用户名: 密码: 验证码:
介质深层带电数值模拟与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Research on Numerical Simulation and Application of Deep Dielectric Charging Effect
  • 作者:秦晓刚
  • 论文级别:博士
  • 学科专业名称:凝聚态物理
  • 学位年度:2010
  • 导师:贺德衍
  • 学科代码:070205
  • 学位授予单位:兰州大学
  • 论文提交日期:2010-04-01
摘要
高能粒子与航天器介质材料相互作用引起的空间介质深层带电效应对航天器的长寿命、高可靠运行构成了严重的威胁,一直是航天器充放电效应及其防护技术研究的热点问题。目前,将蒙特卡罗粒子输运模拟引入到航天器空间环境效应分析和评价中,并与具体空间环境效应模型相结合,已经成为一种解决粒子辐照引起空间环境效应数值模拟的普遍方法。
     本论文首先对当前空间介质深层带电研究的现状和发展趋势进行了总结,提出了GEANT4-RIC方法,即采用GEANT4粒子输运模拟工具包实现介质深层充电辐射过程数值模拟,利用辐射诱导电导率(RIC)模型实现介质内部电场计算。研究了利用GEANT4工具包进行介质深层带电辐射模拟的物理过程建模和物理量统计方法,推导出了介质结构的辐射诱导电导率充电动力学方程,解决了不同介质结构的内电场数值计算问题,同时通过对文献中所报道的算例进行计算,对比了电荷密度、表面电位和内部电场分布模拟结果,验证了GEANT4-RIC模型及其计算方法的正确性。
     利用建立的模拟方法,研究了介质材料密度、厚度、电导率等参数对介质深层带电的影响,获得了在FLUMIC2最恶劣电子环境下,FR4和TEFLON在背面接地时介质深层带电的规律。结果表明:介质密度对内充电过程中的电荷密度分布影响明显,随着密度的增加,介质内电荷密度增大;介质厚度对电荷密度分布和电场分布的影响非常显著,当介质厚度小于射程时,最大电场会随着介质厚度的增加而不断增大;电导率对内电场的影响较大,当电导率低于1×10-14Ω-1m-1时,介质材料会产生严重的充电问题。
     针对我国卫星采用盘环结构件及其工作状态,建立了介质内充电的三维RIC数学模型,开展了未辐照、理想介质辐照和RIC模型介质辐照三种情况下的数值计算,初步验证了GEANT4-RIC作为一种通用方法在处理二维和三维的复杂介质结构深层带电评价问题上的可行性。
     首次将GEANT4-RIC方法用于卫星介质深层带电监测器(IDM)的研制工作中,对IDM所采用的FR4覆铜板在背面接地条件下的充电过程进行了数值模拟,表明在1MeV,10pA/cm2的高能电子辐照下,样品的平均放电时间为4.6分钟,与地面试验结果接近。
     最后,采用GEANT4-RIC方法首次研究了质子引起的空间介质深层带电问题,验证了GEANT4-RIC方法用于质子引起空间介质深层带电问题预测和评估的可行性,为进一步开展质子引起的介质深层带电问题研究提供了一条途径。
Deep Dielectrics Charging effect due to interactions between high energy electrons and spacecraft dielectric materials seriously threatens the objects of long life and high reliability for on-orbit spacecraft missions, and also is a hot research direction in Spacecraft Charging Effect and Protection Technology field in recent years. Currently, it becomes a common numerical simulation method to solve analysis and evaluation of spacecraft environmental effects by introducing Monte Carlo particle transfer simulation into concrete space environmental effect models.
     The paper firstly reviews state of art and developing trends for current space deep dielectrics charging effect research and puts forward an new GEANT4-RIC numerical method in that GEANT4 particle transfer simulation package is used to realize radiation simulation in deep dielectrics charging process and Radiation-Induced Conductivity model is used to calculate internal electric field of dielectrics. It is studied that the physical processes and statistical method of detecting parameters involving in the internal charging with GEANT4 simulation. Moreover, RIC equations of dielectric structures are derived for deep dielectrics charging simulation. Through calculating examples of publish literature, the effectiveness of this evolution method is verified by contrast in charge density and surface voltage and profile of internal field.
     On the basis of GEANT4-RIC method, influence of density and thickness and conductivity of dielectric for deep dielectrics charging effect is investigated. The FR4 and TEFLON law deep dielectrics charging is obtained in space electron environment model of FLUMIC2, result indicate that (1) density of dielectric have affected profile of charge density in deep dielectrics charging, charge density will increase with density of dielectric; (2) thickness of dielectric have affected profile of internal field, internal field will increase with thickness of dielectric when thickness less than electron distance; (3) conductivity of dielectric have obviously affected internal field, dielectric will bring serious charging problem when conductivity less than 1e-14Ω-1m-1.
