用户名: 密码: 验证码:
全景航空相机动态分辨率检测系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全景航空相机是安装在飞机上对地面摄影的精密光学仪器,是侦察载体中的一种重要设备。在全景航空相机性能检测系统中,动态分辨率的检测是非常重要的。动态分辨率是衡量相机在随机飞行过程中拍照或者对动态景物拍照时成像质量的重要依据。本文,对全景航空相机的动态分辨率检测系统及其涉及到的关键技术进行具体的研究。
     论文在详细分析了全景航空相机成像原理的基础上,提出了动态分辨率检测的总体方案。该检测系统由无限远动态目标发生系统、稳定平台及其机械、电控系统构成。由放置在相机扫描范围内的三组不同角度的无限远动态目标发生系统为相机提供无限远动态拍摄目标;稳定平台系统提供飞机姿态运动和前向运动的工作环境,来模仿航空相机在飞机上所处的各种姿态。整个系统涉及到的关键技术包括无限远动态目标发生技术、直线运动控制技术和稳定平台控制技术等。
     文中,针对无限远动态目标发生系统的构建,设计了大视场平行光管(焦距1000mm,视场角5°)、尺形分辨率板(采用JB/T 9328-1999型标准图案复制拼接制作)和直线运动装置。在相机拍照曝光时间内,尺形分辨率板运动至平行光管的视场内,以模拟无限远动态目标。
     无限远动态目标发生系统对无限远动态目标的速度均匀性和匀速段有较高的要求,而且速度覆盖范围很大(50mm/s~1500mm/s)。对此,文中研究了直线匀速运动的控制算法,将重复控制算法、非线性PID算法、摩擦前馈补偿算法和力矩前馈补偿算法进行复合,并将此复合控制算法移植到可编程多轴运动控制器(PMAC)之中,使匀速段达到了300mm,瞬时速度误差小于1.5mm/s。
     文中,利用欧拉角的角位置描述,对三轴稳定平台的数学模型进行了研究,并分析了飞机姿态误差对像移补偿的影响。得出在满足工程应用的前提下,可采用双轴稳定平台予以实现的结论。在控制系统中,将贝叶斯概率引入到模糊RBF神经网络中,增强了系统的推理能力,提高了飞机各个航道位置的模拟伺服精度。从实验仿真结果可以看出,稳定平台的跟踪误差不大于±0.005°。
     本文将分辨率的检测理论应用到全景航空相机的动态分辨率检测系统中,通过对无限远动态目标发生系统、直线运动系统和稳定平台系统的设计和实现,完成了动态分辨率的检测,为衡量全景航空相机的成像质量提供了重要的依据。
Panoramic aerial camera mounted on the aircraft is a fine optical instrument to photograph the ground scene. It is an important device in the reconnaissance carrier. The resolution detection is very important in its quality detection system. Dynamic resolution detection is an important judgment to evaluate the imaging quality when camera is in the flying situation or motion scene is imaged. The paper researched the panoramic aerial camera dynamic resolution detection system and its key technology in detail.
     The paper analyzes the imaging principle of the panoramic aerial camera in detail and proposes the detection scheme of the dynamic resolution. The dynamic resolution detection system is composed of the infinity dynamic object generation system and stabilized turntable to simulate the flight attitude and their mechanical and control system. The infinity dynamic target was obtained by the infinity dynamic target generation system which was set in three degree. The stabilized turntable provides the camera with operation situation of the flying attitude and forward motion. The key technologies involved in the detection system are infinity dynamic target generation technology, linear motion control technology and stabilized turntable control technology.
     In the paper, the infinity dynamic object generation system is constructed. The paper designed the large view field (5°) collimator (focal length is 1000mm), resolution power test target of special length (on the the standard of JB/T 9328-1999.) and uniform speed control of the linear motion system. The resolution test target is loaded on the linear motion device to get the dynamic object. The dynamic object should arrive at the view field of the collimator in the camera exposure time to simulate infinity object.
     The infinity dynamic object generation system proposed high request with the uniform speed, long uniform distance and large speed range (50mm/s~1500mm/s). In the paper, linear uniform motion control algorithm is researched. The non-linear PID algorithm, repetition control algorithm, friction forward compensation and moment compensation are combined and the combined control algorithm is planted to the programmable multi-axis motion controller (PMAC). Its uniform distance is longer than 300 millimeters and the error of the instantaneous speed is less than 1.5mm/s.
     In the stabilized turntable system, the mathematic model of the three-axis turntable is studied through the angular position description with the Euler angle. The factors affecting the image shift compensation are analyzed and dual axis stabilized turntable are employed which can meet the engineering requests. In the control system, Bayes probability is introduced in the fuzzy RBF neural network and it intensity the inference ability and increase the servo precision. The simulations show that the tracking error is less than±0.005°.
