用户名: 密码: 验证码:
充气梁弯皱特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
充气展开支撑结构是近期航空航天可展开飞行器中出现的一类新型展开结构,具有重量轻、折叠体积小、展开可靠性高、展开后承载范围大等特点。充气展开支撑结构中的充气梁是其典型结构部件,为提高充气梁的承载性能,本文建立了充气梁承载特性分析方法,并对其承载规律进行了数值分析和试验验证。
     充气梁在弯曲载荷作用下产生局部压应力,弯曲载荷达到起皱载荷时充气梁产生褶皱,随着弯曲载荷的增加褶皱区域进一步扩展,当弯曲载荷达到失效载荷时充气梁失稳无法进一步承受更大弯曲载荷。充气梁的承载规律和弯皱特性可以用起皱载荷、失效载荷、褶皱区域进行表征。
     本文对充气梁的承载过程中的弯皱特性进行了系统研究。对充气梁褶皱产生、褶皱扩展、刚度退化机理以及网格增强结构进行了理论研究、数值模拟和试验研究,主要内容包括:
     本文首先针对充气梁在弯曲载荷作用下褶皱的轴向扩展进行分析,提出弯皱因子的概念,进行褶皱区域表征,首先建立基于弯皱因子的变截面充气梁褶皱轴向扩展特性分析模型,确定弯曲载荷作用下变截面充气梁起皱弯矩预报模型、初始起皱位置预报模型、褶皱区域轴向边界预报模型和失效载荷预报模型。然后针对褶皱区域的环向扩展进行分析,确定基于弯皱因子参数的褶皱角和中性轴偏移量预报模型,利用拟合多项式方法获得褶皱区域内褶皱角和中性轴偏移量的分布规律,完成基于弯皱因子的变截面充气梁褶皱区域产生扩展分析方法,以获得充气弯皱状态褶皱区域的完整描述。最后建立变截面充气梁的抗弯测试实验装置,获得变截面充气梁在弯曲载荷作用下的弯皱行为实验结果,结合有限元数值模拟,验证变截面充气梁褶皱区域产生和扩展分析方法的准确性和有效性。
     在基于弯皱因子的变截面充气梁褶皱区域产生扩展分析方法基础上,针对充气梁弯皱状态力学模型,引入等效充气压力方法建立了充气压力、中心轴偏移、变形幅度和管壁刚度等的平衡弯矩分析模型,建立充气梁弯皱变刚度分析模型,解析弯皱状态充气梁的刚度变化和抗弯平衡机理,获得抗弯刚度与弯皱因子和褶皱角的变化关系,建立考虑褶皱区域和褶皱区域曲率变化影响的充气梁弯皱变刚度分析模型。与数值模拟结果对比证明本文充气梁弯皱变刚度分析模型的正确性。
     在基于弯皱因子和等效充气压力的弯皱充气梁变刚度分析模型基础上,提出能够考虑褶皱区域和褶皱曲率变化等褶皱效应的弯皱充气梁有限元分析模型,给出形函数和刚阵的具体形式,建立弯皱充气梁单元的求解过程,编制有限元分析验证程序,对不同载荷状态和结构形式的充气梁承载特性进行了数值分析,得到弯皱状态下充气梁褶皱区域扩展规律和大变形因素对充气梁承载性能的影响。通过和文献结果对比验证本文弯皱充气梁单元的准确性和有效性,为大型充气结构承载性能高效率分析和优化奠定了基础。
     利用本文充气梁单元和同样工况下加密的有限元细化分析模型对网格增强充气梁的载荷挠度曲线进行了对比分析,并通过试验验证了本文充气梁单元的准确性和高效性。为了利用本文充气梁单元分析网格增强充气梁,本文首先对网格增强充气梁管壁的表观工程常数进行了等效分析,并通过实验和数值分析验证了等效模型的准确性。
     本文的研究成果将为大型充气结构承载性能分析,结构优化设计和弯皱行为分析提供依据和基础。
Inflatable deployable structure is an emerging class of supporting structuresfor deployable spacecrafts in aeronautics and astronautics, which has theadvantages of light weight, small compact volume, high reliability, and large loadsbearing capacity, etc. Inflatable beams are main typical inflatable deployablestructures. In order to improve their loads bearing capacity, this research establishedtheoretical analyzing method, and conducted numerical analysis and experimentalvalidation for inflatable beams to investigate their loads bearing performance.