     The paper firstly use the method of GEANT4-RIC in manufacture of Internal Discharging Monitor(IDM). Charging process of FR4 print circuit board using in IDM is simulate under rear grounding, result indicate average discharging time of sample under 1MeV,10pA/cm2 energetic electron radation is 4.6 munites. It is very close to testing result of average discharging time.
     According to the structure features of discal ring and operation, RIC maths model of 3-D is established and calculate the three charging state without radiation and ideal dielectric RIC model diectric under radiation, primarily validate ability that GEANT4-RIC deal with deep dielectrics charging of 2-D and 3-D complex structure as a universal method.
     Finally, the GEANT4-RIC method is also introduced to research proton induced internal charging problem. The simulations prove its feasibility on predicting and evaluating dielectric intenal charging effect and also provide an alternative way for proton induced internal charging research.
引文
[1]徐福祥.卫星工程概论[M].北京:宇航出版社,2003.
    [2]都亨,叶宗海.低轨道航天器空间环境手册[M].北京:国防工业出版社,1996.
    [3]H.B.Garrett. The charging of spacecraft surfaces. Rev. Geophys[J],1981,19:577-616.
    [4]Andrew J. Sims. Electrostatic charging of spacecraft in Geosynchronous orbit[R]. Farnborough,1992
    [5]C.K. Purvis, H.B. Garrett, N.J. Stevens. Design guidelines for assessing and controlling spacecraft charging effects[R]. NASA,1984
    [6]Katz, V.A. Davis, M.J. Mandell, etl. Interactive spacecraft charging interactive handbook with integrated, updated spacecraft charging models[R].38th Aerospace Sciences Meeting & Exhibit. Reno, Nevada,2000
    [7]Whittlesey A. Avoiding Problems Caused by Spacecraft On-orbit Internal Charging Effects[R]. NASA,1997
    [8]J. S(?)rensen. Engineering tools for internal charging[R]. ESA,1999
    [9]J. S(?)rensen. Engineering tools for internal charging(Final Report)[R]. ESA,2000.
    [10]叶宗海.空间辐射探测技术[M].北京:科学出版社,1986:1~52
    [11]赖祖武.抗辐射电子学-辐射效应及加固原理[M].北京:国防工业出版社,1998
    [12]韩建伟,张振龙等.卫星深层充放电实验模拟装置研制进展[R].2006年度结构强度与环境工程专委会与航天空间环境工程信息网学术研讨会.成都,2006
    [13]H.B. Garrett, A.C. Whittlesey. Spacecraft charing requirements and engineering issues[R]. 44th AIAA Aerospace Science Meeting and Exhibit. Reno, Nevada,2006
    [14]D. Boscher, S. Bourdarie, etl. A new model for electrons fluxes in GEO[R].54th International astronautical congress of the international astronautical Federation. Bremen, Germany,2003
    [15]A.C. Whittlesey, P. Leung. Space plasma charging—lessons from voyager[R]. AIAA 25th Aerospace sciences meeting. Reno, Nevada,1987
    [16]A.R. Frederickson, E.G Mullen,etl. The CRRES IDM spacecraft experiment for insulator discharge pulses[J]. IEEE transactions on nuclear science,1993,40(2).
    [17]K.A. Ryden. Improved demonstration of internal charging hazards using the 'Realistic electron environment facility'(REEF)[R].8th spacecraft charging technology conference.
    [18]B.A. Briskman, E.R. Klinshpont,etl. Space environment simulation at radiation test of nonmetallic materials[J]. Nuclear Instruments and Methods in Physics Research B,1999, 151:427-433.
    [19]A.R. Frederickson, D.H. Radiation induced electrical current and voltage in dielectric structures[R].AFCRL-TR-74-0582,1974.
    [20]D.J. Rodgers. DICTAT software:User's manual[R]. DERA/CIS/CIS2/SUM991081,1999.
    [21]D.J. Rodgers, K.A. Ryden,etl. An engineering tool for the prediction of internal dielectric charging[R].6th international spacecraft charging conference, AFRL,1998.
    [22]黄建国,陈东.卫星介质深层充电的计算机模拟研究[J].地球物理学报,2004,47(3):392-397.
    [23]李学胜,焦维新.CRRES卫星内部充电的模拟计算与验证.空间科学学报[J],2007,27(4):309-314.
    [24]杨垂柏,王世金等.地球同步轨道航天器深层充放电试验的一种方案[J],核电子学与探测技术.2005,25(2):222-226.
    [25]D.A. Berkley. Computer simulation of charge dynamics in electron-irradiated polymer foils[J]. J.Appl. Phys,1979,50(5).
    [26]GM. Sessler. Charge dynamics in irradiated polymers[J]. IEEE transactions on Electrical insulation,1992,27(5):968-973.
