41.4m/s时,采用双层焊接结构的无网篷布所受最大主应力小于篷布许用应力,满足篷布安全运行要求;货车120km/h速度在大风地区运行,横风风速小于54m/s时,采用双层焊接结构的有防风网篷布所受最大主应力小于篷布许用应力,满足篷布安全运行要求。
Tarpaulin of the freight car is an important tool for railway freight transportation, which plays an important role in Chinese railway transport. As the train speed rise, the traditional cover ways and the tarpaulin types can not meet the requirements of the railway development. In order to adapt the needs of the passenger and freight rail vehicle acceleration, new type of tarpaulin, tarpaulin rope and net have been put into actual operation. Because of the adoption of new materials, the structural and force of the tarpaulin, tarpaulin ropes have been changed. New standards and technical conditions of the tarpaulin and tarpaulin rope should been put forward.
     The standards and technical conditions of the tarpaulin and tarpaulin rope in Chinese railway had been set primarily based on the international standards and field experience at present. So far, domestic and foreign scholars have never carried out the systematic research and comprehensive test on the tarpaulin and tarpaulin rope when they had been used under the complex transport condition. With the development of the railway transportation in China, it is urgent to carry out a comprehensive analysis and assessment on the force of the tarpaulin and tarpaulin rope when the freight vehicle runs in all kinds of the worst working conditions. It should provide scientific basis for setting reasonable technical standards on the tarpaulin and tarpaulin rope of the freight vehicle in China.
     In this paper, the author have carried out a comprehensive study on the force of the tarpaulin and tarpaulin rope used the real vehicle test and numerical simulation method, when the tarpaulin and tarpaulin rope are used in different operating conditions, different loading conditions and different cover ways. The main contents and contribution of the dissertation are as follows:
     1. Real train test study
     (1) A real train testing system, which can test the aerodynamic force of the tarpaulin and tarpaulin rope, is developed. The author has carried out a real train test on aerodynamics force of the tarpaulin and tarpaulin rope for the first time at home and abroad. The maximum pull force of the tarpaulin rope and net and the maximum tarpaulin stress have been gained by real train test, when the freight vehicle covered with the tarpaulin run through the wind areas and the tunnel, pass by the other passenger vehicle in open air and in tunnel. It should provide scientific basis for setting reasonable technical standards on the tarpaulin and tarpaulin rope.
     (2) An effect law of the pull force of tarpaulin rope and the stress of the tarpaulin were gained, which caused by the scheme of the cargo loading, the type of the tarpaulin (D type tarp and X type tarp), the train speed, the speed of the side wind, the tunnel section, the tunnel length and the wind-break facilities.
     2. CFD numerical simulation
     (1) The complex three-dimensional flow field model around the tarpaulin were built when the fright vehicle runs through the wind area, runs and passes by the other passenger vehicle in the open air, runs through the tunnel and passes by the other passenger vehicle in tunnel. The zero-thickness wall was used to simulate the tarpaulin in those models.The aerodynamic lift forces were gained by CFD numerical simulation when the freight vehicle coved with tarpaulin operated in different conditions, such as wind area, passing by other passenger vehicle and through the tunnel et al. These lift force data would be used when the author studied the tarpaulin strength.
     (2) When the freight vehicle covered with tarpaulin run through the wind area, the effect laws of the tarpaulin aerodynamics force were gained which caused by the train speed, the speed of the side wind, the height of the cargo loading and the figure of the cargo loading, the sedimentation of the cargo and the wind-break facilities. When the freight vehicle covered with the tarpaulin run and passed by other passenger vehicle in the open air, the effect laws of the tarpaulin aerodynamics force were gained which caused by the train speed, the speed of passenger vehicle and the tunnel section. When the freight vehicle covered with the tarpaulin run and passed by other passenger vehicle in the tunnel, the effect laws of the tarpaulin aerodynamics force were gained which caused by the train speed and the speed of passenger vehicle.
