用户名: 密码: 验证码:
长江口邻近海域缺氧区营养盐及痕量金属的生物地球化学过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长江口邻近海域夏季底层水体存在世界上面积最大的缺氧带。这为研究河口区氧化还原敏感元素的生物地球化学过程提供了天然的实验场所。为了理解长江河口缺氧带存在的生物地球化学过程,本文以长江口邻近海域缺氧带上覆水体、沉积物及间隙水为研究对象,并对其营养盐及重金属进行研究,目的在于揭示长江口邻近海域缺氧带可能存在的生物地球化学过程,为理解长江河口区的物质循环提供科学证据。通过研究得出如下结论:(1)在水体中盐度是影响营养盐分布的主要因素,在高浊度带存在营养盐释放的现象;(2)底层水存在两种显著不同的生物地球化学过程:当盐度<33 PSU时,营养盐与AOU之间为负相关,影响底层海水营养盐分布的主要因素可能为流场;而当盐度>33 PSU时,营养盐与AOU之间存在正相关,影响营养盐分布的主要因素为颗粒有机质的矿化;(3)溶解态痕量金属存在保守型(Mo、U、Ni)和混合型(Fe、Mn、Cu、Pb、Zn)的分布规律,盐度、浮游生物及溶解氧都是影响溶解态痕量金属分布的重要因素;剔除浊度大于20 NTU的数据,分配系数与浊度为显著正相关;(4)间隙水Fe、Mn剖面表明,长江河口表层沉积物存在剧烈的Fe、Mn还原现象;成岩模型模拟结果显示间隙水Mn的模拟剖面与实际观测剖面吻合较好。间隙水U剖面显示,控制U分布的主要因素与Fe有关,但是其它因素如有机质含量对U、Mo的分布也有影响;(5)间隙水营养盐剖面显示近岸与远岸存在两种不同的生物地球化学过程:远岸海域,间隙水营养盐部面主要受早期成岩的控制;而在近岸海域其它过程如氨化及吸附可能是控制间隙水氮剖面分布的主要因素;模拟剖面与NH4+的实测剖面趋于一致,但是同时暗示表层沉积物受到生物扰动;通量计算结果显示,Si、N、P分别占浮游生物每日所需要营养盐数量的15%、10%及0.1%;(6)对痕量金属的黄铁矿化程度进行了分析,发现长江河口痕量金属的黄铁矿化程度异常低,黄铁矿不是影响痕量金属分布的主要因素;导致低黄铁矿化度的原因与长江河口高沉积速率、贫硫、低有机质有关。
The hypoxia zone in the bottom water in the adjacent area of Yangtze estuary is one of the largest in the world. As a natural laboratory, studies of the Yangtze Estuary maybe provide insight into for examining biogeochemical processes of redox sensitive elements in hypoxia environments. In order to understand the biogeochemical processes in the hypoxia zone in Yangtze Estuary, we investigated the distributions of nutrients and trace metals (Fe, Mn, U, Mo, Cr, Ni, Cu, Zn) in water column, sediments and interstitial water. Results showed that the distribution of nutrients in the water column is mainly controlled by salinity. Nutrients release in the high turbidity zone were observed. In the bottom water, two different biogeochemical processes can be identified. When the salinity is less than 33 PSU, the negative correlation between nutrients and apparent oxygen utilization (AOU) is observed. When the salinity is more than 33 PSU, the positive correlation between nutrients and AOU can be observed. The causes can be ascribed to current and the mineralization of particulate organic matter, respectively. Trace metals can be grouped into conservative-type (Mo, U, Ni) and mixing-type (Fe, Mn, Cu, Pb, Zn).The distribution of dissolved trace metals are controlled by salinity, dissolved oxygen and plankton. There exists significant positive correlation between turbidity and distribution coefficient when the turbidity values more than 20 NTU are eliminated. Interstitial Fe and Mn profiles indicated that there exist strong iron and manganese reduction phenomenon in Yangtze estuary. Two-layer diagenetic model are used to fit the interstitial iron and manganese profiles. The fitting results coincides with the observed profiles for Mn, but mediocre for iron. Interstitial uranium profiles suggested that iron is the main factor that controlled the distribution of uranium. And what’s more, other factor such as organic matter content also can affect the distribution of the uranium and molybdenum. Interstitial nutrients profiles suggested that there exist two different biogeochemical processes in Yangtze estuary. In the offshore area, the interstitial nitrogen profiles is controlled by organic matter diagenetic processes, while in the nearshore area, other processes, such as adsorption and ammnox, influence the interstitial nitrogen profile. Diagenetic fitting curves for NH4+ matched well with the observed interstitial NH4+ profiles. Moreover, the fitting curves indicate that there exist bioturbation phenomena in the surface sediments. The calculated nutrients fluxes indicated that the fluxes of silicate, nitrogen and phosphorus for plankton need daily only account for 15%, 10% and 0.1%, respectively. Pyritization of trace metals in the Yangtze estuary is much lower, which suggests that pyrite is not the sink for trace metals in Yangtze estuary. The reasons that cause the lower degree of pyritization can be ascribed to the high sedimentation rate, the poor organic matter and sulfur concentrations in Yangtze Estuary sediments.
引文
1. Abanda P A, Hannigan R E. Effect of diagenesis on trace element partitioning in shales. Chemical Geology, 2006, 230(1–2): 42–59.
    2. Adelson J M, Helz G R, Miller C V. Reconstructing the rise of recent coastal anoxia; molybdenum in Chesapeake Bay sediments. Geochimica et Cosmochimica Acta, 2001, 65(2): 237–252.
    3. Algeo T J, Lyons T W. Mo–total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography, 2006, 21: 1–23.
    4. Aller R C, Cochran J K. 234Th/238U disequilibrium in near–shore sediment: particle reworking and diagenetic time scales. Earth and Planetary Science Letters, 1976, 29: 37–50.