     Bending load will induce local compressive stress on inflated beam, andwrinkles occurred when bending load is larger than wrinkling load. Along withincreasing of bending load, wrinkled region will be further extended. When bendingload reaches collapse load, inflated beam are instable, and it could not undertakeany larger load. For inflated beam, load bearing performance and bending-wrinkling characteristic can be described by wrinkling load, collapse load andwrinkled region.
     This investigation analyzed bending-wrinkling characteristics of inflated beamunder bending load systematically. Including wrinkling occurrence, wrinklingevolution, stiffness degeneration mechanism as well as grid reinforced structures.All parameters were analyzed theoretically, numerically and experimentally. Themain contexts in this dissertation are as follows:
     This investigation based on wrinkling evolution of inflatable beams underbending load. For wrinkled region extended along axial direction, we proposedbending-wrinkling factor to characterize wrinkled region. Based on bending-wrinkling factor, we established theoretical analyzing model for wrinkle axialevolution of varying cross-section inflated beams, set up wrinkling bendingmoment predicative model, wrinkled region predicative model, wrinkled regionaxial boundary predicative model and collapse load predicative model, etc. For wrinkled region extended in circumferential direction, we established wrinklingangle and central axis offset predicative model based on bending-wrinkling factor,obtained wrinkling angle and central axis offset distribution based on polynomialmethod, got the method for analyzing wrinkling occurrence and extension ofvarying cross section inflated beams, and fully characterized wrinkled region.Besides, experimental system was set up for bending-wrinkling test of varyingcross section inflatable beam, combined with finite element analysis, which verifiedand validated the wrinkling occurrence predictive methods and extension analyzingmethods.
     Based on bending-wrinkling mechanical model of inflated beams, weintroduced equivalence pressure method and set up equilibrium bending momentanalyzing model, which for establishing inflatable pressure, central axis offset,deformation range and tube stiffness, etc. We set up varying stiffness analyzingmodel and further examined their stiffness variation and anti-bending equilibriummechanism. We got relationship between anti-bending stiffness and bending-wrinkling factor as well as wrinkling angle, obtained varying stiffness analyzingmodel considering wrinkled region and curvature variation of wrinkled region.Finally, all results were compared with numerical analyzing calculation, and ournew bending-wrinkling varying stiffness analyzing model for inflated beams aretestified to be correctly.
     Finite element models for inflated beams considering wrinkled region andcurvature variation of wrinkled region were brought out, corresponding shapefunction as well as stiffness expression were given, and solution process forbending-wrinkling inflated beams were established. By adopting finite elementanalyzing programs, loads bearing characterizes with different loads condition andvarious structural modals were numerical analyzed, effects of wrinkling evolutionand geometrical large deformation on inflatable beam loads bearing performancewere achieved. Those results were compared with archive references, and newbending-wrinkling inflatable beam elements introduced in this research were validated.
     The load deflection curves of grid reinforced inflatable beam were comparedusing bending-wrinkling inflated beam element brought in this paper and finiteelement refining analyzing model under the same condition, correctness andeffectiveness of this new inflatable beam element were validated throughexperimental test. In order to analyze grid reinforced beam with this bending-wrinkling inflated beam element, equivalent engineering constants of thin walledgrid reinforced beam were analyzed firstly, and then it was validated byexperimental and numerical analysis.All research achievements within this dissertation lay a foundation for efficientloads bearing performance analysis, structural optimization design, and bending-wrinkling characterization of large inflatable structures.
引文
[1] Ruggiero E J, Inman D. Gossamer Spacecraft: Recent Trends in Design,Analysis, Experimentation and Control[J]. Journal of Spacecraft and Rockets,2006,43(1):10-24.
    [2]谭惠丰,王超,王长国.实现结构轻量化的新型平流层飞艇研究进展[J].航空学报,2010,31(2):257-264.
    [3] Grahne M S, Cadogan D P. Revolutionary Design Concepts for InflatableSpace Structures[C]. SAE/AIAA-1999World Aviation Conference.1999-01-5520.
    [4] Darooka1D K, Jensen D W. Advanced Space Structure Concepts and TheirDevelopment[C]. AIAA-2001-1257.