     3 Tarpaulin structural strength study
     (1) A tarpaulin structural strength model influenced by the aerodynamic force was established. At the same time, the FEM solving equation of the cable and the membrane was derived when the cable and membrane structure strength analysis was studied. In the model, the triangle isoperimetric membrane unit was used to simulate the tarpaulin and the space two nodes cable element was adopted to simulate the tarpaulin rope.
     (2) The quasi static coupling method based on the CFD and CSD were used to study the tarpaulin structural strength. Firstly, the surface pressure distributions of the tarpaulin when freight vehicle operated in different conditions were gained by CFD numerical simulation. Secondly the numerical simulation on the tarpaulin structural strength caused by aerodynamic force were conducted when the freight vehicle covered with tarpaulin operated in different conditons.When the numerical simulation were done, the tarpaulin structural strength model influenced by the aerodynamic force was used and the tarpaulin surface pressure distribution were loaded on the model. Thirdly, the effect laws of the tarpaulin stress were gained which caused by the speed of passenger vehicle and the train speed.
     (3) The theory of the cable and membrane structure was used to check the tarpaulin strength under different operating conditions. When the freight vehicle run in the open air and through the tunnel with the speed of 160km/h, the maximum main stress of the tarpaulin without the cord is less than the allowable stress of the tarpaulin. When the freight vehicle speed was 160km/h and passed by the CRH2 EMU with the speed of 250km/h in the open air and in the tunnel, the maximum main stress of the tarpaulin without the cord is less than the allowable stress of the tarpaulin, which can meet the requirement for safety operation. When the freight vehicle speed is 120km/h and the side-wind speed is less than 41.4m/s, the tarpaulin stress used the doubled-welded without the cord is less than the allowable stress of the tarpaulin, which can meet the requirement for safety operation. When the freight vehicle speed is 120km/h and the side-wind speed is less than 54m/s,the tarpaulin stress used the doubled-welded with the wind-break cord is less than the allowable stress of the tarpaulin, which can meet the requirement for safety operation.
     (4) The effect laws of the maximum main stress and the maximum displacement of the top of the tarpaulin were gained which caused by the Poisson's ratio and the pre-tension force of the cord through the analysis method of cable and membrane.
引文
[1]成诞人.涤纶在铁路机车车辆上的应用.2004年涤纶产业链技术研讨会论文集.桂林.2004,175-177
    [2]傅勤超,李声远.关于修订铁路货车篷布标准的几点看法.铁道货运,1998,(1):49-51
    [3]谭晓卫.货车篷布途中脱落的原因和防范.铁道货运,2003,(3):18-19
    [4]聂建忠,奇平.对改进货车篷布规格和加固方法的探讨.铁道货运,2003,(5):12-13
    [5]黄胜利.浅谈列车篷布脱落问题.铁道货运,1998,(4):35-36
    [6]杜浙泉.篷布绳危害列车运行安全的实例及防范.铁道运输与经济,1992,(1):10
    [7]沈阳铁路局货运处.加强货车篷布管理确保运输安全.铁道货运,2007,(2):45-47
    [8]刘堂红,田红旗.列车交会篷布气动力分析.交通运输工程学报,2008,8(2):4-8
    [9]宋顺红.货车篷布运用管理若干问题的研究.上海铁道科技,2005,(5):13-15
    [10]刘堂红,田红旗,梁习锋.“长白山”高速列车与货车交会试验研究.中国铁道科学,2006,27(3):56-61.
    [11]傅勤超.铁路货车篷布的生产与更新.铁道货运,1997,(1):19-20
    [12]轨道交通安全教育部重点实验室.货车篷布、篷布绳索和篷布绳网综合试验研究总报告.长沙:中南大学,2009
    [13]铁道部运输局.关于做好货车提速篷布管理工作的通知(铁运(2008)60号).北京:中华人民共和国铁道部.2008
    [14]宋顺红.铁路货车篷布运用管理的若干问题.铁道货运,2005,(10):27-30
    [15]刘绍松.三防铁路篷布的研制.中国铁道科学,1990,11(1):104-115
    [16]刘呈坤,马建伟.浅论篷盖布的结构与性能要求.化纤与纺织技术,2005,(1):38-40.
