用户名: 密码: 验证码:
黄河源区晚新生代沉积与环境演化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球变化是国际当前研究的前沿课题。-65Ma以来,印度板块与欧亚板块的碰撞及其汇聚形成了全球海拔最高的独特地域单元-青藏高原。青藏高原是全球现今仍在活动中的板块碰撞区域之一,是研究岩石圈形成演化、探讨地壳运动机制的理想区域。青藏高原的隆起对其自身及毗邻地区自然环境的演化影响深刻,同时对全球变化的响应非常敏感,也强烈影响着全球变化。青藏高原晚新生代以来有过多次的古大湖期,湖泊沉积物中蕴涵着丰富的古环境变化信息,是研究高原环境变化的良好载体。
     黄河源盆地位于青藏高原东北部,对高原隆升引起的气候变化的非常敏感,是研究高原环境变化的良好区域之一。然而,目前对这一地区晚新生代以来的湖相地层和环境变化还比较薄弱,在湖泊演化、高原隆升等方面尚需实际资料的进一步加强。
     本论文以黄河源区湖相沉积地层为主要研究对象,以古气候环境演化为主线,进行了沉积地层、同位素年代、环境地球化学、孢粉与微古生物、构造地貌、盆地性质等方面的研究,总结了湖相地层沉积序列,恢复了黄河源盆地晚新生代以来的古环境、古气候变化,探讨了湖泊演化与高原隆升、环境演变的关系。取得的主要认识如下:
     黄河源区晚新生代湖相地层其南界为巴颜喀拉山,北界为布青山,西界为雅拉达泽山,东侧则包括黄河干流达日县特合土乡以上的流域范围。这套地层开始沉积于223.9万年,由全新统黑河乡组(Qh1h)、上更新统大野马岭组(Qp31d)、中更新统鄂陵湖组(Qp21e)及下更新统野牛沟组(Qp11y)组成。
     黄河源盆地受南北两条断裂控制,北缘为昆南断裂,南缘断裂为巴颜喀拉山山前断裂,两条断裂带在晚新生代均为挤压性质。盆内断裂主要有布青山山前断裂、玛多断裂、巴颜河前断裂、麻多—野牛沟断裂。黄河源盆地现今为一压陷盆地,这是由盆地南北断裂的性质决定的。盆地的形成演化可分为两个阶段,渐新世(35.4Ma-23.3Ma)黄河源盆地雏形形成,中新世黄河源盆地的基本形态形成。盆地基底岩石磁组构分析认为,黄河源盆地基底岩石中存在两条韧性剪切带,韧性剪切带控制现今湖盆的展布,两条韧性剪切带与两条湖泊分布带有很好的对应关系。
     黄河源区整体海拔较高,但区域内地形坡度较缓。其中海拔4500-5000m的区域为黄河源盆地汇水区域,大于4500m的区域为黄河源盆地的集水区域。水系特征显示黄河源地区以黄河干流为中轴,两侧流域地貌发育呈现明显的南北分异现象,具有显著的不对称发育特征。三维DEM分析认为现今地貌形态是构造作用与地表过程共同作用的产物,现今盆地东西长,南北短。
     黄河源盆地早更新世(223.9万年)以来的古植被、古环境演变经历四个阶段:第1阶段(223.9万年~90.1万年)为森林草原环境,当时气候温暖潮湿;第2阶段(90.1万年~35万年)为灌丛草原环境,气候变的干冷;第3阶段(35万年~2.8万年)为草甸草原环境,气候逐渐趋于寒冷;第4阶段(2.8万年~0.8万年)为荒漠草原环境,初期气候干冷,晚期气候干旱。黄河源地区早更新世(223.9万年)以来古湖泊发育经历了三次扩张三次萎缩过程,第一次扩张萎缩发生在早更新世,大致为223.9万年~76.4万年,湖泊沉积物主要为粗粒的砂砾石层,湖泊范围不大;第二次湖泊发育大致为70.7万年~21.1万年,为中更新世时期,这次湖泊发育达第四纪以来最大范围;第三次湖泊发育大致为20.5万年~8.10万年,这一时期湖泊扩张很快,但未达到中更新世最大范围即开始萎缩。进入全新世湖泊虽有波动,但仍以萎缩为主。
     论文最后探讨了青藏高原湖泊演化、气候环境变迁与高原隆升的关系,认为高原内部的环境演化总体规律受高原隆升强烈控制,而全球尺度的气候变化在青藏高原上的表现则受全球变化因素影响。
The Qinghai-Tibet Plateau, the world's highest unique geographical unit formed during India-Eurasia collision since~65 Ma, is a hot spot of global change study--an international forefront of current research topics. It is considered to be one of the still active regions in the continental collision zone, and then an ideal field lab to study the formation and evolution of the lithosphere, and the mechanism of crust movements. The uplift of the plateau since the late Cenozoic has influenced the evolution and differentiation of natural environment for its own and adjacent areas profoundly, and has been also a sensitive response of and strong influence on global change. Lacustrine sediments from several phase ancient Great Lake in the Qinghai-Tibet Plateau since the Late Cenozoic, containing abundant information on palaeoclimate change, are good carriers for the study of plateau environmental change.
     The Yellow River Basin located at the northeast of the plateau, is the Yellow River source region sensitive to the plateau uplift and environmental change. The lacustrine strata and environmental change since the Late Cenozoic in this region has not been investigated in detail due to the lack of strengthened actual data on plateau uplift and lake evolution. In this dissertation, the lacustrine sedimentary strata of Yellow River Basin are selected to be the main target of palaeoclimate and environmental study.
