用户名: 密码: 验证码:
设施园艺塑料温室围护结构与通风降温系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国塑料温室面积居世界第一,总占地面积达230万公顷。塑料温室作为实现作物优质高产的重要生产设施,其基本属性是具有抵御自然灾害的保护性,和生产过程对各种资源利用的集约性,为作物栽培提供适宜的小气候环境,创造后天的增产潜力等。同时也为提高作物品质,进行标准化的栽培管理提供保障。本论文研究内容来自于浙江省重大科技攻关项目“设施园艺实用智能化温室研究与开发(N0.02111102542)的研究课题。温室围护设施与内部调控装备是实现环境调节功能的基本保障,它在整个设施中占据绝大部分成本。因此,本文主要围绕温室围护设施的结构优化,内部配套的调控系统作展开研究。主要的研究内容和研究结果包括:
     (1)塑料温室薄膜承载性的非线性有限元分析:通过对温室薄膜进行单轴拉伸实验,研究确定农膜材料的本构模型;针对温室薄膜在结构受力分析中的不稳定性,引入人工刚度,加强计算的收敛稳定性,并应用非线性有限元,建立温室薄膜荷载效应分析的计算模型。此外结合国内外建筑膜结构相关规范,探讨塑料温室结构承载设计的安全系数的取值问题。
     (2)塑料温室拱结构非线性极限承载力的分析:塑料温室拱结构的承载力对初始缺陷很敏感。研究探讨建立温室拱结构初始缺陷的模型,根据一致缺陷模态法,按最小特征值屈曲模态分布,并控制其最大值的方法确定。对极限承载力计算,考虑几何与材料双重非线性的情况,采用弧长法跟踪整个荷载—位移全过程平衡路径的方法,确定极限承载力。并以华东型连栋塑料温室为实例,作雪载工况的分析,计算结果与实际承载力相吻合。
     (3)为研究塑料温室结构在不同阶段的实际承载特性,对普通单栋管棚温室进行结构加载试验,测定加载过程中各测点的应力应变以及位移变化量。通过对实验数据的分析,基本反映出塑料温室的结构承载经历线弹性、大位移、材料弹塑性、屈曲火稳破坏的各过程。根据这些不同阶段的结构受力特征,在计算中引入几何非线性与材料非线性因素,与必要的缺陷模型后,得到的各计算值与在加载各阶段测定的实验值有很好的一致性。
     (4)应用CFD数值风洞方法,研究了塑料温室表面的风压分布,采用realize k-ε湍流模型,在构建的数值风洞中,对全尺度三连栋的塑料温室模型,进行多工况分析。计算得到的表面风压值换算成体型系数后,与国内外相关标准的成果作比较得出:在温室全封闭上况下,温室表面风压的总分布特征,以及在迎风面与前缘部位的数值与规范具有很好的一致性;在温室侧窗有不同开度的工况下,由风致内压而引起风压值的改变,其变化值与规范建议范围相一致。研究结果表明:温室CFD数值风洞模拟可提供具有参考价值的风压值与分布特征,为风压在规范建议值范围内进行明确取值提供依据。
     (5)探讨适合于亚热带季风气候区,设施园艺实用智能化温室的技术开发与集成。内容包括主体结构的优化方法,采用多态控制的混合式通风系统与组合降温系统,基于现场总线技术-CAN总线的温室计算机分布式控制系统与管理软件,基于Web技术的栽培管理系统。提出基于多态原则的温室降温与通风系统,改善系统的气候适应性与运行的经济性问题。通过对混合式通风系统的温室内部温度检测,与风压条件下通风仿真,总体表明温室混合式通风系统能有效地改善自然通风效果。
The plastic greenhouse area on china is the largest in the world, covering 2.3 million hectares. The plastic greenhouse is the important facility to realize the good quality and high output for the crops. The main attribute of greenhouse has protection the cultivation from natural disaster, and the intensive to using resources in the production process. The suitable microclimate environment for the plant culture will be provided. The potential of high production will be created and so on. Simultaneously also for improve the crops quality, carries on standardized the cultivation management. The paper research content comes from in the Zhejiang Province science and technology key project "The research on practical and intelligent horticultural greenhouse" (NO.02111102542).The greenhouse envelope facility and the inner equipment realizes the environment adjustment function. The greenhouse structure and facilitis occupy the majority of costs. Therefore, the greenhouse envelope structure optimization, the internal regulation system are discussed in the paper. The main research content and the result include:
     (1) The calculation parameter and a constitutive model for greenhouse film were obtained by a uniaxial tensile test. And a calculation model of the load effect for the greenhouse film was developed by the nonlinear finite element method and the method with artificial stiffness applied. According to the relative criterion, the safety coefficient of bearing capacity for the greenhouse film was discussed. Based on the models and methods mentioned above, the example for the bearing capacity of the film was calculated on the working conditions of snow and wind load, and the first principal stress and deformation of the film were obtained. In addition, the influence of different pre-tension on the bearing capacity of the film, and the concrete distributing of first principal stress were discussed. This paper presented the calculation model and theoretical method for the proper application of the film in the greenhouse design.