    [5]战桂丽,王铎,陈泓波.夹层杆系结构的位移计算[J].林业科技情报,2002,34(1):17-18.
    [6]王长国,杜星文,赫晓东.充气薄膜管的弯皱行为分析[J].工程力学,2009,26(2):210-215.
    [7] Veldman S L. Load analysis of inflatable truncated cones [C]. AIAA-2003-1827.
    [8]徐国宏,袁行飞. ETFE气枕结构设计——国家游泳中心气枕结构设计简介[J].土木工程学报,2005,38(4):66-72.
    [9]傅学怡,顾磊,杨先桥等.国家游泳中心结构设计与研究[J].空间结构,2005,11(3):14-21.
    [10]张其林.索和膜结构[M].上海:同济大学出版社,2002:124-134.
    [11]杨庆山,姜忆南.张拉索-膜结构分析与设计[M].北京:科学出版社,2004:115-119.
    [12]姚伟,李勇,王文隽等.美国平流层飞艇发展计划和研制进展[J].航天器工程,2008,17(2):69-75.
    [13]崔尔杰.近空间飞行器研究发展现状及关键技术问题[J].力学进展,2009,39(6):658-673.
    [14]Liao L, Pasernak I. A Review of Airship Structural Research andDevelopment[C]. Progress in Aerospace Sciences,2009,45:83-96.
    [15]Norris R K and Pulliam W J. Historical Perspective on Inflatable WingStructures[C]. AIAA-2009-2145.
    [16]Jacob J D, Smith S W, Cadogan D, et al. Expanding the Small UAV DesignSpace with Inflatable Wings[C]. Proceedings of2007SAE AeroTech Congress&Exhibition, Los Angeles, CA, Sept.17-20,2007.
    [17]Murray J, Pahle J, Thornton S, Vogus S, et al. Ground and Flight Evaulation ofa Small-Scale Inflatable-Winged Aircraft [C]. AIAA-2002-0820.
    [18]Jacob J D, Smith S W. Design of HALE Aircraft Using Inflatable Wings [C].AIAA-2008-167.
    [19]U. S. Department of Commerce, Patent andTrademark Office, Arlington,Virginia, U. S. Patent3,957,232, Wayne A. Sebrell, Inflatable Wing, May16,1976.
    [20]Freeland R E, Bilyeu G D, Veal G R, et al. Inflatable Deployable SpaceStructures Technology Summary[C]. The49th International AstronauticalCongress Sept28-Oct2, Melbourne, Australia, IAF-98-I.5.01.
    [21]Salama M, Lou M, Fang H. Development on Inflatable Space Structures: AReview of Recent Developments[C]. AIAA-2000-1730.
    [22]Fang H F,Lou M C. Analytical Characterization of Space Inflatable Structures-An Overview[C]. AIAA99-1972.
    [23]Jenkins C H,(Editor). Gossamer Spacecraft: Membrane and InflatableStructures Technology for Space Applications [M], Progress in Astronauticsand Aeronautics, AIAA, Reston, VA,2001,191:1~46.
    [24]Veldman S L, Vermeeren C A J R. Inflatable Structures in AerospaceEngineering-An Overview [R]. European Space Agency,2000.
    [25]Peypoudat V, Defoort B, Lacour D, et al. Development of A3.2m-LongInflatable and Rigidizable Solar Array Breadboard[C]. AIAA-2005-1881.
    [26]Stein M, Hedgepeth J M. Analysis of partly wrinkled membranes[R]. NASA TND-2456,1964.
    [27]Veldman S L. Wrinkling Prediction of Cylindrical and Conical InflatedCantilever Beams under Torsion and Bending [J]. Thin-Walled Structures.44(2006):211-215.
    [28]Thomas C S R, Chris P C, Pier M, et al. Static, Buckling and DynamicBehaviour of Inflatable Beams[C]. AIAA2006-1701.
    [29]Veldman S L,Bergsma O K,Beukers A. Bending of Anisotropic InflatedCylindrical Beams[J]. Thin-Walled Structures.2005,43:461-475.
    [30]Leonard R W,Brooks G W,MeComb H G. Structure Considerations ofInflatable Re-entry Vehicles[R]. NASA TN D—457,1960.