     The paper applied the resolution detection theory to the dynamic resolution detection system. The dynamic resolution detection is implemented by the stabilized turntable system, infinity target generation system and linear motion system. The detection of the resolution supplies important data to judge the imaging quality of the panoramic aerial camera.
引文
[1]王家骐.光学仪器总体设计.长春光学精密机械与物理研究所研究生教材.1998:78-80
    [2]岳长胜,王太鑫.美国武器装备透视.国防工业出版社,2002
    [3]孙玉杰,汪岳峰,牛燕雄.电视跟踪系统分辨率数字化测试研究.应用光学,2003,9:46-48
    [4]林家明,毕革平,吴伯群.CCD数码照相系统分辨率测试技术研究.光学技术,2000,3:107-110
    [5]陈志斌,梁艳.激光测距机瞄准系统分辨率全自动检测技术研究.红外与激光工程,2004,10:453-457
    [6]王磊,王守印,周虎,张余彬.平行光管的基本原理及使用方法.仪器仪表学报,2006,6增刊:980-982
    [7]吉小辉,孙后环,周必方等.大视场平行光管的研究与设计.光学仪器,2007,6:36-40
    [8]李润顺,王鹏,张爱红等.波差法设计长焦距复消色平行光管物镜.哈尔滨工业大学学报,1996,4:44-49
    [9]周庆才,王春艳,王鹏等.复消色物镜的波差法光学设计.吉林大学学报(工学版),2007,7:944-948
    [10]王伟进.直线电机的发展与应用概述.微电机,2004,1:46-50
    [11]石丽梅,郭庆鼎,孙宜标.交流永磁直线伺服电机新型无传感器控制.沈阳工业大学学报,1997,19(3):10-12
    [12]Chintae Choi,Tsao Tsu-Chin,AtsushiMatsubara.Control of linear machine tool feed drivers for end milling:robust M MO approach Proceedings of the American Control Conference,San Diego,California,ACSS,1999,3723-3727
    [13]HuAi-ping,Andy Register,Nader Sadegh.Using a learing controller to achieve accurate linear motor motion control.International Conference on Advanced Intelligent Mechatronics.IEEE/ASME,1999,611-616
    [14]Brandenburg G,Bruckl S,Dormann J et al.Comparative investigation of rotary and linear motor feed drive systems for high precision machine tools.AMC2000,NAGOYA.IEEE.2000:384-389
    [15]王先逵,陈定积.直线电机进给伺服系统综述.机械工人(冷加工),2002,8:20-22
    [16]Hyunchul Shim,Michael Kochem,Masayo shi Tomizuka.Use of accelerometer for precision motion control of linear motor driven positioning system.IEEE Trans,1998,45(3):2409-2414
    [17]张春良,陈子辰,梅德庆.直线电机伺服进给系统及其关键技术问题.组合机床与自动化加工技术,2001,11:37-40
    [18]范海民,陈宏礼,宋建伟等.基于Smith预估器的直线电机控制系统.应用科技,2002,5:27-29
    [19]王霞,王洪瑞,陈丽等.动态摩擦模型仿真.计算机仿真,2006,5:283-285
    [20]付兴武,苏东海,赵克定等.三轴飞行姿态仿真转台高性能指标及其实现.中国惯性技术学报,1988,2:62-66
    [21]张锦江,王常虹,陈兴林等.三轴仿真转台的总体设计与关键技术研究.系统仿真学报,1999,12:446-449
    [22]吴玉华.惯性测试转台的发展状况.中国科技信息,2005,8:109
    [23]刘春芳,吴盛林,曹健.三轴飞行模拟仿真转台的设计及控制问题研究.中国惯性技术学报,2003,2:62-66
    [24]吴宏圣,潘凝,翟林培.TDICCD全景式航空相机的像移补偿误差分析.光学精密工程,2003,12:545-549
    [25]杨志文等.光学测量.北京:北京理工大学出版社,1995,8:171-187
    [26]苏大图,赵立平,沙定国.光学测试技术.北京:北京理工大学出版社,1996,9:29-37
    [27]王之江.光学技术手册.机械工业出版社,1994,8:482-486
    [28]《中华人民共和国机械行业标准JB/T9328-1999--分辨力板》,国家机械工业局
    [29]王俊.航天光学成像遥感器动态成像质量评价与优化:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2000