     (2) The method of ultimate bearing capacity calculation for the arch structure of plastic greenhouse was presented in the research. The nonlinear finite element analysis theory was applied in the method development. Based on the consistent mode imperfection method, the initial imperfection model was determined by the least order mode of eigenvalue buckling, and the maximum displacement value. Double nonlinear factor was considered in the structure analysis. To calculate the ultimate bearing capacity, the equilibrium path of the loading and displacement using arc-length method was traced. The ultimate bearing capacity of the multi-span plastic greenhouse under snow loading in the eastern-china was calculated by the method. The calculated result was close to the real bearing capacity, which showed that the method was suitable.
     (3) In order to study the load-bearing characteristics of the plastic greenhouse structure in the different stage.The structure test of the tunnel greenhouse was carried on. The stress and stain value in each measuring points was obtained in the experiment. The analysis of the experimental data showed basically the bearing load processes of plastic greenhouse structure. The processes include line elasticity, the large displacement, the material elastoplasticity, the buckle destroy. According to these structure characteristic of the different stage, using the geometry non-linearity and the material non-linear factor in the computation, and the initial imperfection model. The predicted values and the experimental data which obtains on each stages of load bearing have the very good uniformity.
     (4) The application of CFD numerical tunnel method on the determination of distribution of wind pressure on the plastic greenhouse surface was discussed. The CFD turbulent model uses realizeκ-εmodel. All-scale model of three multi-span plastic greenhouse was applied to multiple work condition analysis in the numerical wind tunnel. And then, the wind pressure was converted to shape coefficient to make comparison with the result of the design code. Under sealed work condition, the distribution characteristic of the wind pressure on greenhouse surface, as well as the value of wind pressure in the windward side and front eave had referential value. Under the unsealed greenhouse work condition with different opening size of side windows, the change value of wind pressure caused by the wind-induced internal pressure was very close to the value suggested in the code. The results indicated that numerical tunnel simulation for greenhouse based on CFD method could provide referential data of distribution characteristic and wind pressure, and offer basis for determining wind pressure within the proposed range of the design code.
     (5) The technology integration and development of the practical and intelligent horticultural greenhouse, which is suitable for subtropical monsoonal climate zone, were discussed. The optimized method for greenhouse structure, the hybrid ventilation and combination cooling system using multi-state control, the distributed control system and management software based on fieldbus control-CAN bus, and the cultivate management and information system based on web technology were covered in the paper. Based on multi-state principle for the cooling and ventilation system, the ability of suitable for climate and the saving for operation cost were improved. The change of the measured temperature inside the greenhouse and the ventilation simulation on the work condition of wind pressure, showed the hybrid ventilation system can improve natural ventilation function effectively.