    5. Aller R C, Mackin J E, Cox R T. Diagenesis of Fe and S in Amazon inner shelf muds: apparent dominance of Fe reduction and implications for the genesis of ironstones. Continental Shelf Research, 1986, 6: 263–289.
    6. Aller R C, Mackin J E, Ullman W J, et al. Early chemical diagenesis, sediment–water solute exchange, and storage of reactive organic matter near the mouth of the Changjiang, East China Sea. Continental Shelf Research, 1985, 4: 227–251.
    7. Aller R C. Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. Chemical Geology, 1994, 114 (3–4): 331–345.
    8. Aller R C. Diagenetic processes near the sediment–water interface of Long Island Sound. I. Decomposition. and nutrient element geochemistry (S, N, P). Advances in Geophysics, 1980, 22: 237–350.
    9. Aller R C. Diagenetic processes near the sediment–water interface of Long Island Sound. II. Fe and Mn . Advance in Geophysics, 1980, 21(1): 351–415.
    10. Anderson R F, Fleisher M O, Lehuray A P. Concentration, oxidation state, and particulate flux of uranium in the Black Sea. Geochimica et Cosmochimica Acta, 1989, 53: 2215–2224.
    11. Anderson R F, LeHuray A P, Fleisher M Q, et al. Uranium deposition in Saanich Inlet sediments, Vancouver Island. Geochimica et Cosmochimica Acta, 1989, 53: 2205–2213.
    12. Arakaki T, Morse J W. Coprecipitation and adsorption of Mn(II) with mackinawite (FeS) under conditions similar to those found in anoxic sediments.Geochimica et Cosmochimica Acta, 1993, 57: 9–14.
    13. Archer D, Lyle M, Rodgers K, et al. What controls opal preservation in tropical deep sea sediments. Paleoceanography, 1993, 8: 7–21.
    14. Archer D E, Morford J L, Emerson S R. A model of suboxic sedimentary diagenesis suitable for automatic tuning and gridded global domains. Global Biogeochemistry Cycles, 2002, 16 (1): 1–21.
    15. Baeyens W, Gillain G, Decadt G, et al. Trace metals m the eastern part of the North Sea. I Analyses and short–term distributions. Oceanologica Acta, 1986, 10: 169–179.
    16. Balls P W. The partition of trace metals between dissolved and particulate phases in European coastal waters: a compilation of field data and comparison with laboratory with laboratory studies. Netherlands Journal of Sea Research, 1989, 23: 7–14.
    17. Balzer W. On the distribution of iron and manganese at the sediment/water interface: thermodynamic versus kinetic control. Geochimica et Cosmochimica Acta, 1982, 46(7): 1153–1161.
    18. Barbanti A, Ceccherelli V U, Frascari F, et al. Nutrient regeneration processes in bottom sediments in a Po delta lagoon (Italy) and the role of bioturbation in determining the fluxes at the sediment–water interface. Hydrobiologia, 1992, 228: 1–21.
    19. Barnes C E, Cochran J K. Uranium removal in oceanic sediments and the oceanic U balance. Earth and Planetary Science Letters, 1990, 97(1–2): 94–101.
    20. Berelson W M, Heggie D, Longmore A, et al. Benthic Nutrient Recycling in Port Phillip Bay, Australia. Estuarine, Coastal and Shelf Science, 1998, 46: 917–934.
    21. Berg P, Petersen N R, Rysgaard S. Interpretation of measured concentration profiles in sediment pore water. Limnology and Oceanography, 1998, 43(7): 1500–1510.
    22. Berner R A. Sedimentary pyrite formation. American Journal of Science, 1970, 268: 1–23.
    23. Berner R A, Canfield D E. A new model for atmospheric oxygen over Phanerozoic time. American Journal of Science, 1989, 289: 333–361.
    24. Berner R A. Inclusion of adsortion in the modeling of early diagenesis. Earth and Planetary Science Letters, 1976, 29: 333–340.
    25. Berner R A. Stoichiometric models for nutrient regeneration in anoxic sediments.Limnology and Oceanography, 1977, 22: 781–786.
    26. Berner R A. Early diagenesis: A theoretical approach. Princeton, New Jersey, Princeton University Press, 1980.
    27. Blackburn T H, S?rensen J. (Eds.). Nitrogen Cycling in Coastal Marine Environments. SCOPE Reports. Wiley & Sons, New York. 1988, 33: 451.
    28. Boudreau B P. The diffusive tortuosity of fine–grained unlithified sediments. Geochimica et Cosmochimica Acta, 1996, 60: 3139–3142.
    29. Boudreau B P. Diagenetic models and their implementation: modelling transport and reactions in aquatic sediments. Springer–Verlag, Berlin, 1997, 414.
    30. Boudreau B P. A method–of–lines code for carbon and nutrient diagenesis in aquatic sediments . Computers & Geosciences, 1996, 22(5): 479–496.
    31. Boudreau B P. Is burial velocity a master parameter for bioturbation?. Geochimica et Cosmochimica Acta, 1994, 58(4): 1243–1249.
    32. Boulegue J, Lord C J, Church T M. Sulfur speciation and associated trace metals (Fe, Cu) in the pore waters of Great Marsh, Delaware. Geochimica Cosmochimica Acta, 1982, 46: 453–464.
    33. Brandes J A, Devol A H, Deutsch C. New developments in the marine nitrogen cycle. Chemical Reviews. 2007, 107: 577–589.
    34. Brugmann L, Hallberg R, Larsson C. Trace metal speciation in sea and pore water of the Gotland Deep, Baltic Sea, 1994. Applied Geochemistry, 1998, 13: 359–368.
    35. Brumsack H J, Gieskes J M. Interstitial water trace metal chemistry of laminated sediments from the Gulf of California, Mexico. Marine Chemistry, 1983, 14: 89–106.
    36. Burdige D J. The biogeochemistry of manganese and iron reduction in marine sediments . Earth Science Review, 1993, 35: 249–284.
    37. Callender E, Hammond D E. Nutrient exchange across the sediment–water interface in the Potomac River Estuary. Estuarine, Coastal and Shelf Science, 1982, 15: 395– 413.