     The sedimentary sequence of lacustrine strata, the palaeoenvironment and palaeoclimate of Yellow River Basin, and the relationship among lacustrine evolution, plateau uplift and environmental change since the Late Cenozoic, are summed up and restored in this dissertation, through the combined study of sedimentology, isotopic geochronology, environmental geochemistry, pollen analyses and micro-palaeontology, tectonic geomorphology, and structural geology of the basin system. The main progresses and achievements made by the research here are as follows:
     1. The Late Cenozoic lacustrine strata in the Yellow River source region, surrounded by Bayankala Mt. in the south, Buqing Mt. in the north, Yaladaze Hill in the west, and the Tehetu area of Dari County in the east, composed by the Holocene Heihexiang Group (Qh1h), the Upper Pleistocene Dayemaling Group (Qp31d), the Middle Pleistocene Eling Lake Group (Qp21e) and the Lower Pleistocene Yeniugou Group (QpI1y),is suggested to be formed since 2,239 kaB.P..
     2. The Yellow River Basin is a sag basin in the Late Cenozoic, controlled by the two compressional margin faults, i.e., the Kunnan fault in the north and the Bayankala mountain-front fault in the south, and several intrabasinal faults such as the Buqingshan mountain-front fault, the Maduo fault, the Bayan River fault, and the Maduo-Yeniugou fault. The formation and evolution of the basin can be divided into two phases:the initial phase in the Oligocene between 35.4 Ma to 23.3 Ma, and the finally formation phase in the Miocene.
     3. Two ductile shear zones, which are controlling and corresponding to the distribution of two lake zones, are detected in the Yellow River source region through magnetic fabric analyses of the basement rocks.
     4. The structural landform analysis shows that the basin area is regionally high with elevation of 4500~5000 m in the gentle dipping water shedding area, and higher in the catchment area of>4500 m. The drainage system of the basin is charactered by the significant asymmetry in growth, with the Yellow River as its axis and clearly differentiated northern and southern valley landforms. Three-dimension DEM analysis suggests that the present elliptical basin with a long axis in E-W is a structural basin resulting from combined tectonic and surface processes.
     5. The Yellow River Basin has suffered from four stage changes in palaeovegetation and palaeoenvironment since the early Pleistocene (2,239 kaB.P.). The first stage (2,239~901 kaB.P.) was dominated by the forest-steppe environment with a warm and humid climate. The second stage (901-350 kaB.P.) was the shrub steppe environment with a cold and dry climate. The third stage (350 kaB.P.~28 kaB.P.) was the meadow steppe environment with gradually cooling climate. The fourth Stage (28kaB.P.-8 kaB.P.) was the desert steppe with dry and cold weather in the early time and later drought.
     6. The development of the ancient great lakes in the Yellow River source region had went through three expanding and three shrinking processes since the Early Pleistocene (2,239 kaB.P.). The first expansion and shrinking period as a limited lake was in the early Pleistocene during 2,239 kaB.P.~764 kaB.P., with sediments mainly of coarse-grained sands and gravel layers. The second period was in the Middle Pleistocene during 211 kaB.P.~70.7 kaB.P.when the lake had reached the maximum extent in the Quaternary and then shrank. The third period was during approximately 205kaB.P.~81 kaB.P, with the quickly expanding first, and then the beginning of shrinking of the lake. The lake was shrinking in the Holocene with several fluctuations.
     Finally, the relationship among the formation and evolution of the lakes, the climate change and the plateau uplift is discussed, and the overall evolutional law of the intra-plateau environment is considered to be strongly controlled by the uplifting of the plateau with the superposing of global climate change.
引文
[1]潘保田,李吉均,陈发虎.青藏高原:全球气候变化的驱动机与放大器,Ⅰ.新生代气候变化的基本特征[J].兰州大学学报(自),1995,31(3):120-128.
    [2]潘保田,李吉均,陈发虎.青藏高原:全球气候变化的驱动机与放大器,Ⅱ.青藏高原隆起的基本过程[J].兰州大学学报(自),1995,31(4):160-167.
    [3]潘保田,李吉均.青藏高原:全球气候变化的驱动机与放大器,Ⅲ.青藏高原隆起对气候变化的影响[J].兰州大学学报(自),1996,32(1):108-115.
    [4]青海地质调查院,中国地质大学(北京).黄河源区生态环境地质调查报告[P],2002.
    [5]王天祯.青海黄河源地区的第四纪地层划分[J].西北地质,1989,4:1-4.
    [6]王绍令,李位乾.黄河源区第四纪地层及古地理环境演化探讨[J].冰川冻土,1992,14(1):45-55.
    [7]徐叔鹰.黄河源区晚第四纪环境变迁[J].铁道师院学报(自然科学版),1995,12(4):36-45.
    [8]潘保田.贵德盆地地貌演化与黄河上游发育研究[J].干旱区地理,1994,17(3):43-50.
    [9]潘保田,李吉均,曹继秀,等.化隆盆地地貌演化与黄河发育研究[J].山地研究,1996,14(3):153-158.
    [10]周尚哲,李吉均,潘保田,等.黄河源区更新世冰盖初步研究[J],地理学报,1994,49(1):64-71.
    [11]周尚哲.巴颜喀拉山第四纪冰川序列[J],冰川冻土,1995,17(3):230-240.
    [12]Zhou Shangzhe, Li Jijun, The sequence of quaternary glaciation in the Bayan Har Mountains. Quaternary International,1998,45-46:135-142.
    [13]李吉均,方小敏,马海洲,等.晚新生代黄河上游地貌演化与青藏高原隆起[J],中国科学(D),1996,26(4):316-322.
    [14]张森崎,王永贵,辛元红,等.黄河源区早更新世含植物化石地层的发现及意义[J].中国地质,2006,33(1):78-85.
    [15]程捷,姜美珠,咎立宏,等.黄河源区第四纪地质研究的新进展[J].现代地质,2005,19(2):239-246.