引文
[1]H. Moriyama, D.R.Mears, S.Sase, H.Kowata, M. Ishii. Design Considerations for Small-Scale Pipe Greenhouses to Prevent Arch Buckling Under Snow Load. ASAE Meeting Presentation.2003, Paper Number:034047
    [2]A. Pena, D. L. Valera, F. Perez, J. Ayuso, J. Perez. Behavior of greenhouse foundation subjected to uplift loads. Transactions of the ASAE,2004, Vol.47(5):1651-1657
    [3]B. von Elsner, D. Briassoulis, D. Waaijenberg, A. Mistriotis, Chr. von Zabeltitz, J. Gratraud, G.Russo, R. Suay-Cortes. Review of Structural and Functional Characteristics of Greenhouses in European Union Countries, Part I:Design Requirements. Biosystems Engineering,2000,75:1-16
    [4]B. von Elsner, D. Briassoulis, D. Waaijenberg, A. Mistriotis, Chr. von Zabeltitz, J. Gratraud, G.Russo, R. Suay-Cortes. Review of Structural and Functional Characteristics of Greenhouses in European Union Countries, Part Ⅱ:Typical Designs. Biosystems Engineering,2000,75:111-126
    [5]D. Briassoulis, E. Schettinil, Analysis and Design of Low-density Polyethylene Greenhouse Films. Biosystems Engineering,2003,84 (3):303-314
    [6]D. Briassoulis, D. Waaijenberg, J. Gratraud, B. von Elsner. Mechanical Properties of Covering Materials for Greenhouses Part 1:General Overview. J.agric. Engng Res.1997,67:81-96
    [7]D. Briassoulis, D. Waaijenberg, J. Gratraud, B. von Elsner. Mechanical Properties of Covering Materials for Greenhouses Part 2:Quality Assessment. J.agric. Engng Res.1997,67:171-217
    [8]D. Briassoulis. E. Schettini. Measuring strains of LDPE films: the strain gauge problems. Polymer Testing,2002, 21:507-512
    [9]P.A.Dilaral, D.Briassoulis. Degradation and Stabilization of Low-density Polyethylene Films used as Greenhouse Covering Materials. J. agric. Engng Res.2000,76:309-321
    [10]G.M.Richardson. Full-Scale Wind Load Measurements on a Single-span Film Plastic-Clad Livestock Building. Journal of Agricultural Engineering Research,1993,55(3):251-264
    [11]In-Bok Lee, Kyu-Hong Choi, Jin-Ha Yun, Jong-Gil Jeun, Gyeong-Won Kim, Optimization of a large-sized wind tunnel for aerodyanmics study of agriculture, ASAE Meeting Presentation.2003, Paper Number: 034048
    [12]T. W. Riegel, H. B. Manbeck. Post-frame design using Irfd, Transactions of the ASAE,1997, Vol.13(1):101-109
    [13]N.De Belie, B. Sonck, C.R.Braam, J.J.Lenehan, B. Svennerstedt, M. Richardson. Durability of Building Materials and Components in the Agricultural Environment, Part Ⅱ:Metal Structures. J. agric. Engng Res.2000,75:333-347
    [14]S.Xu. Q.Zhang, M.GBritton. A Microscopic Theory for Predicting Loads in Storage Bins for Granular Materials. J. agric. Engng Res.1996,65:253-259
    [15]Gary A. Anderson. Shear Strength and Stiffness of Diaphragms from Test Results. ASAE Meeting Presentation. 2006. Paper Number:064090
    [16]David R. Bohnhoff. Investigating Building Failures. ASAE Meeting Presentation.1993, Paper Number:01-4003
    [17]A. Arbel, M. Barak, R. Regev, A. Shklyar. O. Yekutieli, I. Kleinmann. H. Beres. Multi-Purpose Structure. ASAE Meeting Presentation.2003, Paper Number:034070
    [18]Luis Iribarne, Jose' Antonio Torres, Araceli Pen-a. Using computer modeling techniques to design tunnel greenhouse structures. Computers in Industry.2007.58:403-415