    [17]Minoru Suzuki, Katsuji Tanemoto, Tatsuo Maeda. Aerodynamics characteristics of train/vehicles under cross winds. Journal of Wind Engineering and Industrial Aerodynamics,2003, (91):209-218
    [18]Toshishige FUJII, Tatsuo MAEDA, Hiroaki ISHIDA etal. Wind-induced accidents of train/vehicle and their measures in Japan. QR of RTR1,1999,40 (1):50-55
    [19]种田胜二,铃木实,前田达夫.横风に对する车辆の空气力学的特性风洞试 验.日本铁道综研报告,1999,13(12):47-52
    [21]Khier. M. Breuer. F. Flow structure around trains under side wind conditions: a numerical study. Computers&Fluids,2000, (29):179-195
    [22]T. W. Chiu. Prediction of the aerodynamics loads on a railway train in across-wind at a large yaw angels using an integrated two-and-three dimensional source/vortex panel method. Journal of Wind Engineering and Industrial Aerodynamics,1995(57):19-39
    [23]Kronke, H. Sockel. Model test about cross wind effects on containers and wagons in a atmospheric boundary layers. Journal of Wind Engineering and Industrial Aerodynamics,1994, (52):109-119
    [24]J. Bettle, A. G. L. Holloway, J. E. S. Venart. A computational study of the aerodynamics forces acting on a tractor-trailer vehicle on a bridge in cross-wind. Journal of Wind Engineering and Industrial Aerodynamics,2003, (91): 573-592
    [25]C. J. Baker, N. D. Humphreys. Assessment of the adequacy of various wind tunnel techniques to obtain aerodynamic data for ground vehicles in cross winds. Journal of Wind Engineering and Industrial Aerodynamics,1996, (60):49-68
    [26]C. J. Baker, J. Jones, F. Lopez-Calleja, J. Munday. Measurements of the cross wind forces on trains. Journal of Wind Engineering and Industrial Aerodynamics,2004, (92):547-563
    [27]S. Holmes, M. Schroeder, E. Toma. High-speed passenger and intercity train aerodynamic computer modeling. Proceedings of the 2000 International Mechanical Engineering Congress &Exposition, Florida, Orlando.2000
    [28]P. Sabapathy, J. N'Kaoua. Safety of slipsteam effects produced by trains:pilot CFD analysis of the effect of crosswinds on train slipstreams. Research programme engineering of Rail Safety&Standards Board, UK.2005
    [29]王厚雄,林荣生.列车的横风倾覆力矩特性.空气动力学学报,1983,(3):72-77
    [30]王厚雄,尹永顺,高注.车顶外形对车辆气动横向稳定性等气动特性的影响.空气动力学学报,1993,11(1):98-101
    [31]林荣生,胡竞嵘,王厚雄.用风洞实验测定车辆的横风气动特性.铁道学报,1984,(1):104-108
    [32]轨道交通安全教育部重点实验室.双层集装箱列车空气动力学实车试验研究 报告.长沙:中南大学,2003
    [33]轨道交通安全教育部重点实验室.篷布、篷布绳网和篷布绳索试验研究报告.长沙:中南大学,2006
    [34]轨道交通安全教育部重点实验室.胶济线提速250km/h列车交会综合试验研究报告. 长沙:中南大学,2006
    [35]轨道交通安全教育部重点实验室.遂渝线隧道空气动力学实车试验研究报告.长沙:中南大学,2005
    [36]轨道交通安全教育部重点实验室.合武铁路、石太客专隧道内气动效应试验研究报告.长沙:中南大学,2009
    [37]轨道交通安全教育部重点实验室.京秦交会试验研究报告.长沙:中南大学,2005
    [38]周丹,田红旗,杨明智等.强侧风作用下不同类型铁路货车在青藏线路堤上运行时的气动性能比较.铁道学报,2007,29(5):32-36
    [39]梁习锋,胡哲龙,刘堂红.集装箱专用平车气动性能分析与比较.中南大学学报(自然科学版),2008,39(4):781-786
    [40]何华,田红旗,熊小慧等.横风作用下敞车的气动性能研究.中国铁道科学,2006,27(3):73-78
    [41]李燕飞,梁习锋,刘堂红.环境风对路堤上快运集装箱平车气动性能影响.铁道科学与工程学报,2007,4(5):78-82
    [42]李燕飞,梁习锋.双层集装箱车辆和棚车气动性能的比较.中南大学学报(自然科学版),2009,40(1):169-174
    [43]李志伟,梁习锋,周丹.快速集装箱平车在明线和隧道内会车时的气动性能.中南大学学报(自然科学版),2008,39(5):1029-1034
    [44]李燕飞.兰新线电气化改造工程大风区段行车安全研究:[硕士学位论文].长沙:中南大学,2007
    [45]高广军,田红旗,张健.横风对双层集装箱平车运行稳定性的影响.交通运输工程学报,2004,4(2):45-48.