    [16]Ruddiman,W.F.et al. Late Cenozoic uplift in southern Asia and the American West:rationale for general circulation modeling experiments.J.Geophys.Res,1989,9 (15):379-391.
    [17]Kutzbach J E, Prell W L, Ruddiman W F. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau.J Geol,1993,101:177-190.
    [18]李吉均.青藏高原的地貌演化与亚洲季风[J].海洋地质与第四纪地质,1999,19(1):1-11.
    [19]Thompson R,Oldfield F. Environmental Magnetism. London:George Allen & unwin,1986,10-20.
    [20]郑度,姚檀栋.青藏高原形成演化及其环境资源效应研究进展[J],中国基础科学,2004,(2):15-21.
    [21]王苏民,李建仁.湖泊沉积-研究历史气候的有效手段-以青海湖、岱海为例[J].科学通报,1991,36(1):54-56.
    [22]黄麟.青海湖沉积物的沉积速率及古气候演变的初步研究[J].科学通报,1988,(22):1740-1744.
    [23]张彭熹,张保珍,杨文博.青海湖冰后期以来古气候破动模式的研究[J].第四纪研究,1989,(1)66-77.
    [24]李炳元.青藏高原大湖期[J].地理学报,2000,55(2):174-182
    [25]郑绵平,赵元艺,刘俊英.第四纪盐湖沉积与古气候[J].第四纪研究,1998,(4):297-307.
    [26]郑绵平,袁鹤然,赵希涛,等.青藏高原第四纪泛湖期与古气候[J].地质学报,2006,80(2):169-181.
    [27]张虎才,B.Wunnemann.腾格里沙漠晚更新世以来湖相沉积年代学及高湖面期的初步确定[J].兰州大学学报(自然科学版),1997,33(2):87-91.
    [28]贾玉连,施雅风,马春梅,等.40kaBP来亚非季风演化趋势及青藏高原泛湖期[J].地理学报,2004,59(6):829-840.
    [29]赵希涛,朱大岗,吴中海,等.西藏纳木错晚更新世以来的湖泊发育[J].地球学报,2002,23(4):329-33
    [30]赵希涛,朱大岗,严富华,等.西藏纳木错末次间冰期以来的气候变迁与湖面变化[J].第四纪研究,2003,23(1):241-253.
    [31]ZHU Dagang,ZHAO Xitao,MENG Xiangang,et al. Quarternary Lake Deposits of Nam Co, Tibet, with a Discussion of the Connection of Nam Co with Ring Co-Jiuru Co. ACTA GEOLOGICA SINICA,2002,76 (3):283-291.
    [32]朱大岗,赵希涛,孟宪刚,等.西藏纳木错晚更新世以来湖面变化和藏北高原古大湖的演化[J].地质通报,2003,22(11-12):918-927.
    [33]ZHU Dagang, MENG Xiangang, ZHAO Xitao,et al. Evolution of an ancient large lake in the southeast of the northern Tibetan Plateau. ACTA GEOLOGICA SINICA,2004,78 (4):982-992.
    [34]车骞,王根绪,孙胜利.黄河源区径流时空特性及相关因素分析[J].人民黄河,2005,27(2):9-11.
    [35]张志,张雪亭.利用遥感信息探讨黄河源区姐妹湖的环境变化[J].青海环境,2000,10(1):6-10.
    [36]程捷.黄河源区第四纪地质与生态环境[M].地质出版社,2006.
    [37]郑本兴,王苏民.黄河源区的古冰川环境讨论[J].冰川冻土,1996,18(3):210-218.
    [38]青海省地方志编纂委员会.青海省志——长江黄河澜沧江源志[M].郑州:黄河水利出版社,2000.
    [39]朱建立.巴颜喀拉山地区第四纪冰期初步探讨[J].青海地质,1992,(2):30-41.
    [40]王绍令,周祥瑞.青藏高原东部冻土分布特征[J].冰川冻土,1991,13(2):131-140.
    [41]周幼吾,郭东信,邱国庆,等.中国冻土[M],北京:科学出版社,2000.
    [42]边纯玉,郭鹏飞.中国青藏高原黄河源区冰缘地貌特征[J].冰川冻土,1990,12(2):147-153.
    [43]程捷,张绪教,田明中,等.黄河源区冰楔假型群的发育及其古气候意义[J].第四纪研究,2006,26(1):92-98.
    [44]叶和飞,罗建宁,李永铁,等.特提斯构造域与油气勘探[J].沉积与特提斯地质,2000,20(1):1-27.
    [45]许志琴,杨经绥,姜枚,等.大陆俯冲及青藏高原周缘造山带的崛起[J].地学前缘,1999,6(3):139-152.
    [46]马宗晋,等.青藏高原岩石圈现今变动与动力学[M].北京:地震出版社,2001.
    [47]程裕淇.中国区域地质概论[M].北京:地质出版社,1994.
    [48]潘桂棠,李兴振,王立全,等.青藏高原及邻区大地构造单元初步划分[J].地质通报,2002,21(11):701-707.
    [49]孙崇仁主编,青海省岩石地层[M].武汉:中国地质大学出版社,1997.
    [50]汪校锋.东昆仑巴颜喀拉山群地区区域构造演化[J].南方油气,2005,18(1):29-31.
    [51]刘增乾,余希静,徐宪,等.青藏高原地质基本特征[J].地球学报,1980,2:23-47.
    [52]Tapponnier P, Molnar P. Slip-line field theory and large-scale continental tectonics[J].Nature, 1976,264:319-324.
    [53]任纪舜,肖黎薇.1:25万地质填图进一步揭开了青藏高原大地构造的神秘面纱[J].地质通报,2004,23(1):1-11.
    [54]Kidd W S, Molnar P. Quaternary and present active faults of Lhasa-Golmud of the Tibetan Plateau.Roy.Soc.London.1990,332-352.