    [19]Qioiu Zhao. J.C.Jofriet. Structural loads on bunker silo walls: Numerical study. Journal of Agricultural Engineering Research.1992.51:1-13
    [20]W. Dicrickx, W.M.Cornelis, D.Gabriels. Wind Tunnel Study on Rough and Smooth Surface Turbulent Approach Flow and on Inclined Windscreens. Biosystems Engineering,2003,86(2):151-166
    [21]W.Dierickx, D.Gabriels, W.M.Cornells. Wind Tunnel Study on Oblique Windscreens. Biosystems Engineering,2002,82(1):87-95
    [22]Marek Molenda, Michael D Montross, Jozef Horabik,I. Joseph Ross, Sidney A Thompson. Vertical Wall Loads in a Model Grain Bin with Non-Axial Internal Inserts, ASAE Meeting Presentation.2002, Paper Number:024031
    [23]D.L. Critten, B.J. Bailey. A review of greenhouse engineering developments during the 1990s, Agricultural and Forest Meteorology,2002,112:1-22
    [24]I.-B. Lee, C. Kang, S. Lee, G. Kim, J. Heo, S. Sase, Development of vertical wind and turbulence profiles of wind tunnel boundary layers. Transactions of the ASAE,2004, Vol.47(5):1717-1726
    [25]F. Ayuga; M. Guaita; P. Aguado, Static and Dynamic Silo Loads using Finite Element Models, J. agric. Engng Res. 2001,78 (3):299-308
    [26]S.Sase,E.Reiss,A.J.Both, W.J.Roberts, A Natural Ventilation Model for Open-Roof Greenhouse. ASAE Meeting presentation[J],Paper Number:024010.
    [27]Murakami S. Current status and future trends in computational wind engineering. J. Wind Eng. Indus. Aerodyn. I 997,67&68:3-34.
    [28]Murakami, Development of new k-ε model for flow and pressure fields around bluff body, these Proceedings[J] Journal of Wind Engineering and Industrial Aerodynamics,1997:67-68
    [29]T.Bartzanas, C.Kittasa, A.A. Sapounas, Ch. Nikita-Martzopoulou. Analysis of airflow through experimental rural buildings:Sensitivity to turbulence models. Biosystems Engineering,2007,97:229-239
    [30]M. Kacira, T. H. Short, R. R. Stowell. A CFD evaluation of naturally ventilated,multi-span, sawtooth greenhouses. Transactions of the ASAE,1998, Vol.41(3):833-836
    [31]I. Lee, S.Sase, L. Okushima, A.Ikeguchi, K.Choi, J.Yun. A wind tunnel study of natural ventilation for multi-span greenhouse scale models using two-dimensional particle image velocimetry (PIV). Transactions of the ASAE,1998, Vol.46(3):763-772
    [32]I.-B. Lee, T. H. Short. Verification of computational fluid dynamic temperaturesimulations in a full-scale naturally ventilated greenhouse. Transactions of the ASAE.2001, Vol.44(1):119-127
    [33]l.Lee, S. Lee, G. Kim, J.Sung, S.Sung, Y.Yoon. PIV verification of greenhouse ventilation air flows to evaluate CFD accuracy. Transactions of the ASAE.2005, Vol.48(5):2277-2288
    [34]M. Kacira. T. H. Short, R. R. Stowell. A CFD evaluation of naturally ventilated,multi-span, sawtooth greenhouses. Transactions of the ASAE.2001, Vol.41(3):833-836
    [35]S. Wang. J. Deltour. Airflow patterns and associated ventilation functionin large-scale multi-span greenhouses. Transactions of the ASAE,1999, Vol.42(5):1409-1414
    [36]S.A. Ould Khaoua. P.E.Bournet, C. Migeon, T. Boulard, G.Chasse'riaux. Analysis of Greenhouse Ventilation Efficiency based on Computational Fluid Dynamics. Biosystems Engineering 2006.95 (1).83-98