    [46]田红旗.列车空气动力学.北京:中国铁道出版社,2007
    [47]朱幼君,梁习锋,张键.双层集装箱列车与客运列车交会空气压力波数值模拟计算.电力机车与城轨车辆,2004,27(4):24-26
    [48]杨明智,袁先旭,周丹等.强横风下青藏线棚车气动性能研究.铁道科学与工程学报,2008,5(2):75-78
    [49]熊小慧.侧风作用下青藏铁路列车横断面气动外形优化研究:[硕士学位论文].长沙:中南大学,2004
    [50]周丹,张健.横风对双层集装箱平车气动特性的影响.铁道机车车辆,2004, 24(3):17-19.
    [51]高广军.强侧风作用下列车运行安全性研究:[博士学位论文].长沙:中南大学,2008
    [52]田红旗,苗秀娟,高广军.强横风环境下棚车侧壁外形气动性能.交通运输工程学报,2006,6(3):5-9
    [53]葛盛昌,尹永顺.新疆铁路风区列车安全运行标准现场试验研究.铁道技术监督,2006,39(4):9-11
    [54]苏建华.空间索寞结构的力密度法静力分析研究:[博士学位论文].广州:华南理工大学,2005
    [55]齐藤嘉仁(著),唐泽靖子(译).膜结构的现状与展望.建筑学报,2001,(6):62-63.
    [56]赵果,张萍.膜结构及其风振控制研究综述.山西建筑,2006,32(13):37-38
    [57]S. Lukasiewicz, P. G. Glockner. Lateral stability of lofty air-supported spherical membranes. Int. J. Non-linear Mechanics,1983,18 (6):491-499
    [58]S. Lukasiewicz, P. G. Glockner. Ponding instability of air-supported spheriacal membranes with initial imperfecions. Int. J. Non-linear Mechanics,1983,18 (1): 1-9
    [59]A. K. Dacko, P. G. Glockner. Behaviour of spherical pneumatics subjected to axisymmetric ring loads. Int. J. Non-linear Mechanics,1989,24 (4):309-325
    [60]Leonard. John William. Tension structure. Printed and Bound by RR Donnelley&Sons Company,1988
    [61]H. J. Schek. The force density method for form-finding and computation of general networks. Comput. Meths. Appl. Mech. Engrg,1974, (3):115-134
    [62]张月月.基于Ansys的薄膜结构找形和载荷分析:[硕士学位论文].西安:西安建筑科技大学,2009
    [63]L. Grundig, J. Bahndrof. The design of wide-span roof structure using microcomputers. Computer and Structures,1988, (30):495-501
    [64]A. S. Day. An introduction to dynamic relaxation. The Engineer,1965 (29): 218-221
    [65]M. R. Bames. Form-finding and analysis of prestressed nets and membranes. Computers and Structures,1998,30 (3):149-166.