    38. Calvert S E, Pedersen T F. Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological record . Marine Geology, 1993, 113(1–2): 67–88.
    39. Canfield D E, J?rgensen B B, Fossing H, et al. Pathways of organic carbon oxidation in three continental–margin sediments. Marine Geology, 1993, 113 (1–2): 27–40.
    40. Canfield D E. Reactive iron in marine sediments. Geochimica et Cosmochimica Acta, 1989, 53: 619–632.
    41. Carman R, Rahm L. Early diagenesis and chemical characteristics of interstitial water and sediments in the deep deposition bottoms of the Baltic proper. Journal of Sea Research, 1997, 37: 25–47.
    42. Carpenter R, Peterson M L, Bennett J T, et al. Mixing and cycling of uranium, thorium and 210Pb in puget sound sediments. Geochimica et Cosmochimica Acta, 1984, 48: 1949–1963.
    43. Chai C, Yu Z M, Song X X, et al. The status and characteristics of eutrophication in the Yangtze River (Changjiang) estuary and the adjacent East China Sea, China. Hydrobiologia, 2006, 563(1): 313–328.
    44. Chen Z L, Wang D Q, Xu S Y, et al. Inorganic nitrogen fluxes at the sediment water interface in tidal flats of the Yangtze Estuary. Acta Geographica Sinica, 2005, 60: 328–336.
    45. Cheng Z Y, Saito Y, Kanai Y, et al. Low concentration of heavy metals in the Yangtze estuarine sediments, China a diluting setting. Estuarine, Coastal and Shelf Science, 2004, 60: 91–100.
    46. Chiffoleau J F, Cossa D, Auger D, et al. Trace metal distribution, partition and fluxes in the Seine estuary in low discharge regime. Marine Chemistry, 1994, 47: 145–158.
    47. Cochran J K, Carey A E, Sholkovitz E R, et al. The geochemistry of uranium and thorium in coastal marine sediments and sediment pore waters. Geochimica et Cosmochimica Acta, 1986, 50: 663–668.
    48. Cochran, J K, Krishnaswami S. Radium, thorium, uranium, and Pb–210 in deep–sea sediments and sediment pore waters from the North Equatorial Pacific. American Journal of Science, 1980, 280 (9): 849–889.
    49. Colley S. and Thomson J. Recurrent uranium relocations in distal turbidites emplaced in pelagic conditions. Geochimica et Cosmochimica Acta, 1985, 49: 2339–2348.
    50. Colodner D, Edmond J, Boyle E. Rhenium in the Black Sea: comparison with molybdenum and uranium. Earth and Planetary Science Letters, 1995, 131(1–2): 1–15.
    51. Contreras R, Fogg T R, Chasteen N D, et al.. Molybdenum in the pore waters of anoxic marine sediments by electron paramagnetic resonance spectroscopy. MarineChemistry, 1978, 6: 365–373.
    52. Cowan J L W, Pennock J R, Boynton W R. Seasonal and interannual patterns of sediment–water nutrient and oxygen fluxes in Mobile Bay, Alabama (USA): regulating factors and ecological significance. Marine Ecology Progress Series, 1996, 141: 229–245.
    53. Crusius J, Calvert S E, Pedersen T F, et al. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and anoxic conditions of deposition . Earth and Planetary Science Letters, 1996, 145: 65–79.
    54. Crusius J, Thomson J. Comparative behavior of authigenic Re, U, and Mo during reoxidation and subsequent long–term burial in marine sediments . Geochimica et Cosmochimica Acta, 2000, 64 (13): 2233–2242.
    55. Dai M H, Martin J M. First data on trace metal level and behaviour in two major Arctic river–estuarine systems (Ob and Yenisey) and in the adjacent Kara Sea, Russia. Earth and planetary science letters, 1995, 131(3):127–141.
    56. De Lange G J, Boelrijk N A I M, Catalano G, et al. Sulphate related equilibria in the hypersaline brines of the tyro and bannock basins, eastern Mediterranean. Marine Chemistry, 1990, 31(1–3):89–112.
    57. De Lange G J. High resolution silica pore water profiles in sediments of the Maderia abyssal plain, eastern north Atlantic. In: Weaver P P E, Schmincke H U, Firth J V, et al. (Eds.). Proceedings of the Ocean Drilling Program, Scientific Results, 1998, 157: 609–612.
    58. Dean W, Gardner J V, Piper D Z. Inorganic geochemical indicators of glacial–interglacial changes in productivity and anoxia on the California continental margin. Geochimica et Cosmochimica Acta,1997, 61: 4507–4518.
    59. Dean W, Gardner J, Anderson R. Geochemical evidence for enhanced preservation of organic matter in the oxygen minimum zone of the continental margin of northern California during the late Pleistocene . Paleoceanography, 1994, 9: 47–61.
    60. Delange G J, Middelburg J J, Van Der Weijden C H, et al. Composition of anoxic hypersaline Brines in the Tyro and bannock Basins, Eastern Mediterranean. Marine Chemistry, 1990, 31(1–3): 63–88.
    61. Dhakar S P, Burgide D J. A coupled, non–linear, steady state model for early diagenetic processes in pelagic sediments. American Journal of Science, 1996, 296: 296–330.
    62. Diaz R J, Rosenberg R. Marine benthic hypoxia: A review of its ecologicaleffects and the behavioral responses of benthic macrofauna. Oceanography and Marine Biology: An Annual Review, 1995, 33: 245–303.
    63. Diaz R J. Overview of Hypoxia around the World. Journal of Environmental Quality, 2001, 30: 275–281.
    64. Duan L Y, Wang Z H, Li M T, et al. 210Pb distribution of the Changjiang estuarine sediment and the implications to sedimentary environment. Acta Sedimentologica Sinica, 2005, 23(3): 514–522.
    65. Dunk R M, Mills R A, Jenkins W J. A reevaluation of the oceanic uranium budget for the Holocene. Chemical Geology, 2002, 190 (1–4): 45–67.