    |37] A. Arbel. M. Barak, A. Shklyar. Combination of Forced Ventilation and Fogging Systems for Cooling Greenhouses. Biosystems Engineering.2003.84 (1):45-55
    [38]A.M. Abdel-Ghany; T. Kozai. Cooling Efficiency of Fogging Systems for Greenhouses. Biosystems Engineering 2006.94(1):97-109
    [39]H. Toida. T. Kozai. K. Ohyama, Handarto. Enhancing Fog Evaporation Rate using an Upward Air Stream to improve Greenhouse Cooling Performance. Biosyslems Engineering,2006,93 (2):205-211
    [40]A. Arbel, O.Yekutieli. M.Barak. Performance of a Fog System for Cooling Greenhouses. J. Agric. Engng Res.1999.72:129-136
    [41]D.H. Willits. Cooling Fan-ventilated Greenhouses: a Modelling Study. Biosystems Engineering 2003,84(3): 315-329
    [42]Yongsheng Zhou, Ted Stathopoulos. A new technique for the numerical simulation of wind flow around buildings. Journal of Wind Engineering and Industrial Aerodynamics,1997,72:137-147
    [43]Jianming He, Charles C.S. Song. A numerical study of wind flow around the TTU building and the roof corner vortex. Journal of Wind Engineering and Industrial Aerodynamics,1997,67&68:547-558
    [44]Joachim Seifert, Yuguo Li, James Axley, Markus Ro" sler. Calculation of wind-driven cross ventilation in buildings with large openings. Journal of Wind Engineering and Industrial Aerodynamics,2006,94:925-947
    [45]Y.Chenga, F.S.Liena, E.Yeeb, R.SinclairA. Comparison of large Eddy simulations with a standard k-e Reynolds-averaged Navier-Stokes model for the prediction of a fully developed turbulent flowover a matrix of cubes. Journal of Wind Engineering and Industrial Aerodynamics,2003,91:1301-1328
    [46]S. MURAKAMI, S. IIZUK.A. CFD analysis of turbulent flow past square cylinder using dynamic LES. Journal of Fluids and Structures,1999,13.1097-1112
    [47]H.W. Tielemana. T.A. Reinholdb, M.R. Hajj. Detailed simulation of pressures in separated/reattached flows. Journal of Wind Engineering and Industrial Aerodynamics,2001,89:1657-1670
    [48]S. Murakami. Overview of turbulence models applied in CWE-1997. Journal of Wind Engineering and Industrial Aerodynamics,1998,74-76:1-24
    [49]Li Yongxin, Li Baoming, Wang Chaoyuan, Shi Yanpeng. Effects of Shading and Roof Sprinkling in Venlo-Type G reenhouse in Summer. Transactions of the CSAE,2002, Vol.18(5):127-130
    [50]D.H. Willits. Cooling Fan-ventilated Greenhouses: a Modelling Study. Biosystems Engineering,2003,84(3): 315-329
    [51]Yu Chaogang,Ying Yibing.Wang Jianping,Jamal,Yang Jia.Determining heating pipe temperature in greenhouse using proportional integral plus feedforward control and radial basic function neural-networks.Journal of Zhejiang University Science,2005,6A(4):265-269.
    [52]A. Mistriotis,D. Briassoulis. Numerical estimation of the internal and external aerodynamic coefficients of a tunnel greenhouse structure with openings. Computers and Electronics in Agriculture,2002,(34):191-205.
    [53]宋占军.五连拱温室的结构计算.农业工程学报1998,14(1),164-168
    [54]沈正炳,黄文彬.多联栋温室框架结构的弹塑性计算.农业工程学报2000,16(2),105-108.
    [55]郭万东,徐泳,张天柱.温室结构风压的CFD模拟.中国农业大学学报2005,10(1):56-59
    [56]王笃利,陈青云,曲梅.温室基本风压取值方法探讨.农业工程学报,2005,21(11),171-174.