    [31]Wielgosz C, Thomas J C. Deflections of Inflatable Fabric Panels at HighPressure[J]. Thin-Walled Structures,2002,40:523-536.
    [32]Van L, Wielgosz C. Bending and Buckling of Inflated Fabric Beams: SomeNew Theoretical Results[J]. Thin-Walled Structures,2005,43:1166-1187.
    [33]Anonymous. Buckling of Thin-walled Circular Cylinders[R]. NASA spacevehicle design criteria. NASA SP-8007,1965.
    [34]Apedo K L, Ronel S, Jacquelin E, et al. Theoretical Analysis of InflatableBeams Made from Orthotropic Fabric[J]. Thin-Walled Structures,2009,7:1507-1522.
    [35]Suhey J D, Kim N H, Niezrecki C. Numerical Modeling and Design ofInflatable Structures: Application to Open-Ocean-Aquaculture Cages[J].Aquaculture Engineering,2005,33(4):285-303.
    [36]Steeves E C. A Linear Analysis of the Deformation of Pressure StabilizedBeams[R]. Technical Report75-47-AMEL, US Army Natick Laboratories,1975.
    [37]Molloy S J, Plaut R H, Kim J. Behavior of Pair of Leaning Arch-shells underSnow and Wind Loads[J]. Journal of Engineering Mechanics-ASCE,1999,125(6):663-667.
    [38]Plaut R H, Goh J K S, Kigudde M, et al. Shell Analysis of an Inflatable ArchSubjected to Snow and Wind Loading[J], International Journal Solids Structure,2000,37(31):4275-4288.
    [39]Brazier L G. On the Flexure of Thin Cylindrical Shells and Other “Thin”Sections[C]. Series A. Proceedings of the Royal Society of London,1927:104-114.
    [40]Wood J D. The Flexure of a Uniformly Pressurized, Circular, CylindricalShell[R]. Journal of Applied Mechanics,1958,25(12):453-458.
    [41]Baruch M, Arbocz J, Zhang G Q. Imperfection Sensitivity of the Brazier effectfor Orthotropic Cylindrical Shells[R]. Technical Report, Delft University ofTechnology, Report LR-687,1992.
    [42]Zender G W. The Bending Strength of Pressurized Cylinders[J]. Journal ofAerospace Science,1962,29(3):362-363.
    [43]MeComb H G,Zender G W,Mikulas M M. The Membrane Approach to BendingInstability of Pressurized Cylindrical Shells[R]. NASA TN-D1510.1962.
    [44]管瑜.充气展开自硬化支撑管的设计与分析[D].浙江大学,2006.
    [45]Comer R L, Levy S. Deflections of an Inflated Cylindrical Cantilever Beam[J].AIAA Journal,1963,1(7):1652-1655.
    [46]Main A, Peterson S W, Strauss A M. Load-deflection Behaviour of Space-basedInflatable Fabric Beams[J]. Journal Aerospace Engneering,1994,2(7):225-238.
    [47] Sakamoto H, Natori M. C, Miyazaki Y. Deflection of Multi-Cellular InflatableTubes for Redundant Space Structures[J]. Journal of Spacecraft and Rockets,2002,39(5):695-700.
    [48]赵大鹏.大型充气膜结构特性分析与高强膜材试验研究[D].上海:上海交通大学,2007.
    [49]Weingarten V I, Seide P. Buckling of Thin-Walled Truncated Cones[R]. NASASP-8019, Sept.1968.
    [50]Veldman S L, Bergsma O K, Beukers A, et al. Load Deflection Behavior ofInflated Beams Made of Various Foil Materials[C]. AIAA2004-1504,2004.
    [51]Seide P. A Donnell Type Theory for Asymmetrical Bending and Buckling ofThin Conical Shells[J]. Journal Applied Mechanics,1957,24(4):547-552.
    [52]Esslinger M, Geier B. Buckling and Post-Buckling Behaviour of Conical ShellsSubjected to Axisymmetric Loading and of Cylinders Subjected to Bending,Theory of Shells[M], edited by W. T. Koiter and G. K. Mikhailov, North-Holland, Amsterdam,1980, Chap.2.