    66. Dyrssen D, Kremling K. Increasing hydrogen sulfide concentration and trace metal behavior in the anoxic Baltic waters. Marine Chemistry, 1990, 30: 193–204.
    67. Elderfield H, Hepworth A, Edwards P N, et al. Zinc in the Conwy River and estuary. Estuarine and Coastal Marine Science, 1979, 9(4): 403–422.
    68. Emerson S R, Huested S S. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Marine Chemistry, 1991, 34(3–4): 177–196.
    69. Emerson S, Jahnke R. Early diagenesis in sediments from the eastern equatorial Pacific, I. Pore water nutrient and carbonate results. Earth and Planetary Science Letters, 1980, 49: 57–80.
    70. Ferdelman T G, Church T M, Luther G W. Sulfur enrichment of humic substances in a Delaware salt marsh sediment core. Geochimica et Cosmochimica Acta, 1991, 55(4): 979–988.
    71. Fisher T R, Carlson P R, Barber R T. Sediment nutrient regeneration in three North Carolina Estuaries. Estuarine, Coastal and Shelf Science, 1982, 14: 101–116.
    72. Fisher T R, Carlson P R, Barber R T. Sediment nutrient regeneration in three North Carolina Estuaries. Estuarine, Coastal and Shelf Science, 1982, 14: 101–116.
    73. Francois R. A study on the regulation of the concentrations of some trace metals (Rb, Sr, Zn, Pb, Cu, V, Cr, Ni, Mn and Mo) in Saanich Inlet Sediments, British Columbia, Canada. Marine Geology, 1988, 83(1–4): 285–308.
    74. Friedrich J, Dinkel C, Friedl G, et al. Benthic nutrient cycling and diagenetic pathways in the north–western Black Sea. Estuarine, Coastal and Shelf Science, 2002, 54: 369–383.
    75. Froelich P N, Klinkhammer G P, Bender M L, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta , 1979, 43(7): 1075–1090.
    76. Gaillard J F, Jeandel C, Michard G, et al. Interstitial water chemistry of villefranche bay sediments: Trace metal diagenesis. Marine Chemistry, 1986, 18(2–4): 233–247.
    77. Gao L, Li D J, Yu L H, et al. The geochemistry of biogenic silica in sediment of Dongtan intertidal flat in Changjiang (Yangtze) River estuary. Oceanologia et Limnologia Sinica, 2007, 38: 411–419.
    78. Gavis J, Grant V. Sulfide, iron, manganese, and phosphate in the deep water of the Chesapeake Bay during anoxia. Estuarine, Coastal and Shelf Science, 1986, 23(4): 451–463.
    79. Goiimowski J A, Merrs G A, Valenta P. Trends in heavy metal levels in the dissolved and particulate phase in the Dutch Rhine–Meuse (Maas) delta. The Science of the total environment, 1990, 92: 113–127.
    80. Hale S S. The role of benthic communities in nutrient cycles of Narragansett Bay. Master thesis, University of Rhode Island, 1974, 123.
    81. Hall P O J, Hulth S, Hulthe G, et al. Benthic nutrient fluxes on a basin–wide scale in the Skagerrak (north–eastern North Sea). Journal of Sea Research, 1996, 35: 123–137.
    82. Hammond D E, Fuller C, Harmon D, et al. Benthic fluxes in San Francisco Bay. Hydrobiologica, 1985, 129: 69–90.
    83. Hartnett H, Devol A H. Role of a strong oxygen–deficient zone in the preservation and degradation of organic matter: A carbon budget for the continental margins of northwest Mexico and Washington State. Geochimica et Cosmochimica Acta, 2003, 67: 247–264.
    84. Helly J J, Levin L A. Global distribution of naturally occurring marine hypoxia on continental margins. Deep–Sea Research I, 2004, 51: 1159–1168.
    85. Helz G R, Miller C V, Charnock J M. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochimica et Cosmochimica Acta, 1996, 60(19): 3631–3642.
    86. Hines M E, Bazylinski D A, Tugel J B, et al. Anaerobic microbial biogeochemistry in sediments from two basins in the Gulf of Maine: Evidence for iron and manganese reduction. Estuarine, Coastal and Shelf Science, 1991, 33: 313–324.
    87. Hines M E, Knollmeyer S L, Tugel J B. Sulfate reduction and other sedimentary biogeochemistry in a northern New England salt marsh. Limnology and Oceanography, 1989, 34: 578–590.
    88. Honeyman B D, Santschi P H. Metals in aquatic systems. Environmental Science Technology, 1988, 22: 863–871.
    89. Hou L J, Liu M, Yan H M, et al. Distribution of biogenic silica in tidal falt sedimetns of Yangtze Estuary and its influence factors. China Envrionmental Science, 2007, 27: 665–669.
    90. Hua Er, Zhang Zhinan, Zhang Yan. Meiofauna distributions at the oxygen minimum zone in Changjiang (Yangtze) River Estuary water. Acta Oceanologica Sinica, 2006, 25(5):120–134.
    91. Huang Y J, Wang C S, Hu X M, et al. Burial records of reactive iron in Cretaceous black shales and oceanic Red Beds from southern Tibet . Acta Geologica Sinica, 2007, 81(3): 463–469.
    92. Huerta—Diaz M A, Morse J W. A quantitative method for determination of trace metal concentrations in sedimentary pyrite. Marine Chemistry, 1990, 29: 119–144.
    93. Hurd D C. Interactions of biogenic opal, sediment and seawater in the Central Equatorial Pacific. Geochimica et Cosmochimica Acta, 1973, 37: 2257–2282.
    94. Ingall E, Jahnke R. Influence of water–column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis. Marine Geology, 1997, 139: 219–229.
    95. Jacobs L, Emerson S, Huested S S. Trace metal geochemistry in the Cariaco Trench, Deep Sea Research Part A. Oceanographic Research Papers, 1987, 34(5–6): 965–981.