    [57]曹保山.拱形连栋塑料温室强度计算模型与结构稳定性研究:[博士学位论文].浙江:浙江大学,2000
    [58]孙德发.连栋塑料温室结构设计理论及工程应用研究:[博士学位论文].浙江:浙江大学,2002
    [59]孙德发,苗香雯,崔绍荣.互插型连栋塑料温室的结构设计.农机化研究,2002.2:53-56
    [60]谢小妍,陈凯.华南型单栋塑料温室风荷载模拟试验研究.农业工程学报2000,16(5),90-94.
    [61]剧锦三,郭彦林.拱结构的弹性二次分岔屈曲特性性能初探.中国农业大学学报,2001,6(2),105-108.
    [62]周长吉.大型连栋温室设计风雪荷载分级标准初探.农业工程学报,2000,16(4),103-105
    [63]孙德发,苗香雯,崔绍荣.连栋温室结构设计中动态风压取值方法初探.农业工程学报,2002,18(1),93-95.
    [64]孙德发.连栋温室结构设计中风荷载取值方法初探.农机化研究,2004,4:78-80
    [65]孙德发,俞永华.非连续加温温室结构设计中雪荷载取值方法.农机化研究.2002,4:49-51
    [66]俞永华,崔绍荣,苗香雯,等.华东型连栋温室结构设计.农业工程学报1999,15(2),151-154.
    [67]郑金土,李扬.连栋塑料温室GLP-728结构的力学分析和优化设计初探.农业工程学报2000,16(1),79-82.
    [68]张畅,华南型单栋温室模型试验及结构形式优选:[硕士学位论文].广东:华南农业大学,2003.
    [69]王七斤,北方大型连栋温室结构的优化设计:[硕士学位论文].山西:山西农业大学,2002.
    [70]温室结构设计荷载.GB/T 18622—2002.国家质量监督检验检疫总局,2002.
    [71]周长吉.程勤阳译.美国温室制造业协会温室设计标准.中国农业出版社,1998.
    [72]叶淑娟译.园艺设施结构安全标准.北京:中国农业出版社,1989.
    [73]童莉,张政,陈忠购,张天柱.机械通风条件下连栋温室速度场和温度场的CFD数值模拟.中国农业大学学报,2003,8(6):33-37
    [74]李永欣,李保明,李真,丁涛.Venlo型温室夏季自然通风降温的CFD数值模拟.中国农业大学学报,2004,9(6):44-48
    [75]赵云.机械通风温室内部温度模型的试验验证.农机化研究,2005,9:166-168
    [76]赵云,Meir Teit.基于变频驱动的温室变风量通风节能效果试验.农业机械学报,2006,37(5):106-109
    [77]樊琦,俞永华,杨祥龙.连栋塑料温室自然通风系统数值模拟研究.农机化研究,2006,8:60-62
    [78]苗香雯,郑荣进,何法才.玻璃温室和塑料大棚外水膜喷雾降温系统及其光谱特性.浙江农业大学学报,1993,19(11):30-33
    [79]谢守勇,苏振祥,郑显文,朱代林.温室地热降温系统的热工研究.西南农业大学学报,2001,23(1),89-90.
    [80]赵德菱,高崇义,梁建.温室内高压喷雾系统降温效果初探.农业工程学报,2000,16(1),87-90.
    [81]王吉庆,张百良.几种降温措施在温室夏季降温中的应用研究.农业T程学报,2006,22(9):257-260
    [82]李红莲,邢文刚,张娟,寇立娟.不同降温措施对连栋玻璃温室内温度的影响.沈阳农业大学学报,2006,37(2):241-244
    [83]刘小波,陈友明.混合通风的研究现状与应用.海外传真,20005,3:83-86
    [84]李红莲,邢文刚术,张娟,寇立娟.不同降温措施对连栋玻璃温室内温度的影响.沈阳农业大学学报,2006,37(5):106-109
    [85]王勖成.有限元单元法.清华出版社,2003.