    [30]尚超.高精度圆感应同步器高速数据处理电路研究.红外,2006,4:42-46
    [31]郭宏,马媛,纪海军.基于数字信号处理器的旋转变压器测角系统.微电机,2003,3:42-44
    [32]谢伟程,于晓洋.鉴幅型高准确度动态测角系统设计.哈尔滨理工大学学报,2004,8:5-8
    [33]钟萍华,胡玉禧,周绍祥.基于S-L图的复消色差方法.光子学报,2004,33(5):589-592
    [34]崔庆丰,高士平,匡裕光.高分辨率成像二元光学系统的研制与实验结果.光学精密工程,1997,5(5):17-19
    [35]William B.King,Chungte W.Chen.Wide-angle collimating optical device.US patent6,563,638,B2.May 13,2003
    [36]erzy Nowak,Jan Masajada.Apochromatic correction of hybrid lens,SPIE Vol.4356
    [37]R.I.Mercado and L.Ryzhikov,Design of Apochromats and Super achromatic Objectives,SPIE Vol.3482
    [38]Joseph M.Geary,Optical laboratory practice,Introduction to lens design:with practical example
    [39]李春霞,杨茂华,董慧莲.长焦距宽谱段透射式光学系统的二级光讲与畸变.光学技术,1998(6)
    [40]许言强,宋连科,郑春红.三元复合式消色差补偿器的研究与测试.应用光学,2005,26(2):23-25
    [41]常军,姜会林,翁志成.大视场、长焦距空间光学系统的设计.兵工学报,2003,24(1):42-44
    [42]Lynn G.Seppala,The IODC98 optical design problem:method of progressing from an achromatic to an apochromatic design,SPIE Vol.3482
    [43]Robert R.Shannon,Spectral plots for optical glass selection,Optical Engineering,Vol.35 No.10,October 1996
    [44]Juan L.Rayces and Martha Rosete-Aguilar,Selection of Glasses for Achromatic Doublets with Reduced Secondary Spectrum.I.Tolerance Conditions for Secondary Spectrum,Spherochromatism,and Fifth-Order Spherical Aberration,1November 2001_Vol.40,No.31_APPLIED OPTICS
    [45]Simon Thibault and Min Wang.Fast camera objective design for spectrograph of Mont M(?)gantique Telescope.Proc.of SPIE Vol.524
    [46]Robert R.Shannon.Spectral plots for optical glass selection.Opt.Eng,35(10) 2995-3000(October 1996)
    [47]李润顺,王鹏,张爱红.波差法设计长焦距复消色平行光管物镜.哈尔滨工业大学学报,1996:44-49
    [48]张冀恩.高倍平场复消色显微物镜的设计.光学机械,1990(1)
    [49]李林,袁旭沧.实现全局优化的一种新途径.光学学报,1994,14(8):872-876
    [50]梁铨廷.物理光学.北京:机械工业出版社,1987
    [51]洪新华,杨建峰,陈立武.衍/折射光学元件消二级光谱的设计.强激光与粒子束,2004,16(4):421-424
    [52]郭庆鼎,王成元,周美文等.直线交流伺服系统的精密控制技术.北京:机械工业出版社,2000,1:42
    [53]王军.模糊小波网络及其在永磁同步电机控制中的应用:[博士学位论文].成都:西南交通大学,2005
    [54]张东纯,曾鸣,苏宝库.精密速率控制系统中位置周期扰动的动态补偿--一种有限维重复控制方法.宇航学报,2003,1:57-60
    [55]高军,黎辉,杨旭等.基于PID控制和重复控制的正弦波逆变电源研究,电工电能新技术,2002.1:1-4
    [56]刘金琨.先进PID控制MATLAB仿真.第2版.北京:电子工业出版社,2007:288
    [57]赵国勇.数控系统运动平滑处理、伺服控制及轮廓控制技术研究:[博士学位论文].大连:大连理工大学,2006
    [58]苏旭武,张铮,胡月来.直流直线伺服电机重复控制技术及Simulink仿真.湖北工业大学学报,2005.10:53-55
    [59]张东纯,曾鸣,苏宝库.重复控制系统的收敛速度分析.电机与控制学报,2002.3:50-52
    [60]崔红,郭庆鼎.重复控制系统的稳定性分析.沈阳工业大学学报,2005.2:48-51
    [6l]袭著燕,路长厚,潘伟等.带有摩擦前馈补偿的伺服控制器设计的研究.组合机床及与自动化加工技术,2006.12:33-37
    [62]刘凤娟,阎永清,李欣刚.含摩擦环节伺服系统的分析与控制补偿.兵工自动化,2007.4:59-61
    [63]程俊兰.电液位置伺服系统的摩擦补偿及仿真研究.液压与气动,2006.2:12-15