    [55]许志琴,杨经绥,姜枚,等.青藏高原北部东昆仑-羌塘地区的岩石圈结构及岩石圈剪切断层[J].中国科学D缉,2001,31(Z):1-7.
    [56]庞存廉,方胜,夏元祁.巴颜喀拉山东段及其邻区大地电磁测深成果地质解释[J].青海地质,1996,(1):73-83.
    [57]Graham.J.W.Significance of magnetic anisotropy in Appalachian sedimentary rocks,In:J.S.stcinhart and T.J. Sinith (Editord),The Earth beneath the continents, Geophys, Monogr. Am, Geophys.Union,10,627-648.
    [58]王乃樑,韩慕康.构造地貌学的理论、方法、应用与动向.见:中国地理学会地貌专业委员会,编.中国地理学会第一次构造地貌学术讨论会论文选集.1984.
    [59]钟伟青.GIS在地貌实验与模拟中的作用、困难和对策[J].热带地理,1995,15(2):162-167.
    [60]康来迅.昌马断裂带活动构造地貌之研究[J].地理研究,1989,8(2):35-40.
    [61]赵小麟,邓起东,陈社发.岷山隆起的构造地貌学研究[J].地震地质,1994,16(4):429-439.
    [62]李有利,杨景春,李保俊,等.河西走廊榆木山边缘断层构造地貌研究[J].地质力学学报,1997,3(4):20-26.
    [63]Li Youli,Yang Jingchun. Tectonic geomorphology in the Hexi Corridor,northwest China. Basin-Research,1998,10 (3):345-352.
    [64]Houser Charles E,Rockwell Thomas K. Tectonic geomorphology and paleoseismology of the Old Woman Springs Fault,San Bernardino County,California. In:Abstracts with Programs-Geological Society of America,Cordilleran Section,92nd annual meeting.1996,28 (5):76.
    [65]S B Kuzmin. Estimation of active fault zone width using the methods of neotectonics and structural geomorphology (evidence from the Eastern Sayan and Western Cisbaikalia). Geotectonics.1998,32 (1):60-67.
    [66]李吉均,张青松,李炳元.近15年中国地貌学的进展[J].地理学报,1994,49(增刊):641-649.
    [67]朱亮璞.遥感地质学[M].北京:地质出版社.1994.
    [68]孙家炳,舒宁,关泽群.遥感原理、方法和应用[M].北京:测绘出版社,1997.
    [69]梅安新,等.遥感导论[M].高等教育出版社,2001.
    [70]Tang Guoan. A Research on the Accuracy of Digital Elevation Models. Beijing:Science Press,2000.
    [71]闾国年,钱亚东,陈钟明.基于栅格数字高程模型提取特征地貌技术研究[J].地理学报,1998a,53(6):562-569.
    [72]王义祥,刘勇,潘保田.夷平面数字地形模型的生成、显示与分析初探:以美武高原为例[J].遥感技术与应用.1999,14:59-64.
    [73]王东锐,杨景春.四维地貌模型研究[J].地理学与国土研究,2001,17(2):20-23.
    [74]顾延生,张旺生,朱云海,等.祁连山东南缘基于RGMAP的数字化地貌研究[J].地球科学,中国地质大学学报,2003,28(4):395-400.
    [75]胡世雄,王珂.现代地貌学的发展与思考[J].地学前缘,2000,7:67-78.
    [76]中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室.中华人民共和国1:100万数字地貌制作规范[R],2005
    [77]易顺民,等.活动断裂的分形结构特征[J].地球科学,1995,20(1),58-62.
    [78]薛宏交,耿爱玲,龚平.江汉洞庭盆地水系展布特征与新构造运动[J].地壳形变与地震,1996,16(4):58-65.
    [79]Martz L W,Garbrecht J. Numerical definition of drainage network and subcatchment areas from digital elevation models. Computers& Geosciences.1992,18 (6):747-761.
    [80]Jurgen Garbrecht,Lawrence W M. Automated channel ordring and node indexing for raster channel networks. Computers&Geosciences.1997,23 (9):961-966.
    [81]Jurgen Garbrecht,Lawrence W M. The assignment of drainage direction over flast surfaces in raster digital elevation models. Journal of hydrology,1997,193:204-213.
    [82]朱大岗,邵兆刚,孟宪刚,等.青海巴颜喀拉山北麓古高位湖相沉积的分布与特征[J].地质通报,2009,28(5):549-555.
    [83]程捷,张绪教,田明中,等.黄河源区大暖期气候特征[J].地质论评,2004,50(4):330-337.
    [84]曹伯勋编.地貌学及第四纪地质学[M].武汉:中国地质大学出版社,1995.
    [85]梁兴中、高钧成.断裂成矿年龄的α石英ESR研究[J].矿物岩石,1999,19(2):69-71.
    [86]朱大岗,孟宪刚,邵兆刚,等.青海扎陵湖和鄂陵湖盆地第四纪河湖相地层研究[J].中国地质,2009,36(6):1218-1232.
    [87]程捷,姜美珠,咎立宏,等.黄河源区第四纪地质研究的新进展[J].现代地质,2005,19(2):239-246.
    [88]李吉均,方小敏,潘保田,等.新生代晚期青藏高原强烈隆起及其对周边环境的影响[J],第四纪研究,2001,21(5):381-390.
    [89]李吉均,文世宣,张青松,等.青藏高原隆起的时代、幅度和形式的探讨[J],中国科学,1979,(6):608-616.
    [90]李吉均,赵志军.德日进“亚洲干极”理论的现实意义[J],第四纪研究,2003,23(4):366-371.
    [91]李吉均,朱俊杰,康建成,等.未次冰期旋回兰州黄土剖面与南极东方站冰岩芯的对比[J],中国科学(B),1990(10):1086-1094.