    [86]郭乙木,陶伟明.线性与非线性有限元及其应用.机械工业出版社,2003.
    [87]凌道盛,徐兴.非线性有限元及程序.浙江大学出版社,2004.
    [88]王辉.膜结构的非线性有限元分析:[硕士学位论文].天津:天津大学,2002.
    [89]王乐梅.膜结构分析中若十问题的有限元线法的研究:[博士学位论文].北京:北京大学,2002.
    [90]李庆祥.薄膜结构的动力分析和风致气动力失稳研究:[博士学位论文].浙江:浙江大学,2006.
    [91]毛国栋.索膜结构设计方法研究:[博士学位论文].浙江:浙江大学,2004.
    [92]沈世钊,陈听.网壳结构稳定性.北京:科学出版社,1999.
    [93]陶文铃.数值传热学(第2版),西安交通大学出版社,2001.
    [94]黄本才.结构抗风分析原理及应用.同济大学出版社2002.
    [95]陈务军.膜结构工程设计.中国建筑工业出版社.
    [96]吴德让.农业建筑学.农业出版社1994.
    [97]膜结构技术规程.CECS 158:2004中国计划出版社,2004
    [98]农业用聚乙烯吹塑薄膜.GB 4455—94.国家技术监督局,1995.
    [99]塑料薄膜拉伸性能试验方法.GB 13022—91.国家技术监督局,1991.
    [100]冷弯薄壁型钢结构技术规范.GB50018—2002.中国建筑工业出版社,2002.
    [101]网结构技术规程.JGJ61-2003.中国建筑工业出版社,2003.
    [102]中华人民共和国建设部.GB50009—2001建筑结构荷载规范.北京:中国建筑工业出版社.2002.
    [103]Canadian Commission on Buiding and Fire Code. NRC-CNRC National Building Code of Canada[S].
    [104]日本建筑学会建筑荷载建议.AIJ(Architectural Institute of Japan) Recommendations for Loads on Building[S]
    [105]魏德敏,戴维荧.张拉膜结构的有限元分析.力学与实践2005,27(1):46-50.
    [106]谭锋,杨庆山,李作为.薄膜结构分析中的褶皱判别准则及其分析方法.北京交通大学学报2006,30(1):35-39.
    [107]江锡虎,谢步瀛,陈慧进.充气膜结构非线性分析的ANSYS实现.结构工程师,2006,22(1):38-42.
    [108]苏建华,韩大建,徐其功.考虑与弹性支承相互作用的膜结构找形分析.工业建筑,2006,22(1):38-42.
    [109]农膜用聚乙烯树脂的主要性能与开发应用.塑料加工与应用2006,36(2):75-78.
    [110]张华,周星德,单建.薄膜结构的几何非线性分析.应用力学学报2004,21(2):106-109.
    [111]陈小雷,苏一凡.国内功能棚膜现状及发展方向.塑料加工,1999,27(3):11-16.
    [112]张华,周星德,单建薄.膜结构的几何非线性分析.应用力学学报,2004,21(2):106-109
    [113]魏德敏,戴维荧.张拉膜结构的有限元分析.力学与实践,2005,27:46-50
    [114]吴剑国,张其林,杨联萍,姚念亮.膜结构设计实用表达式的研究.结构工程师,2004,20(4):13-17
    [115]唐敢,尹凌峰,马军,赵惠麟.单层网壳结构稳定性分析的改进随机缺陷法.空间结构,2004,10(4):44-47
    [116]罗永峰,滕锦光,沈祖炎.确定结构分支点及跟踪平衡路径的改进弧长法.同济大学学报,1997,25(5):502-507
    [117]甘华戎,王树文,周颖.有初始缺陷的壳的稳定性分析.西安公路交通大学学报,1997,17(3):41-44
    [118]吴洪飞,苑世剑,王仲仁.初始缺阶和比例加载路径对圆柱壳弹塑性稳定性的影响.机械工程学报,2003,39(2),53-57.