    96. Jacobs L, Emerson S. Trace metal solubility in an anoxic fjord. Earth and Planetary Science Letters, 1982, 60(2): 237–252.
    97. Jahnke R, Heggie D, Emerson S, et al. Pore waters of the central Pacific Ocean: nutrient results. Earth Planetary Science Letter, 1982, 61: 233–256.
    98. Jiang F H, Wang X L, Shi X Y, et al. Benthic exchange rate and flux of dissolved silicate at the sediment–water interface in Jiaozhou Bay. Journal of Ocean University of Qingdao, 2002, 32: 1012–1018.
    99. Jiang F H, Wang X L, Shi X Y, et al. Benthic exchange rates and fluxes of PO4–P at the sediment water interface in Jianzhou Bay. Marine Sciences, 2003, 27: 50–54.
    100. Jiang F H, Wang X L, Shi X Y, et al. Benthic exchange rates and fluxes of dissolved inorganic nitrogen at the sediment–water interface in Jiaozhou Bay. Marine Sciences, 2004, 128: 13–24.
    101. Klinkhammer G P, Palmer M R. Uranium in the oceans Where it goes and why. Geochimica et Cosmochimica Acta. 1991, 55: 1799–1806.
    102. Klump J V, Martens C S. Biogeochemical cycling in an organic rich coastal marine basin. 11. Nutrient sediment–water exchange processes. Geochimica et Cosmochimica Acta, 1981, 45: 101–121.
    103. Kolodny Y, Kaplan I R. Uranium isotopes in sea–floor phosphorites. Geochimica et Cosmochimica Acta, 1970, 34(1): 3–24.
    104. Konovalova S K, Murray J W. Variations in the chemistry of the Black Sea on a time scale of decades (1960–1995). Journal of Marine Systems, 2001, 31(1–3):217–243.
    105. Koschinsky A. Heavy metal distributions in Peru Basin surface sediments in relation to historic, present and disturbed redox environments . Deep Sea Research Part II, 2001, 48(17–18): 3757–3777.
    106. Koshikawa M K, Takamatsu T, Takada J, et al. Distributions of dissolved and particulate elements in the Yangtze estuary in 1997–2002: Background data before the closure of the Three Gorges Dam. Estuarine, Coastal and Shelf Science, 2007, 71: 26–36.
    107. Kremling K. The behavior of Zn, Cd, Cu, Ni, Co, Fe, and Mn in anoxic baltic waters. Marine Chemistry, 1983, 13(2): 87–108.
    108. Lapp B, Balzer W. Early diagenesis of trace metals used as an indicator of past productivity changes in coastal sediments. Geochimica et Cosmochimica Acta, 1993, 57: 4639–4652.
    109. Lee J U, Kim S M, Kim K W, et al. Microbial removal of uranium in uranium–bearing black shale. Chemosphere, 2005, 59(1): 147–154.
    110. Legovic T, Petricioli D, Zutic V. Hypoxia in a pristine stratified estuary (K raka, Adriatic Sea). Marine Chemistry, 1991, 32: 347–359.
    111. Lenhart J J, Honeyman B D. Uranium(VI) sorption to hematite in the presence of humic acid . Geochimica et Cosmochimica Acta, 1999, 63(19–20): 2891–2901.
    112. Li D J, Zhang J, Huang D J, et al. The oxygen depletion off Changjiang Estuary. Science in China (Series D), 2002, 32(8): 686–694.
    113. Liu S M, Jiang W S, Zhang J. Exchange fluxes of nutrients at sediment–water interface calculated by the diagenesis model: the Bohai Sea. Periodical of Ocean University of China, 2005, 35: 145–151.
    114. Luther G W, Church T M, Powell D. Sulfur Speciation and Sulfide Oxidationin the Water Column of the Black Sea. Deep–Sea Research, 1991, 38: 1121–1137.
    115. Lyons T W, Werne J P, Hollander D J, et al. Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic–to–anoxic transition in the Cariaco Basin, Venezuela. Chemical Geology, 2003, 195(1–4): 131–157.
    116. Lyons W B, Loder T C, Murray S M. Nutrient pore water chemistry, Great Bay, New Hampshire: benthic fluxes. Estuaries, 1982, 5: 230–233.
    117. Lyons W B, Spencer, M J, Hines M E, et al. The trace metal geochemistry of pore water brines from two hypersaline lakes. Geochimica et Cosmochimica Acta, 1988, 52(2): 265–274.
    118. Mackin J E, Aller R C. Ammonium adsorption in marine sediments. Limnology and Oceanography, 1984, 29: 250–257.
    119. Malcolm S J. Early diagenesis of molybdenum in estuarine sediments . Marine Chemistry, 1985, 16: 213–225.
    120. McManus J, Hammond D E, Berelson, W M, et al. Early diagenesis of biogenic opal: Dissolution rates, kinetics, and paleoceanographic implications. Deep Sea Research II, 1995, 42: 871–902.
    121. Milliman J D, Xie Q C, Yang Z S. Transport of particulate organic carbon and nitrogen from the Yangtze River to the ocean. American Journal of Science, 1984, 284: 824–834.
    122. Morford J L, Emerson S R, Breckel E J, et al. Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin. Geochimica et Cosmochimica Acta, 2005, 69(21): 5021–5032.
    123. Morford J L, Emerson S. The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta, 1999, 63: 1735–1750.
    124. Morford J L, Martin W R, Kalnejais L H, et al. Insights on geochemical cycling of U, Re and Mo from seasonal sampling in Boston Harbor, Massachusetts, USA. Geochimica et Cosmochimica Acta, 2007, 71(4): 895–917.
    125. Morse J W, Luther G W. Chemical influences on trace metal–sulfide interactions in anoxic sediments. Geochimica et Cosmochimica Acta, 1999, 63(19–20): 3373–3378.
    126. Morse J W. Interactions of trace metals with authigenic sulfide minerals: implications for their bioavailability. Marine Chemistry, 1994, 46(1–2): 1–6.