    [66]W. J. Lewis, M. S. Jones. Dynamic relaxation analysis of the nonlinear static response of pre-stressed cable roofs. Computers&Structure,1984; 18(6):989-997.
    [67]李中立,牛多宝,樊原子.张拉膜结构的找形分析.石家庄铁道学院学报,2000,13(2):39-43
    [68]张华,单建.预应力索寞结构的D.R法找形分析.工程力学,2002,19(2):41-44
    [69]李重阳.动力松弛法在索寞结构分析中的应用研究:[硕士学位论文].广州:华南理工大学,2003
    [70]陈树辉,林文静,徐光耀等.索网结构精力分析的动态松弛法.应用力学学报,2002,19(2):34-38
    [71]林文静,陈树辉.索膜结构的静力分析,中山大学学报(自然科学版),2006,45(2):4-8
    [72]邵小方,吴健生.薄膜结构的找形和载荷分析,天津大学学报,199528(2):201-207
    [73]叶小兵.用曲面膜单元建立的膜结构静力动力分析理论,计算机辅助设计系统及模型实验研究:[博士学位论文].天津:天津大学,1998
    [74]M. Fujikake, O. Kojima, S. Fukushima. Analysis of fabric tension structures. Computers& Structures,1989,32 (3/4):537-547
    [75]B. Tabarrok, Z. Qin. Nonlinear analysis of tension structures. Computers&Structures, 1992,45 (5/6):973-984
    [76]J. Bjorn, D. Esping. Analytical derivatives of structural matrices for an eight node isoparametric membrane element with respect to a set of design variables. Computers and Structures,1985,21 (3):387-394
    [77]P. D. Gosling, W. J. Lewis. Optimal structural membranes-Ⅰ formulation of a curved quadrilateral element for surface definition. Computers & Structures,1996,61 (5):871-883
    [78]P. D. Gosling, W. J. Lewis. Optimal structural membranes-Ⅱ form-finding of pre-stressed membranes using a curved quadrilateral finite element for surface definition. Computers & Structures,1996,61 (5):885-895
    [79]顾伯洪.机织物拉伸性能有限元模拟计算方法及应用.纺织学报,1998,19(2):79-81
    [80]Grundig. L. Minimal surfaces for finding forms of structural membranes. Computers&Structures,1988,30 (3):679-683
    [81]叶小兵,袁明武.膜结构的荷载分析.空间结构,2000,6(1):9-23.
    [82]向阳,沈士钊.薄膜结构的静力性能分析.空间结构,1998,4(1):18-24
    [83]江锡虎,谢步瀛,陈慧进.充气膜结构非线性分析的Ansy实现.结构工程师,2006,22(1):38-42
    [84]叶小兵,李中立.用曲面有限元建立的膜结构分析理论,建筑结构学报.1998,19(5):17-21
    [85]聂世华,钱若军,王人鹏.膜结构的找形分析和裁剪分析评述,空间结构.1999,5(3):12-18
    [86]P. Contri, Schrefler. A geometrically nonlinear finite element analysis of wrinkled membrane surfaces by a no-compression material model. Comm. Appl. Numer. Meth. 1988,4:5-15
    [87]张华,周星德,单建.薄膜结构的几何非线性分析.应用力学学报,2004,21(2):106-109
    [88]D. J. Steigmann, A. C. Pipkin. Wrinkling of pressurized membranes. J. of Applied Mechanics,1989, (56):624-628