    [119]何运林.结构稳定理论.水利水电出版社,1995.
    [120]秦云,张耀春,王春刚.数值风洞模拟结构静力风荷载的可行性研究.哈尔滨工业大学学报,2004,36(12):1593-1597
    [121]楼文娟,卢旦.在建厂房的风荷载分布及其风致倒塌机理.浙江大学学报(工学版),2006,40(11):1842-1845
    [122]楼文娟,卢旦,孙炳楠.风致内压及其对屋盖结构的作用研究现状评述.建筑科学与工程学报,2005.12(1):76-82
    [123]工辉,陈水福,唐锦春.低层坡屋面群体建筑表面风压的数值模拟.工程力学,2003,20(6):135-140
    [124]王辉,陈水福,唐锦春.低层房屋风压分布特性的模拟与分析.工程力学,2004,21(3):272-276
    [125]程志军,楼文娟,孙炳楠,唐锦春,屋面风荷载及风致破坏机理.建筑结构学报2000,21(4):39-47
    [126]吕文珊,汤广发,文继红,建筑数值风洞的基础研究.湖南大学学报,1994,21(6):114-118.
    [127]杨伟,顾明.高层建筑三维定常风场数值模拟.同济大学学报,2003,31(6):647-651.
    [128]孙晓颖,武岳,沈世钊.大跨屋盖风压分布的数值模拟及拟合方法研究.哈尔滨工业学报,2006,38(4),553-557.
    [129]秦云,张耀春,王春刚,计算流体动力学在建筑风工程中的应用,哈尔滨工业大学学报,2003.35(8):977-981
    [130]王晓宁,李丽霞,王明贤.有风情况下池火灾的数值模拟.江苏大学学报(自然科学版),2006,27(4):328-331.
    [131]沈世钊,武岳.膜结构风振响应中的流固耦合效应研究进展.建筑科学与工程学报,2006,23(1):1-9.
    [132]王松涛,冯广和,陈端生,等.论我国设施园艺建设的宏观管理.农业工程学报1999,15(1),153-158.
    [133]李保明,施正香,张晓颖,等.利用地下水对猪舍地板局部降温效果研究.农业工程学报2004,20(1),255-258.
    [134]应义斌,王剑平,俞水华.采用降温膜与地下水循环管道的连栋温室组合降温系统.中国,专利号:ZL200310108208.7.
    [135]应义斌,王剑平,俞永华.连栋温室白然通风与机械通风兼用系统.中国,专利号:ZL2003 1 0108095.0,的应用前景.农机化研究,2004.1:209-211.
    [136]胡太君,王剑平,应义斌.工业以太网在温室控制中的应用前景.农机化研究,2004.1:209-211.
    [137]李迎霞,杜尚丰.中国温室环境智能控制算法研究进展.农业工程学报2004,20(2):267-27.1
    [138]朱伟兴,毛罕平,李萍萍,等.智能温室群集散控制系统设计研究.农业工程学报1999,15(4):162-166.
    [139]余朝刚,应义斌,王剑平. 带前馈的比例积分(PI)控制方法在温室热水加温系统中的应用.农业T程学报2004,20(4):227-229.
    [140]孙忠富,张志斌,仝乘风,等.温室番茄生产实时在线辅助决策支持系统的研制.农业工程学报2001,17(4):75-78.
    [141]陈青云,李成华.农业设施学.中国农业大学出版社,2001.
    [142]方瑞纲,陆桦.台风“麦莎”对薄膜温室结构影响的分析.农村实用工程技术:温室园艺2006,1:18-19
    [143]张兆顺,崔桂香,许春晓.湍流理论与模拟. 清华大学出版社,2005.
    [144]王福军,计算流体动力学分析——CFD软件原理与应用.清华大学出版社,2004
    [145]周长吉,现代温室T程.化学工业出版社,2003
    [146]蔡象元.现代蔬菜温室设施和管理.上海:上海科学技术出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700