    127. Mortimer R J G, Krom M D, Hall P O J, et al. Sediment–water exchange of nutrients in the intertidal zone of the Humber Estuary, UK. Marine Pollution Bulletin,1998, 37: 261– 279.
    128. Muller A. Pyritization of iron and trace metals in anoxic fjord sediments (Nordasvannet fjord, western Norway). Applied Geochemistry, 2002, 17(7): 923–933.
    129. Murray J W, Kuivila K M. Organic matter diagenesis in the northeast Pacific: transition from aerobic red clay to suboxic hemipelagic sediments. Deep–Sea Research, 1990, 37: 59–80.
    130. Nagao S, Narita H, Tsunogai S, et al. The geochemistry of pore water uranium in coastal marine sediments from Funka Bay, Japan. Geochemistry Journal, 1992, 26: 63–72.
    131. Ni J Y, Liu X Y, Chen Q J, et al. Pore water distribution and quantification of diffusive benthic fluxes of nutrients in the Huanghai and East China Seas sediments. Acta Oceanology Sinia, 2006, 25: 90–99.
    132. Ning X R, Daniel V, Liu Z S, et al. Standing stock and production of phytoplankton in the estuary of the Changjiang (Yangtse River) and the adjacent East China Sea. Marine Ecology Progress Series, 1988, 49:141–150.
    133. Nissenbaum A, Swaine D J. Organic matter–metal interactions in Recent sediments: the role of humic substances. Geochimica et Cosmochimica Acta, 1976, 40(7): 809–816.
    134. Ogilvie B, Nedwell D B, Harrison R M, et al. High nitrate muddy estuaries as nitrogen sinks: the nitrogen budget of the river Colne estuary (United Kingdom). Marine Ecology Progress Series, 1997, 150: 217–228.
    135. Otero X L, Macias F. Spatial Variation in pyritization on trace metals in salt marsh soils. Biogeochemistry, 2003, 62: 59–86.
    136. Piemontesi D, Baccini P. Chemical characteristics of dissolved organic matter in interstitial waters of Lacustrine sediments and its influence on copper and zinc transport. Environmental Technology Letter, 1986, 7(11): 577–592.
    137. Raaphorst W V, Malschaert J F P. Ammonium adsorptionin superficial North Sea sediments. Continental Shelf Research, 1996, 16(11): 1415–1435.
    138. Rabalais N N, Turner R E, Scavia D. Beyond science into policy: Gulf of Mexico hypoxia and the Mississippi River. BioScience, 2002, 52(2): 129–142.
    139. Rabalais N N, Turner R E, Wiseman W J Jr. Gulf of Mexico hypoxia, A.K.A. "The Dead Zone". Annual Review of Ecology and Systematics, 2002, 33:235–263.
    140. Reeburgh W S. Rates of biogeochemical processes in anoxic sediments. Annual Review of Earth and Planetary Sciences, 1983, 11: 269–298.
    141. Ridgway I M, Price N B. Geochemical associations and post–depositional mobility of heavy metals in coastal sediments: Loch Etive, Scotland. Marine Chemistry, 1987, 21(3): 229–248.
    142. Rosenfeld J K. Ammonium adsorptionin nearshore anoxic sediments. Limnology and Oceanography, 1979, 24(2): 356–364.
    143. Rowe G T, Clifford C F I, Smith K L,et al. Benthic n.utrient regeneration and its coupling to primary productivity in coastal waters. Nature, 1975, 255: 215–217.
    144. Santschi P, Hhener P, Benoit G, et al. Chemical processes at the sediment–water interface. Marine Chememistry, 1990, 30: 269–315.
    145. Santschi PH, Lenhart J J, Honeyman B D. Heterogeneous processes affecting trace contaminant distribution in estuaries: The role of natural organic matter. Marine Chemistry, 1997, 58: 99–125.
    146. Sanudo–Wilhelmy S A, Olsen K A, Scelfo J M, et al. Trace metal distributions off the Antarctic Peninsula in the Weddell Sea. Marine Chemistry, 2002, 77(2): 157–170.
    147. Sarin M M, Church T M. Behavior of uranium during mixing in the Delaware and Chesapeake estuaries. Estuarine, Coastal and Shelf Science, 1994, 39: 619–631.
    148. Sawlan J J, Murray J W. Trace metal remobilization in the interstitial waters of red clay and hemipelagic marine sediments . Earth and Planetary Science Letters, 1983, 64(2): 213–230.
    149. Schulz H D. Quantification of early diagenesis: Dissolved constituents in marine pore water. In: Schulz H D, Zabel M (Eds). Marine geochemistry, Springer, 2006, 75–121.
    150. Seiki T, Izawa H, Date E. Benthic nutrient remineralization and oxygen consumption in the coastal area of Hiroshima Bay. Water Research, 1989, 23(2): 219–228.
    151. Shaw T J, Gieskes J M, Jahnke R J. Early diagenesis in differing depositional environments: the response of transition metals in pore water. Geochimica et Cosmochimica Acta, 1990, 54: 1233–1246.
    152. Shaw T J, Sholkovitz E R , Klinkhammer G. Redox dynamics in the Chesapeake Bay: the effect of the sediment/water uranium exchange. Geochimica et Cosmochimica Acta, 1995, 58: 2985–2993.
    153. Shi F, Wang X L, Shi X Y, et al. Benthic flux of dissolved nutrients at the sediment–water interface in the East China Sea. Marine Environmental Science, 2004,23: 5– 8.
    154. Shi X Y, Lu R, Zhang C S, et al. Distribution and main influence factors process of dissolved oxygen in the adjacent area of the Changjiang Estuary in autumn. Periodical of Ocean University of China (In Chinese), 2006, 36: 287–290.
    155. Slomp C P, Malschaert J F P, Raaphorst W V. Iron and manganese cycling in different sedimentary environments on the North Sea continental margin. Continental Shelf Research, 1997, 17(9): 1083–1117.