    [53]Hausrath A H, Dittoe F A. Development of Design Strength Levels for theElastic Stability of Monocoque Cones Under Axial Compression. CollectedPapers on Instability of Shell Structures, NASA TN-D1510,1962:45-56.
    [54]Seide P. A Survey of Buckling Theory and Experiment for Circular ConicalShells of Constant Thickness. Collected Papers on Instability of ShellStructures, NASA TN-D-1510,1962:401-426.
    [55]Spagnoli A, Chrissanthopoulos M K. Buckling Design of Stringer-StiffenedConical Shells in Compression[J]. Journal of Structural Engineering,1999,125(1):40-48.
    [56]Zhang G Q. Derivation of the Governing Equations of Anisotropic ConicalShells. Faculty of Aerospace Engineering, Rept. LR-609, Delft:Delft Univ. ofTechnology, Jan.1989.
    [57]Zhang G Q. Stability Analysis of Anisotropic Conical Shells[D]. Ph.D.Dissertation, Faculty of Aerospace Engineering, Delft:Delft Univ. ofTechnology, Delft Univ. Press,1993.
    [58]Arbocz J. Buckling of Conical Shells Under Axial Compression[R]. NASA CR1162,1968.
    [59]Houliara S, Karamanos S A. Buckling and Post-buckling of Long PressurizedElastic Thin-walled Tubes under in-plane Bending[J]. International Journal ofNon-Linear Mechanics,2006,41(4):491-511.
    [60]Fichter W B. A Theory for Inflated Thin-wall Cylindrical Beams[R]. NASA TND-3466,1966.
    [61]Thomas J C, Wielgosz C. Deflections of Highly Inflated Fabric Tubes[J]. Thin-Walled Structures,2004,42:1049-1066.
    [62]Wielgosz C, Thomas J C, An Inflatable Fabric Beam Finite Element[J].Communications in Numerical Methods in Engineering,2003,19:307-312.
    [63]Davids W G, Zhang H, Turner A W, et al. Beam Finite-Element Analysis ofPressurized Fabric Tubes[J]. Journal of Structural Engineering,2007,133(7):990-998.
    [64]Davids W G, Zhang H. Beam Finite Element for Nonlinear Analysis ofPressurized Fabric Beam-columns[J]. Engineering Structures,2008,30:1969-1980.
    [65]Haughton D M, MeKay B A. Wrinkling of Inflated Elastic CylindricalMembrane Under Flexure[J]. International Journal of Engineering Science,1996,34(13):1531-1550.
    [66]陈帅,李斌,杨智春.充气悬臂梁的弯曲失效行为研究[C].第18届全国结构工程学术会议论文集,2009:560-565.
    [67]陈帅,李斌,杨智春.充气悬臂梁的弯曲失效行为[J].工程力学,2010,27(S1):299-304.
    [68]陈帅,李斌,杨智春.考虑压力追随效应的充气悬臂梁挠度计算模型与实验设计[J].工程力学.2011,28(7):245-351.
    [69]Lampani L, Gaudenzi P. Numerical Simulation of the Behavior of InflatableStructures for Space[J]. Acta Astronautica,2010,67:362-368.
    [70]Holland D, Virgin L, Tinker M, et al. Geometric Scaling Properties ofInflatable Structures for Use in Space Solar Power Generation[C]. AIAA2001-1264.
    [71]叶武强.卷尺加劲可展自硬化充气管研究[D].杭州:浙江大学,2007.
    [72]Yang B, Lou M, Fang H. Buckling Analysis of Long Booms with InitialGeometric Imperfections[C]. AIAA-2004-1735.
    [73]高海健,陈务军,付功义.薄膜充气梁有限元分析方法与结构特性研究[J].合肥工业大学学报(自然科学版),2011,34(6):861-865.
    [74]Vasiliev V V, Barynin V A, Rasin A F. An Isogrid Lattice Structures-survey ofDevelopment and Application[J]. Composite Structures,2001,54:361-370.
    [75]Petrov G I, Park K S, Adams C M. Optimization of Inflatable SpacecraftInterior Volume using Constraints Driven Design[C]. AIAA-2010-6070.
    [76]Johansen T A. Optimization of a Low Reynold's Number2-d Inflatable AirfoilSection[D]. Logan:Utah state university,2001.