    [92]李吉均,方小敏,马海洲,等.晚新生代黄河上游地貌演化与青藏高原隆升[J].中国科学(D辑),1996,26(4):316-322.
    [93]刘东生,张时新,熊尚发,等.青藏高原冰期环境和冰期全球降温[J].第四纪研究,1999,19(5):386-396.
    [94]Guo,Z.T.,W.F.Ruddiman,Q.Z.Hao,et al. Onset of Asian desertification by 22Myr ago inferred from loess deposits in China. Nature,366:552-554.
    [95]Gasse,F.,M.Arnold,J.C.Fontes,et al.. A 13000 year climate record from WesternTibet. Nature,353: 742-745.
    [96]Gasse,F.,J.Ch.Fontes,E.Van Campo,et al..Holocene environmental changes in Bangong Co basin (Western Tibet) Part 4:Discussion and conclusions. Palaeogeography, Palaeoclimatology, Palaeoedology,120:79-92.
    [97]施雅风,李吉均,李炳元主编.青藏高原晚新生代隆升与环境变迁[M].广州:广东科技出版社,1998.
    [98]Shi yafeng,Yu Ge,Liu Xiaodong,et al..Reconstruction of the 30-40ka B.P. enhanced Indian monsoon climate based on geological records from the Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoedology,169 (1-2):69-83.
    [99]朱大岗,孟宪刚,赵希涛,等.西藏纳木错地区第四纪环境演变[M].北京:地质出版社,2004.
    [100]朱大岗、孟宪刚、赵希涛,等.西藏纳木错和藏北高原古大湖晚更新世以来的湖泊演化与气候变迁[J].中国地质,2004,31(3):269-277.
    [101]李明慧,康世昌.青藏高原湖泊沉积物对古气候环境变化的响应[J].盐湖研究,2007,15(1):63-72.
    [102]萧家仪,吴玉书,郑绵平.西藏扎布耶盐湖晚第四纪孢粉植物群的初步研究[J].微体古生物学报,1996,13(4):395-399.
    [103]唐领余,沈才明,廖淦标,等.末次盛冰期以来西藏东南部的气候变化—西藏东南部的花粉记录[J].中国科学(D),2004,34(5):436-442.
    [104]Campo.V.,Gasse,F.Pollen-and Diatom-Inferred Climatic and Hydrological Changes in Sumxi Co Basin (Western Tibet) since 13000yr B.P.[J].Quaternary Research,1993,39 (3):300-313.
    [105]沈才明,唐领余,王苏民,等.若尔盖盆地RM孔孢粉记录及其年代序列[J].科学通报,2005,50(3):246-254.
    [106]刘光秀,沈永平,张平中.青藏高原若尔盖地区RH孔800-150kaB.P.的孢粉记录及古气候意义[J].沉积学报,1994,12(4):101-]09.
    [107]沈才明,唐领余,王苏民.若尔盖地区25万年以来的植被与气候[J].微体古生物学报,1996,13(4):373-385.
    [108]薛滨,王苏民,吴艳宏,等.若尔盖盆地RM孔揭示的过去14万年古环境[J].湖泊科学,1999,11(3):206-212.
    [109]吴玉书,肖家仪.西藏扎布耶湖地区三万年以来的花粉记录[J].海洋地质与第四纪地质,1996,16(3):115-121.
    [110]孙湘君,杜乃秋,陈因硕,等.西藏色林错湖泊沉积物的花粉分析[J].植物学报,1993,35(12):943-950.
    [111]黄翡.西藏佩枯错13000-5000aB.P.植被与环境[J].古生物学报,2000,39(3):441-448.
    [112]朱大岗,赵希涛,孟宪刚,等.西藏纳木错扎弄淌剖面10000年以来的沉积间断和环境变化记录[J].地质力学学报,2003,9(4):355-362.
    [113]刘爱民,喻建新,贺永忠,等.藏北申扎羊湖河谷140kaB.P.以来古环境的初步研究[J].第四纪研究,2003,23(1):84-91.
    [114]康安,朱筱敏,韩德馨,等.柴达木盆地第四纪孢粉组合及古气候波动[J],地质通报,2003,22(1):12-15.
    [115]韩建恩,余佳,孟庆伟,等.西藏阿里札达盆地香孜剖面孢粉分析[J].地质力学学报,2005,11(4):320-327.
    [116]吕荣平,罗鹏,韩建恩,等.西藏札达盆地托林剖面组合特征及其古气候意义[J].地质通报,2006,25(12):1475-1480.
    [1]7]朱大岗,孟宪刚,邵兆刚,等.西藏阿里札达盆地早更新世早期沉积及其古气候与古环境变化[J].中 国地质,2006,33(6):1276-1284.
    [118]余佳,罗鹏,韩建恩,等.西藏札达盆地古格剖面孢粉记录及其反映的古环境信息[J].中国地质,2007,34(1):55-60.
    [119]孔昭宸,杜乃秋,山发寿.青藏高原晚新生代以来植被时空变化的初步探讨[J].微体古生物学报,1996,13(4):339-351
    [120]唐领余,沈才明.青藏高原晚新生代植被史及其气候特征[J],微体古生物学报,1996,13 (4):321-337.
    [121]彭金兰.西藏佩枯错13000—4500年间的介形类及环境变迁[J].微体古生物学报,1997,14(3):239-254.
    [122]刘俊英,郑绵平,袁鹤然,等.西藏扎布耶湖区128-1.4kaB.P.的微体古生物与环境气候变化[J].地质学报,2007,81(12):1618-1638.
    [123]彭金兰,王苏民.云南鹤庆盆地15万年以来的介形类及环境变迁[J].湖泊科学,2003,15(1):1-10.