    156. Soetaert K, Herman P M J, Middelburg J J. A model of early diagenetic processes from the shelf to abyssal depths. Geochimica Cosmochimica Acta, 1997, 57: 1473–1488.
    157. Song J M, Li P C. Studies on Characteristics of nutrient diffusion fluxes across sediment water interface in the district of Nansha islands, South China Sea. Marine Science, 1995, (5): 43–50.
    158. Stanley D W, Nixon S W. Stratification and bottom–water hypoxia in the Pamlico River estuary. Estuaries, 1992, 15(3):270–281.
    159. Stone A T. Microbial metabolites and the reductive dissolution of manganese oxides: oxalate and pyruvate. Geochimica et Cosmochimica Acta, 1987, 51: 919–925.
    160. Suess E. Mineral phases formed in anoxic sediments by microbial decomposition of organic matter. Geochimica et Cosmochimica Acta, 1979, 43: 339–352.
    161. Sundby B, Gobeil C, Silverberg N, et al. The phosphorus cycle in coastal marine sediments. Limnology and Oceanography, 1992, 37: 1129–1145.
    162. Sundby B, Martinez P, Gobeil C. Comparative geochemistry of cadmium, rhenium, uranium, and molybdenum in continental margin sediments. Geochimica et Cosmochimica Acta, 2004, 68(11): 2485–2493.
    163. Sundby B. Transient state diagenesis in continental margin muds. Marine Chemistry, 2006, 102(1–2): 2–12.
    164. Sundby B, Anderson L G, Hall Per O J et al. The effect of oxygen on release and uptake of cobalt, manganese, iron and phosphate at the sediment–water interface. Geochimica et Cosmochimica Acta, 1986, 50(6): 1281–1288.
    165. Swarzenski P W, Baskaran M. Uranium distribution in the coastal waters and pore waters of Tampa Bay, Florida . Marine Chemistry, 2007, 104: 43–57.
    166. Swarzenski P W, Campbell P L, Porcelli D, et al. The estuarine chemistry and isotope systematics of 234,238U in the Amazon and Fly Rivers. Continental ShelfResearch, 2004, 24: 2357–2372.
    167. Sweerts J P R A, Raer–Gilissen M J, Cornelese A A. Oxygen–consuming processes at the profundal and littoral sediment–water interface of a small mesoeutrophic lake (Lake Vechten, The Netherlands). Limnology and Oceanography, 1991, 36: 1124–1133.
    168. Thomson J, Higgs N C, Wilson T R S, et al. Redistribution and geochemical behaviour of redox–sensitive elements around S1, the most recent eastern Mediterranean sapropel. Geochimica et Cosmochimica Acta, 1995, 59(17): 3487–3501.
    169. Thomson J, Higgsa N C, Colley S. Diagenetic redistributions of redox–sensitive elements in northeast Atlantic glacial/interglacial transition sediments. Earth and Planetary Science Letters, 1996, 139(3/4): 365–377.
    170. Tian R C, Hu F X, Saliot A. Biogeochemical processes controlling nutrients at the turbidity maximum and the plume water fronts in the Changjiang Estuary. Biogeochernistry, 1993, 19(2): 83–102.
    171. Trefry J H T A, Nelsen R P, Trocine S, et al. Trace metal fluxes through the Mississippi River delta system. Rapports et Proces—Verbaut des Reunions, 1986, 186: 277–288.
    172. Tribovillard N, Ribolleau A, Lyons T, et al. Enhanced trapping of molybdenum by sulfurized marine organic matter of marine origin in Mesozoic limestones and shales. Chemical Geology, 2004, 213(4): 385–401.
    173. Turer A, Millward G E, Schuchardt B, et al. Trace metal distribution coefficients in the Weser Estuary (Germany). Continental shelf Research, 1992, 12(11):1277–1292.
    174. Ullman W J, Sandstrom M W. Dissolved nutrient fluxes from the nearshore sediments of Bowling Green Bay, Central Great Barrier Reef Lagoon (Australia). Estuarine, Coastal and Shelf Science, 1987, 24: 289–303.
    175. Van Cappellen P, Wang Y. Cycling of iron and manganese in surface sediments: a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese . American Journal of Science, 1996, 296: 197–242.
    176. van der Zee C, Roberts D R, Rancourt D G, et al. Nanogoethite is the dominant reactive oxyhydroxide phase in lake and marine sediments. Geology, 2003, 31 (11): 993–996.
    177. Viel M, Barbanti A, Langone L, et al. Nutrient profiles in the pore water of adeltaic lagoon: Methodological considerations and evaluation of benthic fluxes. Estuarine, Coastal and Shelf Science, 1991, 33: 361–382.
    178. Wakefield S J. Silica distribution in interstitial waters and sediments from the southeastern Pacific. Sedimentary Geology, 1982, 32:13–31.
    179. Watson P G, Frickers P E, Howland R J M. Benthic fluxes of nutrients and some trace metals in the Tamar estuary, SW England. Aquatic Ecology, 1993, 27: 135–146.
    180. Wedepohl K H. The composition of the continental crust. Geochimica et Cosmochimica Acta, 1995, 59(7):1217–1232.
    181. Wei H, He Y C, Li Q J, et al. Summer hypoxia adjacent to the Changjiang Estuary. Journal of Marine Systems, 2007, 67(3/4): 292–303.
    182. Wen L S, Santschi P, Gill G, et al. Estuarine trace metal distributions in Galveston Bay: importance of colloidal forms in the speciation of the dissolved phase. Marine Chemistry, 1999, 63(3): 185–212.
    183. Wide P, Lyons T W, Quinby–Hunt M S. Organic carbon proxies in black shales: molybdenum . Chemical Geology, 2004, 206:167–176.
    184. Wilson T R S. Vertical porewater advection in deep–ocean sediments, investigated by means of a general diagenetic model. Science of the Total Environment, 1986, 49: 163–173.