    [64]余健,郭平.基于MATLAB的量子粒子群优化算法及其应用.计算机与数字工程,2007.12:38-39
    [65]Jun Sun,Bin Feng,WenboXu.Particle Swarm Optimization with particles having quantum behavior.Congress on Evolutionary Computation.2004:325-331
    [66]侯志荣等.基于MATLAB的粒子群优化算法及其应用.计算机仿真,2003,20(10):68-70
    [67]康燕,孙俊,须文波.具有量子行为的粒子群优化算法的参数选择.计算机工程与应用,2007,43:40-42
    [68]白文宝,熊伟丽,徐保国.基于量子粒子群的PID控制器参数整定.计算机工程与应用,2007,43(3):61-63
    [69]吕士颖,郑晓鸣,王晓东.基于免疫量子粒子群优化的属性约简.电子科技大学学报,2007,12:1268-1272
    [70]方伟,孙俊,须文波.基于自适应量子粒子群算法的FIR滤波器设计.系统工程与电子技术,2008,7:1378-1381
    [71]姜磊,冯斌,孙俊.具有分工策略的量子粒子群优化算法.计算机工程与设计,2007,11:5461-5463
    [72]林星,冯斌,孙俊.基于边界变异的量子粒子群优化算法.计算机工程,2008,6:187-188
    [73]徐文龙,孙俊,须文波.基于干扰因子的QPSO算法改进.微电子学与计算机,2008,1:128-130
    [74]王璋,冯斌,孙俊.含维变异算子的量子粒子群算法.计算机工程与设计,2008,3:1478-1481
    [75]L.S.Coelho,Novel Gaussian quantum-behaved particle swarm optimizer applied to electromagnetic design,IET Sci.Meas.Technol,2007,2:290-294
    [76]张文静,赵先章,台宪青.基于粒子群算法的火炮伺服系统摩擦参数辨识.清华大学学报,2007,47(S2):
    [77]付云忠.多轴联动线性插补及其“S加减速”规划算法.制造技术与机床,2001,9:9-11
    [78]黄艳,李家霁,于东等.CNC系统S型曲线加减速算法的设计与实现.制造技术与机床,2005,3:55-59
    [79]牛志刚,张建民.基于Turbo PMAC的数控系统自定义伺服算法的嵌入和实现.新技术新工艺,2005,7:11-13
    [80]王清华,韩秋实,孙志永.基于Turbo PMAC数控系统的PID在线调节.微计算机信息,2007,23:226-228
    [81]吴俊伟.惯性技术基础.哈尔滨:哈尔滨工程大学出版社.2002,2:9-18
    [82]周长义.三轴飞行仿真转台控制系统设计与控制算法研究:[博士学位论文].长春:长春光学精密机械与物 理研究所,2005,1
    [83]毕永利.多框架光电平台控制交流研究:[博士学位论文].长春:长春光学精密机械与物理研究所,2003.8
    [84]刘明,刘钢,李友一等,航空相机的像移计算及其补偿分析,光电工程,2004.12,第31卷增刊:12-14
    [85]N.Friedman,D.Koller.Being Bayesian About Network Strunture.A Bayesian Approach to Structure Discovery in Bayesian Networks.Machine Learing.2002,5:95-125
    [86]ZHANG Shao-zhong,DING Hua,WANG Xiu-kun et.Reaserch ang Applicationg of Structure Leating Algorithm for Bayesian Networks from Distributed Data.Machine Learing and Cybernetics.Proceedings of International Conference,2003,3:1667-1671
    [87]翟东海.加乘型模糊神经网络理论和应用的研究:[博士学位论文].成都:西南交通大学,2003
    [88]汤永川.关于不确定性推理理论与知识发现的研究:[博士学位论文].成都:西南交通大学,2002
    [89]王玲,贺兴时.基于改进的模糊聚类在模糊神经网络中的应用.大理学院学报,2008,4:39-41
    [90]Barry Gomm J,Ding Li Yu.Selecting Radial Basis Function Network Centers with Recursive Orthogonal Least Squares Training.IEEE Trans.Neural Networks,2000:1274-1279
    [91]吴云洁,刘金琨,刘强.基于模糊RBF网络的伺服转台鲁棒控制.系统仿真学报,2002,14(9):1232-1234
    [92]王莉,周波,刘佳等.基于模糊神经网络的位置控制器研究.数据采集与处理,2007,17(1):90-94
    [93]徐春梅,尔联洁.飞机仿真转台模糊神经网络补偿的复合控制.系统仿真学报,2008,20(1):139-142
    [94]吴超霞,董宁.模糊神经网络控制器在伺服系统中的在线应用.计算机仿真,2006,23(12):153-155
    [95]裴忠才,尹丽,王占林.基于神经网络的仿真转台控制系统.北京航空航天大学学报,2005,31(9):1045-1048

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700