    [124]庞其清,刘俊英,郑绵平,等.青藏高原昆仑山垭口地区第四纪介形虫及环境变迁的探讨[J].地质学报,2007,81(12):1672-1697.
    [125]王强.察尔汗盐湖的突然形成与地表系统巨变—据介形类研究[J].地质力学学报,1998,4(4):82-87.
    [126]庞其清.青藏高原昆仑山口第四纪羌塘组介形虫化石的地质意义.青藏高原地质文集(4)[M].北京:地质出版社,1982.
    [127]李元芳,朱立平,李炳元.藏南沉错地区近1400年来介形类与环境变化[J].地理学报,2002,57(4):414-421.
    [128]杨潘,孙镇城,张永华,等.青海柴达木盆地第四纪介形类属Ilyocypris——壳面瘤状装饰的分类意义[J].微体古生物学报,2002,19(1):15-32.
    [129]杨潘,乔子真,张海泉,等.柴达木盆地新生代介形类动物群特征及环境意义[J].古地理学报,2006,8(2):143-155.
    [130]黄宝仁,杨恒仁,尤坤元.西藏南部和西南部上新世及第四纪介形类.见:中国科学院青藏高原综合考察队编.西藏古生物[M],第四分册,北京:科学出版社,1982.
    [131]李元芳,张青松,李炳元.青藏高原西北部17000年以来的介形类及环境演变[J].地球学报,1994,49(1):46-53.
    [132]王君波,朱立平.藏南沉错沉积物的粒度特征及其古环境意义[J].地理科学进展,2001,21(5):459-467.
    [133]陈敬安,万国江.云南洱海沉积物粒度组成及其环境意义辨识[J].矿物学报,1999,19(2):175-182.
    [134]An Z.S.,Porter S.C.,Kutzbash J.E.,et al. Asynchronous Holocene optimum of the East Asian monsoon. Quaternary Science Reviews,2000,19:743-762.
    [135]Williams D.F.,Kuzminb M.I.,Prokopenko A.A.,et al. The lake Baikal frilling project in the context of a global lake drilling initiative. Quaternary International,2001, (80-81):3-18.
    [136]Giancarlo G.B.,Nicholas M.I..Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland.Nature,1999,397:515-517.
    [137]Digerfeldt G,Olsson S,Sandgren R.Reconstruction of lake-level changes in lake Xinias,central Greece,during the last 40000 years. Palaeogeography, Palaeoclimatology, Palaeoecology,2000,158: 65-82.
    [138]Celina Campell. Late Holocene lake sedimentology and climate change in southern Alberta, Canada. Quaternary research,1997, (49):96-101.
    [139]Ann C, Dieffenbacher Krall, Andrea M.N..Late-glacial and Holocene record of lake levels of Mathews Pond and Whitehead Lake, northern Maine, USA. Journal of Paleolimnology,2005,34: 283-310.
    [140]刘耕年,崔之久.南极长城站松散沉积物的粒度特征及环境意义[J].冰川冻土,1997,19(1):30.
    [141]王亚东,刘永江,常丽华,等.沉积物粒度分析在阿尔金山隆升研究中的应用[J]。吉林大学学报(地球科学版),2005,35(2):155-162.
    [142]Lu H Y, Vandenberghe, An Z S. Aeolian origin and paleoclimatic implications of the'Red Clay'(north China) as evidenced by grain-size distribution. Journal of Quaternary Science, 2001,16(1):89-97.
    [143]Ding Z L, Rutter N W, Sun J M, et al. Re-arrangement of atmospheric circulation at about 2.6 Ma over northern China:Evidence from grain size records of loess-palaeosol and red clay sequences. Quaternary Science Reviews,2000,19:547-558.
    [144]Johnson M R. volume balance of erosional loess and sediment deposition related to Himalayan Uplift. Journal of Geoof Geological Society, London,1994,151:217-220.
    [145]成都地质学院陕北队.沉积岩(物)粒度分析及其应用北京[M].地质出版社,1976.
    [146]Passega. Grain size representation by CM pattern as a geologic tool. Journal of petrology,1964,34: 830-847
    [147]Passega. Texture as characteristic of clastic deposition. Bulletin of the American Association of Petrolem Geologists,1957,41 (9):1952-1984
    [148]谭红兵,马海州,张西营.碳酸盐研究与其记录的环境变化[J].盐湖研究,2003,11(4):20-27.
    [149]卢演俦.黄土地层中CaCO3含量变化与更新世气候旋回[J].地质科学,1981,(2):122-131.
    [150]Kozloff P.K..The Mongolia szechuan expeditition of the imperial Russian geographical society.Geograph,1908,34 (2):389-427.
    [151]王建,刘泽纯,姜文英,等.磁化率与粒度矿物的关系及其古环境意义[J].地理学报,1996,51(2):155-163.
    [152]胡守云,王苏民,Appel E,等.呼伦湖湖泊沉积物磁化率变化的环境磁学机制[J].中国科学(D辑),1998,28:334-339.
    [153]张普纲,樊行昭,霍俊杰.磁性参数的环境指示意义[J].太原理工大学学报,2003,34(3):301-308.
    [154]Collinson D W. Methods in Rock Magnetism. London:Allen & unwin (publishers) Lid, 1986,28-31,102.
    [155]Jef Vandenberghe, An Zhisheng, Govert Nugteren. New absolute time scale for the Quaternary climate in the Chinese loess region by grain-size analysis. Geology,1997,25 (1):35-38.
    [156]An Zhisheng, Stephen C.Porter. Millennial-scale climatic oscillation during the last interglaciation in central China. Geology,1997,25 (7):603-605.
    [157]Emiliani C. Oxygen isotopic analysis of the size fraction between 62 and 250 micrometers in Garibbean cores P6304-8 and P6304-9. Science,1997,198:1255-1256.