    185. Xia X M, Yang H, Li Y, et al. Modern sedimentation rates in the contiguous sea area of Changjiang Estuary and Hangzhou Bay. Acta Sedimentologica Sinica, 2004, 22(1): 130–135.
    186. Yamada M, Tsunogai S. Postdepositional enrichment of uranium in sediment from the Bering Sea. Marine Geology, 1984, 54(3–4):263–276.
    187. Yang M, Kostaschuk R, Cheng Z Y. Historical changes in heavy metals in the Yangtze Estuary, China. Environmental Geology, 2004, 46: 857–864.
    188. Zhang D R, Chen F R, Yang Y Q, et al. Benthic fluxes of nutrients in Neritic zone outside Zhujiang River estuary in summer. Journal of Tropical Oceanography, 2005, 24: 53–60.
    189. Zheng Y, Anderson R F, van Geen A, et al. Preservation of particulate non–lithogenic uranium in marine sediments . Geochimica et Cosmochimica Acta, 2002, 66(17): 3085–3092.
    190. Zheng Y, Anderson R F, van Geen A, et al. Authigenic molybdenum formation in marine sediments: a link to pore water sulfide in the Santa Barbara Basin.Geochimica et Cosmochimica Acta, 2000, 64(24): 4165–4178.
    191. Zhou J L, Wu Y, Kang Q S, et al. Spatial variations of carbon, nitrogen, phosphorous and sulfur in the salt marsh sediments of the Yangtze Estuary in China. Estuarine, Coastal and Shelf Science, 2007, 71: 47-59.
    192. Zwolsman J J G, van Eck G T M. Geochemistry of major elements and trace metals in suspended matter of the Scheldt estuary, Southwest Netherlands. Marine Chemistry, 1999, 66: 91–111.
    193.鲍根德,黄德佩,汪依凡.长江口邻近陆架表层沉积物中自生黄铁矿的成因探讨.矿物学报, 1984, (2): 167–172.
    194.鲍根德,张桂芬.长江口及邻近陆架区沉积物和间隙不中铁及其与细菌的关系探讨.热带海洋, 1991, 10(1): 32–39.
    195.鲍根德,黄德佩,汪依凡,等.长江口及邻近陆架区表层沉积物和间隙水中锰的地球化学.东海海洋, 1986, 4(2): 38–43.
    196.陈敏,陈邦林,夏福兴,等.长江口最大浑浊带悬移质、底质微量金属形态分布.华东师范大学学报(自然科学版), 1996, (1): 38–44.
    197.国家海洋局第二海洋研究所.第三章长江河口及其邻近海区的重金属元素.东海海洋, 1995, 13(3/4): 37–71.
    198.李道季,张经,黄大吉,等.长江口外氧的亏损.中国科学(D辑), 2002, 32(8): 686–694.
    199.李延,胡兆彬,朱校斌.长江口邻近海域沉积物间隙水的地球化学.海洋与湖沼, 1983, 14(5): 460–472.
    200.孟翊,刘苍字,程江.长江口沉积物重金属元素地球化学特征及其底质环境评价.海洋地质与第四纪地质, 2003, 23(8): 37-43.
    201.石晓勇,陆茸,张传松,等.长江口邻近海域溶解氧分布特征及主要影响因素.中国海洋大学学报, 2006, 36(2): 287-290.
    202.石晓勇,王修林,韩秀荣,等.长江口邻近海域营养盐分布特征及其控制过程的初步研究.应用生态学报, 2003, 14(7): 1086–1092.
    203.屠建波,王保栋.长江口及其邻近海域富营养化状况评价.海洋科学进展, 2006, 24(4): 532-538.
    204.王保栋,战闰,藏家业.长江口及其邻近海域营养盐的分布特征和输送途径.海洋学报, 2002, 24(1): 53–58.
    205.王保栋.长江冲淡水的扩展及其营养盐的输运.黄渤海海洋, 1998, 16(2): 41–47.
    206.王正方.长江口和浙江省主要河口表层沉积物中重金属化学形态的分配.海洋环境科学, 1986, 5(2): 34-40.
    207.许昆灿,黄水龙,吴丽卿.长江口沉积物中重金属的含量分布及其与环境因素的关系.海洋学报, 1982, 4(4): 440-449.
    208.许淑梅,翟世奎,张爱滨,等.长江口及其邻近海域表层沉积物中氧化还原敏感性微量元素的环境指示意义.沉积学报, 2007, 25(5): 759–766.
    209.许淑梅,翟世奎,张爱滨,等.长江口外缺氧区沉积物中元素分布的氧化还原环境效应.海洋地质与第四纪地质, 2007, 27(3): 1–8.
    210.许淑梅.长江口外缺氧区及其邻近海域氧化还原敏感性元素的分布规律及环境指示意义.中国海洋大学,博士论文, 2005, 1—163, II.
    211.杨作升,陈晓辉.百年来长江口泥质区高分辨率沉积粒度变化及影响因素探讨.第四纪研究, 2007, 27(5): 690–699.
    212.叶思源,武强,钟少军,等.青岛胶州湾沉积物痕量元素黄铁矿化程度及其剖面类型.中国地质大学学报, 2006, 31(2): 175-181.
    213.叶仙森,张勇,项有堂.长江口海域营养盐的分布特征及其成因.海洋通报, 2000, 19(1): 89–92.
    214.张经,应时理.长江口中的颗粒态重金属. 146–160.张经.中国主要河口的生物地球化学研究海洋出版社,北京, 1997,第一版, 1–218.
    215.张晓东,翟世奎,许淑梅,等.长江口外缺氧区沉积物中氧化还原敏感性元素的"粒控效应" .中国海洋大学学报, 2005, 35(5): 868–874.
    216.朱建荣.长江口外海区叶绿素a浓度分布及其动力成因分析.中国科学(D辑),地球科学, 2004, 34 (8): 757–762.
    217.邹建军,杨刚,刘季花,等.长江口邻近海域九月溶解氧的分布特征.海洋环境科学, 2008, 26(1): 65-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700