    [77]陶宏新,胡振东.空间充气展开天线支撑结构尺寸优化[J].计算机辅助工程,2007,16(3):132-135.
    [78]周涛.二维网格复合材料点阵结构及其刚度与强度分析[D].长沙:国防科学技术大学,2007.
    [79]Kabche J P, Peterson M L, Davids W G. Effect of Inflation Pressure on theConstitutive Response of Coated Woven Fabrics used in Airbeams[J].Composites: Part B,2011,42(3):526-537.
    [80]Baginski F, Brakke K. Simulating Clefts in Pumpkin Balloons[R]. Advances inSpace Research,2010,45(4):473-481.
    [81]Fuke H, Izutsu N, Akita D, et al. Progress of Super-pressure BalloonDevelopment: A new “Tawara” Concept with Improved Stability[R]. Advancesin Space Research,2011,48(6):1136-1146.
    [82]Cathey H M. Evolution of the NASA Ultra Long Duration Balloon[C]. AIAA-2007-2615.
    [83]Harada M, Sano M. Theoretical Analysis of a New Design Concept for LTAStructure[C]. AIAA-2002-3425.
    [84]Lennon A, Pellegrino S. Stability of Lobed Inflatable Structures[C]. AIAA2000-1728.
    [85]Allred R E, Hoyt A E, McElroy P M, et al. UV Rigidizable Carbon-reinforcedIsogrid Inflatable Booms[C]. AIAA2002-1202.
    [86]Scarborough S E, Cadogan D P. Elevated Temperature MechanicalCharacterization of Isogrid Booms[C]. AIAA2003-1824.
    [87]John K. H. Lin, George H. Sapna III, Stephen E. Scarborough and David P.Cadogan. Inflatable rigidizable isogrid boom development[C]. AIAA2002-1297.
    [88]Brayley K E,Davids W G, Clapp J D. Bending Response of ExternallyReinforced, Inflated, Braided Fabric Arches and Beams[J]. Construction andBuilding Materials,2012,30:50-58.
    [89]Huybrechts S, Meink T E. Advanced Grid Stiffened Structures for the NextGeneration of Launch Vehicles[C]. IEEE Aerospace Applications ConferenceProceedings, Febrary,1997:263-270.
    [90]杜善义,章继峰,张博明.先进复合材料格栅结构(AGS)应用与研究进展[J].航空学报,2007,28(2):419-424.
    [91]栗蕾.考虑初始缺陷的网格结构的非线性稳定性理论及其应用[D].西安:西安建筑科技大学.2011.
    [92]Wright D T. Membrane Forces and buckling in reticulated shells[J]. Journal ofthe Structural Division,1965,91(1):173-201.
    [93]胡学仁.网壳结构的计算[J].建筑学报,1960,7:27-30.
    [94]董石麟.交叉拱系网状扁壳的计算方法[J].土木工程学报,1985,3:1-17.
    [95]董石麟.网状球壳的连续化分析方法[J].建筑结构学报,1988,3:1-14.
    [96]Chen H J, Tsai S W. Analysis and Optimum Design of Composite GridStructures[J]. Journal of Composite Materials,1996,30:503-534.
    [97]魏志刚,汤文成.复合材料网格结构模态分析的均匀化等效建模[J].复合材料学报,2008,25(2):188-193.
    [98]史姣,王正中,蔡坤.二维网格结构的拟膜分析法[J].西北农林科技大学学报(自然科学版),2006,34(3):147-151.
    [99]施志勇. ISOGRID结构的力学特性研究与优化设计[D].南京:南京理工大学,2004.
    [100] Pagitz M, Pellegrino S. Computation of Buckling Pressure of PumpkinBalloons[C]. AIAA-2006-1803.
    [101] Pagitz M, Pellegrino S. Buckling Pressure of “Pumpkin” Balloons[J].International Journal of Solids and Structures,2007,44:6963-6986.
    [102] Baginski F, Brakke K. Estimating the Deployment Pressure in PumpkinBalloons[J]. Journal of Aircraft,2011,48(1):235-247.
    [103] Yajima N. A New Design and Fabrication Approach for Pressurized Balloon[J].Advances in Space Research.2000,26(9):1357-1360.
    [104] Blandino J R, Duncan R G, Nuckels M C, et al. Three-Dimensional ShapeSensing for Inflatable Booms[C]. AIAA-2005-1807.