    [158]Kshiwaya K, Yamanoto A, and Fukuyama K. Time variations of erosional force and grain size in Pleistocene lake sediments. Quaternary Research,1985,28:61-68.
    [159]Narcisi B, Anselmi B. Lithostratigraphy of the 250000 year record of lacustrine sediments from the Valle di Castiglione crater, Roma. Quaternary Science Research,1992,11:353-362.
    [160]Li Huamei, Wang Junda. Magnetostratigraphic study of several typical geologic sections in north China. Quaternary Geology and Environment of China. Beijing:China Ocean Press,1982,33-37.
    [161]The-Quei Lee, Hwa-Sung Lin, Ping-Mei Liew. Magnetic analysis on lacustrine deposits of Yuan-yang lake,Northern Taiwan. Journal of the Geological Society of China,1998,41(1):143-158.
    [162]Roy Thompson, Frank Oldfield. Environmental Magnetism. London:Allen & unwin,1988,121-123.
    [163]David J W, Piper A E, Aksu. Architecture stacked Quaternary deltas correlated with global oxygen isotopic curve. Geology,1992,20:415-418.
    [164]Oldfield F, Dearing J A, Thompson R, et al. Some magnetic properties of lake sediments and their possible links with erosion rates. Pol. Arch. Hydrobiol.,1978,25:321-331.
    [165]Oldfield F, Barnosky C, Leopold E B,et al. Mineral magnetic studies of lake sediments. Hydrobiologia,1983,103:37-44.
    [166]Hirons K R, Thompson R. Palaeoenvironmental application of magnetic measurements from inter-drumlin hollow lake sediments near Dungannon,Co. Tyrone,Northern Ireland. Boreas,1986,15: 117-135.
    [167]YU L Z, Oldfield F, WU Y S, et al. Paleoenvironmental implications of magnetic measurements on sediment core from Kunming Basin, Southwest China. Journal of Paleolimnology,1990,3:95-111.
    [168]杨建强,崔之久,易朝露,等.云南点苍山冰川湖泊沉积物磁化率的影响因素及其环境意义[J].第四纪研究,2004,24(5):591-597.
    [169]鹿化煜,安芷生.黄土高原红粘土与黄土古土壤粒度特征对比——红粘土风成成因的新证据[J].沉积学报,1999,17(2):226-232.
    [170]An Z S,Kukla G,Porter S C,et al.Late Quaternary dust flow on the Chinese Loess Plateau.Catena,1991,19:171-187.
    [171]乔彦松,郭正堂,郝青振,等.中新世黄土-古土壤序列的粒度特征及其对成因的指示意义[J].中国科学(D辑),2006,36(7):646-653.
    [172]栾英波,郭莉,郭高轩,等。北京地区新5孔第四系松散沉积物的微量元素地球化学及古气候、古环境研究[J].分析研究,2008,3(3):18-23.
    [173]杨兢洪、王颖、张振克等.宝应钻孔沉积物的微量元素地球化学特征及沉积环境探讨[J].第四纪地质,2007,27(5):735-749.
    [174]韩宗珠,袁红明,庄振业,等。山东莱州仓上泻湖Y86孔微量元素地球化学特征及沉积相判别[J].海洋湖沼通报,2005,2:13-20.
    [175]Boothroyd,J.C.,Geology of the microtidal coastal lagoons:Rhode island[J]. Marine Geology,1985,63:35-76
    [176]陈骏,安芷生,汪永进,等.最近800ka洛川黄土剖面中Rb/Sr分布和古季风变迁[J].中国科学(D辑),1998,28(6):498-504.
    [177]陈骏,季峻峰,仇纲等.陕西洛川黄土化学风化程度的地球化学研究[J].中国科学(D辑),1997,27(6):531-536.
    [178]陈骏,汪永进,季峻峰,等.陕西洛川黄土剖面的Rb/Sr值及其气候地层学意义[J].第四纪研究,1999,(4):350-356.
    [179]杨锐.微量元素硼的环境意义.海洋地质与第四纪地质,1993,13(3):91-96.
    [180]Dasch E J.Strontium isotopes in weathering profiles, deep-sea sediments, and sedimentary rocks. Geochimica et Cosmochimica Acta,1969,33:1521-1552
    [181]Gallet S, Jahn B, Torii M. Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic im-plications. Chemical Geology,1996,133:67-88.
    [182]Robert M.S.,Peter L. Smart, Andy Baker. A nnual trace element variations in a Holocene speleothem[J].Earth and Planetary Science Letters,1998,154:237-246.
    [183]Kathleen R. Johnson, Chaoyong Hu, Nick S. Belshaw. Seasonal trace element and stable isotope variations in a Chinese speleothem:The potential for high resolution paleomonsoon reconstruction[J].Earth and Planetary Science Letters,2006,244:394-407.
    [184]王新中,班凤梅,潘根兴,等.洞穴滴水地球化学的空间和时间变化及其控制因素——以北京石花洞为例[J].第四纪研究,2005,25(2):258-264.
    [185]李彬,袁道先,林玉石,等.洞穴此生化学沉积物中Mg、Sr、Ca及其比值的环境指代意义[J].中国岩溶,2000,19(2):115-122.
    [186]谢又予.中国石英砂表面结构特征图谱[M].北京:海洋出版社,1985.
    [187]Mahaney WC.Pleistocene and Holocene glacier thickness, transport histories and dynamics inferred from SEM Microtextures on quartz particles,Boreas,1995,24 (4):293-304.
    [188]Mahaney WC and Kalm V.Comparative scanning electron microscopy study of oriented till blocks,glacial grains and Devonian sands in Estonia and Latvia, Boreas,2000,29 (1):35-51.
    [189]Mahaney WC,Vortisch W,Julig P.Relative differences between glacially crushed quartz transported by mountain and continental ice some examples from North America and east Africa, A merican Journal of Science,1988,288:810-826.