    [27]GM. Sessler, M.T. Figueiredo,etl. Models of charge transport in electron-beam irradiated insulators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004,11(2):192-202.
    [28]M.S. Gussenhoven, E.G. Mullen. Space radiation effects program:an overview[J]. IEEE Transactions on nuclear science,1993,40(2):221-227.
    [29]B.K. Dickter, F.A. Hanser,etl. Hunerwadel. High energy electron fluxmeter[J]. IEEE transactions on nuclear science,1993,40(2):252-255.
    [30]A.R. Frederickson, E.G. Mullen, et al. Radiation-induced insulator discharge pulses in the CRRES internal discharge monitor spacecraft samples [J]. IEEE Transactions on Nuclear Science,1993,40(2):150-154.
    [31]Ciccolella, J. Wolf. The discharge detector experiment[R].7th Spacecraft Charging Technology Conference,2001.
    [32]D. H. Brautigam, J. T. Bell. CRRESELE DOCUMENTATION[R]. PL-TR-95-2128.
    [33]A.R. Frederickson, D.H. Brautigam. Mining CRRES IDM Pulse Data and CRRES Enviromental Data to Improve Spacecraft charging/Discharging Models and Guidelines[R]. NASA. Alabama,2004.
    [34]A.R. Frederickson, J.R. Dennison. Measurement of conductivity and charge storage in insulators related to spacecraft charging[J]. IEEE Transactions on Nuclear Science, 2003,50(6):2284-2291.
    [35]A.R. Frederickson, A.C. Whittlesey, etal. Comparing CRRES internal discharge monitor results with ground tests and published guidelines [R]. The 7th Spacecraft Charging Technology Conference,2001.
    [36]N.W. Green, A.R. Frederickson, et al. Experimentally Derived Resistivity for Dielectric Samples From the CRRES Internal Discharge Monitor[J]. IEEE Transactions on Nuclear Science,2006,34(5):1973-1978.
    [37]A.R. Frederickson, E.G. Holeman, et al. Characteristics of spontaneous electrical discharging of various insulators in space radiations [J]. IEEE Transactions on Nuclear Science,1992,39(6):1773-1782.
    [38]A.R. Frederickson. New scaling laws for spacecraft discharge pulses [R]. The 7th Spacecraft Charging Technology Conference,2001.
    [39]Agostinelli S, et al. GEANT4-a simulation toolkit[J]. Nuclear Instruments and Methods in Physics Research A,2003,506(3):250-303.
    [40]GEANT4 Collaboration. Introduction to GEANT4 (version:GEANT4 9.0,29 June, 2007)[Z]. http://wwwinfo.cern.ch/asd/GEANT4/GEANT4.html.
    [41]GEANT4 Collaboration. GEANT4 user's guide for application developers (version: GEANT49.0,29 June,2007)[Z]. http://wwwinfo.cern.ch/asd/GEANT4/GEANT4.html.
    [42]仇小鹏,杨平利,田传艳.基于VC++开发GEANT4数值模拟程序[J].计算机模拟,2008,27(6):255-258,262.
    [43]GEANT4 Collaboration. GEANT4 user's guide for toolkit developers[Z]. http://wwwinfo.cern.ch/asd/GEANT4/GEANT4.html.
    [44]杨福家,王炎森,陆福全.原子核物理[M].上海:复旦大学出版社,2002.
    [45]王广厚.粒子同固体相互作用物理学[M].北京:北京大学出版社,1988.
    [46]GEANT4 Collaboration. Physics reference manual (version:GEANT4 9.0,29 June, 2007)[Z]. http://wwwinfo.cern.ch/asd/GEANT4/GEANT4.html.
    [47]F. Lei, P.R. Truscott. Multi-Layered shield simulaton software[Z]. http://reat.space.qinetiq.com/mulassis/mulassis_files/mulassis%20sum.pdf.
    [48]黄建国,陈东.卫星中介质深层充电特征研究[J].物理学报,2004,53(3):961~966.
    [49]黄建国,陈东.不同接地方式的卫星介质深层充电研究[J],物理学报.2004,53(5):1611~1616.
    [50]J. P. Catani, D. Payan. Electrostatic behavior of materials in a charging space environment[R].2004 International conference on solid dielectrics. Toulouse, France, 2004.
    [51]J.F. Fennell, H.C. Koons,et al. Internal charging:a preliminary environmental specification for satellites[J]. IEEE Transactions on Plasma Science, 2000,28(6):2029-2036.
    [52]A.R. Fredrickson. Bulk charging and breakdown in electron-irradiated polymers[R]. Proc. Conf. on spacecraft charging technology,1980.