    [105] Stanciulescu I, Virgin L N, Laursen T A. Slender Solar Sail Booms: FiniteElement Analysis[J]. Journal of Spacecraft and Rockets,2007,44(3):528-537.
    [106] Simburger E J, Lin J K, Scarborough S E, et al. Development, Design, andTesting of PowerSphere Multifunctional Ultraviolet-Rigidizable InflatableStructures[J]. Journal of Spacecraft and Rockets,2005,42(6):1091-1100.
    [107] Natori M C, Higuchi K, Sekine K, et al. Adaptivity Demonstration ofInflatable Rigidized Integrated Structures (IRIS)[J]. Acta Astronautica,1995,31:59-67.
    [108] Walker S J I, Mc Donald A D, Niki T, et al. Aglietti. Initial PerformanceAssessment of Hybrid Inflatable Structures[J]. Acta Astronautica,2011,68:1185-1192.
    [109] Wang C G, Tan H F, Du X W, et al. Wrinkling Prediction of Rectangular Shell-Membrane under Transverse In-Plane Displacement[J]. International Journal ofSolids and Structures,2007,44(20):6507-6516.
    [110] Wang C G, Du X W, Tan H F, et al. A New Computational Method forWrinkling Analysis of Gossamer Space Structures [J]. International Journal ofSolids and Structures,2009,46(6):1516-1526.
    [111] Arbocz J. Buckling of Conical Shells under Axial Compression [R]. NASACR1162,1968.
    [112] Esslinger M, Geier B. Buckling and Post-buckling Behaviour of ConicalShells Subjected to Axisymmetric Loading and of Cylinders Subjected toBending[M]. Theory of shells, In: Koiter WT, Mikhailov GK, editors..Amsterdam, North-Holland:1980.
    [113] Spagnoli A,Chryssanthopoulos M K. Buckling Design of Stringer-stiffenedConical Shells in Compression[J]. Journal of Structural Engineering,1999,125(1):40-48.
    [114]李云良,田振辉,谭惠丰.基于张力场理论的薄膜褶皱研究评述[J].力学与实践,2008,30(4):8-14.
    [115] Wagner H.Flat Sheet Metal Girders with Very Thin Metal Webs [R].Parts I IIIII,NACA Tech Memoranda,1929,20:200-314.
    [116] Douglas W J. Bending Stiffness of an Inflated Cylindrical Cantilever Beam[J].AIAA Journal.1968,7(7):1248-1253.
    [117]王长国,杜星文,赫晓东.空间充气薄膜结构的褶皱分析[J].力学学报,2008,40(3):331-337.
    [118]蔺海荣,冯维明,虞松.材料力学[M].国防工业出版社.第一版.2001:34,51,91.
    [119] Main J A, Peterson P S, StraussA M. Beam-Type Bending of Space-BasedInflated Membrane Structures[J]. Journal of Aerospace Engineering,1995,8(2):120-125.
    [120] Stephens W B, Starnes J H, Almroth B O. Collapse of Long Cylindrical Shellsunder Combined Bending and Pressure Loads[J]. AIAA Journal,1975,13(1):20-25.
    [121] Veldman S L, Bergsma O K. Analysis of Inflated Conical Cantilever Beams inBending [C]. AIAA2005-1805.
    [122] Veldman S L, Bergsmat O K. Analysis of Inflated conical Cantilever Beamsin Bending[C]. AIAA journal,2006,44(6):1345-1349.
    [123] Furuya H,Yokoyama J. Wrinkle and Collapsing Process of Inflatable Tubesunder Bending Load by Finite Element Analyses[C]. AIAA-2012-1917.
    [124] Hutchinson J R. Shear Coefficients for Timoshenko beam theory[J]. Journal ofapplied mechanics,2001,68:87-92.
    [125]王勖成.有限单元法[M].第一版.清华大学出版社,2003:314.
    [126]赵经文,王宏钰.结构有限元分析[M].第二版.科学出版社,2004:15.
    [127] Van L, Wielgosz C. Finite Element Formulation for Inflatable Beams[J]. Thin-Walled Structures,2007,45:221-236.
    [128] Jones R M.复合材料力学[M].朱颐龄等译.上海科学技术出版社,1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700