    [190]Helland PE and Holmes MA.Surface textural analysis of quartz sand grains from ODP Site 918 off the southeast coast of Greenland suggests glaciation of southern Greenland at 11Ma, Palaeogeography, Palaeoclimatology, Palaeoecology,1997,135:109-121.
    [191]Mahaney WC,Vaikmae R,Vares K.Scanning electron2microscopy of quartz grains in supraglacial debris,Adishy Glacier, Caucasus Mountains, USS R. Boreas,1991,20 (4):395-404.
    [192]张光威,杨子庚.王圣洁南黄海第四纪时期石英砂表面结构特征及其环境意义[J].海洋地质与第四纪地质,1996,15(3):37-47.
    [193]伍永秋,崔之久,葛道凯,等.昆仑山垭口地区第四纪地层石英砂表面特征与沉积环境[J].应用基础与工程科学学报,1998,6(2):117-124.
    [194]Krinsley D H,Doorcamp J.Atlas of Quartz Sand Surface Textures[M].New York:Cambridge Press,1973.
    [195]陈丽华,缪昕,于众.扫描电镜在地质上的应用[M].北京:科学出版社,1986.
    [196]韩建恩,余佳,孟庆伟,等.西藏札达盆地沉积物的石英砂表面特征及其环境意义[J].地球学报,2009,30(5):651-658.
    [197]汪新胜,徐金沙,潘忠习.鄂尔多斯盆地白垩纪沙漠石英沙颗粒表面特征[J].沉积学报,2003,21(3):416-422.
    [198]高全洲,崔之久.青藏高原古岩溶风化壳红土中石英颗粒表面结构特征及环境意义[J].中山大学学报论丛,1997,5:64-67.
    [199]程捷,刘学清,高振纪等.青藏高原隆升对云南高原环境的影响[J].现代地质,2001,15(3):290-296.
    [200]徐仁,陶君容,孙湘君.希夏邦马峰高山栎化石层的发现及其在植物学和地质学上的意义[J].植物学报,1973,15(1):103-119.
    [201]Argand E. La tectonique del'Asie[J]. Int Geol Cong RepSess,1924,13 (1):170-372.
    [202]常承法,郑锡澜.中国西藏南部珠穆朗玛地区地质构造特征以及青藏高原东西向诸山系形成探讨[J].中国科学,1973,(2):190-201.
    [203]潘裕生,孔祥儒.青藏高原岩石圈结构演化和动力学[M].广州:广东科技出版社,1998.
    [204]England P C,Mckenzie D P. A thin viscous sheet model for continental deformation[J].Geophys J R Astron Sco,1982,70:295-321.
    [205]England P C,Houseman G A.The mechanics of the Tibeatan Plateau[J].Philos Trans R Soc Lond Ser A,1988,326:301-319.
    [206]Dewey J F,Cande P,Pitman W C. Tectonic evolution of the India/Eurasia collision zone[J].Eclgea Geo Helv,1989,82:717-734.
    [207]Dewey J F,Burke K.1973. Tibetan,Variscan and Precambrain basement reactivation:Products of continental collision (J). Journal of Geology,81:683-692.
    [208]Matte P, Mattuaer M,Olivet J M,Griot D A. Continental subduction beneath Tibet and the Himalayan orogen:areviewTerra Nova,1997,9:264-700.
    [209]许志琴,杨经绥,张建新,等.阿尔金断裂两侧构造单元的对比及岩石圈剪切机制[J].地质学报,1999,73(3):193-205.
    [210]Coleman M,Hodges K. Evidence for Tibetan Plateau uplift before 14 Myr ago from a new minimum age for east-west extension. Nature,1995,374:49-52.
    [211]Rowley DB.Age of initiation of collision between India and Asia:A review of statigraphic data. Earth and Planetary Science Letters 1996,145:1-13
    [212]李吉均,方小敏.青藏高原隆起与环境变化研究[J].科学通报,1998,43:1569-1574
    [213]Li,J.J.,Fang,X.M.,Pan,B.T.,et al. Late Cenozoic intensive uplift of Qinghai-Tibet Plateau and its impacts on environments ins urroundi ng area. Quaternary Seiences,2001,21 (5):381-391.
    [214]Harrison,T.M.et al. Raising Tibet.Science,1992,255:1643-1670.
    [215]Lin Aiming,Zhen Yuyang,Zhiming Sun,et al. How and when did the yellow river develop its squaer bend? Geology.2001,29 (10):951-954.
    [216]Li Jijun et al. Late Quaternary monsoon patterns on the Loess Plateau of China.Earth Surface Processes and Landforms,1988, (13):125-135.
    [217]施雅风,李吉均,李炳元,等.晚新生代青藏高原隆升与东亚环境变化[J].地理学报,1999,54:10-21.
    [218]李均吉方小敏潘保田.新生代晚期青藏高原强裂隆起及其对周边环境的影响[J],第四纪研究,2001,21(5):381-389.
    [219]于庆文,李长安,古凤宝,等.青藏高原东北缘新生代隆升-沉积-气候演化及其耦合.武汉:中国地质大学出版社,2001.
    [220]张彭熹.青藏高原盐湖几个有关地质问题的讨论.见:青海柴达木盆地晚新生代地质环境演化[M].北京:科学出版社,1986.
    [221]孙鸿烈,郑度.青藏高原形成演化与发展[M].广州:广东科技出版社,1998.
    [222]王云飞,王苏民,薛滨,等.黄河袭夺若尔盖古湖的沉积学依据[J].科学通报,1995,40(8):723-725.
    [223]刘泽纯等.柴达木盆地三湖地区第四纪地层学及其年代分析[J].中国科学(B辑),1990,11:1202-1212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700