    [53]高柄荣,郝永强,焦维新.用蒙特卡罗方法研究卫星内部带电问题[J].空间科学学报,2004,24(4):289~294.
    [54]黄流兴,牛胜利.蒙特卡罗方法及其应用[M].西安:陕西科学技术出版社,2004.
    [55]吕英华.计算机电磁学的数值方法[M].北京:清华大学出版社,2006.
    [56]刘宗田(译).C++编程思想(M).北京:机械工业出版社,2002.
    [57]QinetiQ. REEF-Realistic electron environment facility[Z]. http://www.QinetiQ.com.
    [58]A.R. Frederickson. Progress in High-Energy electron and X-irradiation of insulating dielectrics[J]. Brazilian Journal of physics,1999,29(2):241-253.
    [59]GF. Leal Feerira, M.T. de Figueiredo. Currents and charge profiles in electron beam irradiated samples under an applied voltage:exact numerical calculation and Sessler's conductivity approximation [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007,10(1):137-147.
    [60]B. Gross. Radiation-induced charge storage and polarization effects[J]. Applied physics, 1987,32:217-284.
    [61]B.Gross. Radiation-induced charge storage and polarization effects. Electrets[J], Topics in Applied physics,1987,33:217-220.
    [62]R.M. Bielby, P.A. Morris,et al. Determination of conductivity parameters of dielectrics used in space applications[R].2004 international conference on solid dielectrics. Toulouse, France,2004.
    [63]易忠,唐小金,张超,孟立飞.材料参数测量在内带电计算中的重要性[R].卫星充放电效应技术学术交流会.兰州,2008.
    [64]刘海,胡杰,何世禹.60-160keV中能电子辐照对光学材料的充放电效应[R].卫星充放电效应技术学术交流会.兰州,2008.
    [65]J.F. Fennell, H.C. Koons,et al. A review of scathe satellite results:charging and discharging[Z]. AD-A158680.
    [66]V.A.Davis, L.W.Duncan. Spacecraft surface charging handbook[Z]. Maxwell Laboratories, 1992.
    [67]H.C. Koons. Spacecraft anomalies database study[Z]. Aerospace report NO. TR-95(5940)-1.
    [68]刘圣民.电磁场的数值方法[M].武汉:华中理工科技大学出版社,1991:100-153.
    [69]王勖成,邵敏.有限单元法基本原理和数值方法(第2版)[M].北京:清华大学出版社,1995
    [70]Akishin I., Dunaev, N.M., et al. Model of Radiation Electrification of Dielectrics in Simulating the Effects of Protons in Space[J]. Physics and Chemistry of Materials Treatment,1999,25(4):380-382.
    [71]PDE Solutions Inc. FlexPDE5.0 Help[Z]. http://www.pdesolutions.com/
    [72]Nelson W.G. Proton Induced Internal Electrostatic Discharges and Charge Storage in Spacecraft Dielectrics[R].45th AIAA Aerospace Science Meeting and Exhibit, Reno, Nevada,2007.
    [73]叶培建,彭兢.深空探测与我国深空探测展望.中国工程科学[J],2006,8(10):13-18.
    [74]Akishin I., Bithoshkin E.A., et al. Electric Discharge Mechanism of Failure of Solid Dielectrics under Proton Radiation[J]. Physics and Chemistry of Materials Treatment, 1996,30(5):197-199.
    [75]Gromov V.V., Sessler G., et al. Effect of Proton Irradiation on Formation of an Electrical Charge in Polyethylene Terephtalate and Teflon Films[J]. Physics and Chemistry of Materials Treatment,1992,26(3):255-257.
    [76]Khorasanov G.L., Rodionov B.N. Electric Discharges in Dielectrics Irradiated by Fast Protons[R]. Preceedings of the Sixth International Symposium of Materials in a Space Enviroment. Noordwijk, Netherlands,1994.
    [77]Boev S.G, et al. Bulk Charging of Dielectrics by Irradiation with Charged Particles[J]. Journal of Electrostatics,1991,8:133-142.
    [78]G.M. Sessler. Models of charge transport in electron-beam irradiated insulators[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2004,11(2):192-202.
    [79]S. Agostinelli, J. Allison, etc al. GEANT4-a simulation toolkit[J]. Nuclear Instruments and Methods in Physics Research A,2003,506:250-303.
    [80]Lei F., Truscott P.R. Multi-Layered Shielding Simulation Software User's Manual[Z]. http://reat.space.qinetiq.com/mulassis/mulassis_files/mulassis%20sum.pdf.
    [81]谢红刚,牛胜利,黄流兴.GEANT4模拟半导体器件的单粒子效应[J].清华大学学报(自然科学版),2007,47(S1):1036-1039.
    [82]Janni J.F. Atomic Data and Nuclear Data Tables 27(2/3)[Z],1982:147-339.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700