    [89]H. C. Chiu, R. C. Benson. Mechanical and thermal wrinkling of polymer membranes. J. of. Applied Mechanics.1994, (16):67-70
    [90]王昌洪.气承式膜结构的静力、动力分析:[硕士学位论文].西安:西安交通大学,1990
    [91]王吉民.薄膜结构的风振动响应分析和风洞试验研究:[博士学位论文].杭州:浙江大学,2001
    [92]向阳.薄膜结构的初始形态设计、风振响应分析及风洞室实验研究:[博士学位论文].哈尔滨:哈尔滨建筑大学,1998
    [93]王吉文,孙炳楠,楼文娟.膜结构风载荷特性和风振响应特性的风洞试验研究.空间结构,2001,7(3):18-25
    [94]杨庆山,孙学东.水平风载荷与竖向风载荷的特性分析比较.哈尔滨建筑大学学报,1997,30(6):43-50
    [95]向阳,沈世钊,赵臣.张拉式薄膜结构的弹性模型风洞试验研究.空间结构,1998.4(3):31-36
    [96]向阳,沈世钊,李君.薄膜结构的非线性风振响应分析.建筑结构学报,1999,20(6):38-46
    [97]武岳,向阳,沈世钊.威海体育场挑蓬索膜结构风洞试验研究.建筑结构,2001,31(6):66-68
    [98]赵秀福.青岛颐中体育场膜结构风洞试验研究.建筑结构,2001,31(2):25-27
    [99]冯虹,钱素萍,袁勇.索膜结构分析理论研究综述与展望.同济大学学报(自然科学版),2002,30(9):1033-1037
    [100]张华.薄膜结构形状确定及耦合风振响应分析:[博士学位论文].南京:东南大学,2002.
    [101]B. Tabarrok, LiyongTong. Dualities in free vibration of minimum surface membranes. Journal of applied mechanics,1993, (60):1020-1026
    [102]Attilio Iannuzzi, Paolo Splinelli. Artificial wind generation and structural response. Journal of structural engineering,1987,113 (12):2382-2398.
    [103]朱自强等.应用计算流体力学.北京:北京航空航天大学出版社,1998,165-177
    [104]朱加鲲.计算流体力学.北京:科学出版社,1985,1-5
    [105]陶文铨.数值传热学.西安:西安交通大学出版社,1998,416-485
    [106][美]陈景仁著,臧国才等译.湍流模型及有限分析法.上海:上海交通大学出版社,1989
    [107]费祥麟,胡庆康,景思睿.高等流体力学.西安:西安交通大学出版社,1989
    [108]Masbernat F., Wolfhugel Y. F., Dumas J. C. CFD aerodynamics of the French High Speed train. SAE Special Publications n 908 Vehicle Aerodynamics:Wake Flows Computational Fluid Dynamics and Aerodynamic Testing,1992,85-99
    [109]Suzuki. Unsteady aerodynamics force acting on high speed trains in tunnel. Quarterly Report of RTRI (Japan),2001,42 (2):89-93
    [110]Mok J. K., Yoo J. Numerical study on high speed train sang tunnel hood interaction. Journal of Wind Engineer and Industrial Aerodynamic,2001,89(1): 17-29
    [111]Matsuoka K, Sasoh A, Takayama K. Numerical and experimental investigation of wave dynamics processes in high-speed train/tunnels. Acta mechanical Sinica,2002, 18 (3):209-226
    [112]王福军.计算流体动力学分析.北京:清华大学出版社,2004
    [113][美]吴建民主编,陈则霖,吴文正编译.高等空气动力学,北京航空航天大学出版社,1992,164-174
    [114]勋刚.湍流.天津:天津大学出版社,1994.84-101
    [115]章梓雄,董曾南.粘性流体力学.北京:清华大学出版社,1998
    [116]江帆,黄鹏.Fluent高级应用与实例分析.北京:清华大学出版社,2008,16-32
    [117]姚征,陈康民.CFD通用软件综述,上海理工大学学报,2002.24(2):137-144
    [118]张兆顺,湍流,北京:国防工业出版社,2002
    [119]卫东.张拉膜结构形态分析及优化:[博士学位论文].哈尔滨:哈尔滨工业大学,2001
    [120]孙晓颖.薄膜结构考虑滑移问题的分析:[硕士学位论文].哈尔滨:哈尔滨工业大学,2002
    [121]B. Tabarrok, Z Qin. Nonlinear analysis oftension structures. Computers & Structures,1992
    [122]蓝天、郭璐.张拉结构的几何非线性有限元分析.北京:中国建筑科学研究院,1993
    [123]J. W. Leonard. Tension Structures (Behavior and Analysis). Oregon:RR Donnelley and Sons.1988
    [124]沈世钊.悬索结构设计.北京:中国建筑工业出版社,1997
    [125]张东波.充气水下织物结构的大变形有限元法计算与分析:[硕士学位论文].哈尔滨:哈尔滨工程大学,2006
    [126](英)J.E.吉布生著,许铁生译.薄壳分析.北京:中国建筑工业出版社,1975
    [127]郭仲衡.非线性弹性理论.北京:科学出版社,1980
    [128]成详生.应用板壳理论.山东:山东科学技术出版社,1989
    [129]徐芝纶.弹性力学(下册).北京:高等教育出版社,1994
    [130]白建昆.索膜结构非线性有限元分析:[硕士学位论文].重庆:重庆大学,2009
    [131]王勇,魏德敏,高振宇.张拉膜结构力密度法混合找形分析.计算力学学报,2005.22(5):629-632
    [132]罗斌.张拉膜结构的非线性分析和织物膜材的拉伸试验研究:[博士学位论文].南京:东南大学,2003
    [133]蓝凯维奇.有限元法.北京:科学出版社,1985
    [134]吕和祥,蒋和洋.非线性有限元.北京:化学工业出版社,1992
    [135]张汝清,詹先义.非线性有限元分析.重庆:重庆大学出版社,1990
    [136]蒋友谅.非线性有限元法.北京:北京理工大学出版社,1988
    [137]王瑁成、邵敏.有限单元法基本原理与数值方法.北京:清华大学山版社,1988
    [138]朱伯芳.有限元法原理与应用.北京:中国水利水电出版社,1998
    [139]徐其功.张拉膜结构的工程研究:[博士学位论文].广州:华南理工大学,2003
    [140]李辉.基于Ansys的索杆梁膜结构整体分析:[硕士学位论文].济南:山东大学,2007
    [141]苏建华,韩大建.带弹性支承的膜结构整体载荷分析.建筑结构,2008.38(2).93-96
    [142]张其林.索和膜结构.上海:同济大学出版社,2002.
    [143]司瑞娟.索膜结构体系受力性能的非线性有限元分析:[硕士学位论文].郑州:郑州大学,2007
    [144]殷有泉.固体力学非线性有限元引论.北京:北京大学出版社,清华大学出版社,1987
    [145]矫卫红.篷盖类柔性复合材料机械性能的研究[硕士学位论文].上海:东华 大学,2004
    [146]吴健生,叶小兵.膜结构的性能及材料特点.天津城市建设学院学报,1997.3(4):12-17
    [147]胡宇峰,戚震华.带旋转自由度的膜单元的研究进展.上海铁道大学学报,1999.20(6.):78-83
    [148]任德斌,赵经文.有横向刚度的空间膜单元的建立.沈阳工业学院学报,1994.13(1):84-88
    [149]武岳,胥传喜.膜结构的荷载态分析与结构设计.工业建筑,2004,34(8):73-77
    [150]林卫勇,郑建华.索膜结构的发展与应用山西建筑,2008.34(24):106-107
    [151]刘瑞霞.风与张拉薄膜结构的耦合作用.空间刚结构,2003.18(65):5-8
    [152]张宏超.薄膜结构的找形方法和力学特性研究:[硕士学位论文].成都:西南交通大学,2003
    [153]李阳.建筑膜材料和膜结构的力学性能研究与应用:[博士学位论文].上海:同济大学,2007
    [154]余乐,王作文,刘冠男.膜结构在我国发展的综合探讨.工程结构,2008.28(5):111-113
    [155]赵大鹏.大型充气膜结构特性分析与高强膜材试验研究:[硕士学位论文].上海:上海交通大学,2007
    [156]马泽恩.织物成形模拟的有限元方法研究:[博士学位论文].西安:西北工业大学,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700