用户名: 密码: 验证码:
2-氟烯丙醇化合物的合成及其生物催化还原反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氟代醇是碳氢键上氢原子被氟原子取代的一类醇。氟代醇作为一类重要的含氟中间体,因其特异的性质已越来越受到大家的关注。但是,关于单氟取代的,特别是氟原子直接连在手性中心的氟代伯醇的合成方法却并不多见。因此,单氟代手性伯醇的合成是一个值得探究的课题。本论文主要研究了面包酵母不对称还原2-氟烯丙醇类化合物的反应,并通过该反应高对映选择性地合成了手性含氟伯醇。
     为了更好地理解面包酵母还原取代烯丙醇类化合物的历程,论文第二章主要研究了面包酵母还原2-烷基-3-芳基烯丙醇的反应。首先通过对面包酵母还原反应条件的筛选,获得了最佳的反应体系,包括pH值、反应时间、底物的浓度和面包酵母的用量。随后,我们考察了2-位取代基以及3-位芳基对面包酵母还原反应的影响。通过系统的分析,发现随着2-位取代基的体积的增大,反应的转化率快速地下降。同时还发现当3-位芳基由苯基换为呋喃基后,反应的转化率有明显的提高。由此可见,给电子取代基可以使得碳碳双键上的电子云密度增大,从而提高面包酵母还原取代烯丙醇的转化率。
     论文第三章主要探讨了面包酵母还原2-氟取代肉桂醇的反应。研究发现,由于氟的原子半经与氢非常接近,并且氟原子直接与碳碳双键相连时诱导与共轭效应的共同作用并不会明显降低碳碳双键上的电子云密度,2-氟肉桂醇反应48小时后,基本上可以等量的转化为饱和醇,产物的ee值为81%。在相同的反应条件下,2-溴肉桂醇的转化率仅为5%,说明溴原子较大的体积及吸电子性质不利于反应的进行。苯环上的取代基对2-氟取代肉桂醇反应速率的影响也很明显,吸电子取代基使得苯环上的电子云密度降低,反应的转化率也随之降低。经面包酵母还原48小时后,3-(4-甲氧基苯基)-2-氟-2-烯丙醇和3-(4-氟苯基)-2-氟-2-烯丙醇基本上可以完全转化为相应的饱和醇,产物的ee值分别能够达到92%和82%,而3-(4-氯苯基)-2-氟-2-烯丙醇的转化率仅为27%。根据旋光度和核磁数据结果表明,面包酵母还原2-氟取代肉桂醇的产物均为(S)-构型,与文献报道的立体化学一致。
     为了扩大面包酵母还原底物的适用性,论文第四章主要研究了2-氟烯丙醇类化合物碳碳双键的构型对还原反应的影响和一系列(Z)-3-烷基-2-氟-2-丙烯醇的还原反应。首先,我们将两种不同构型的3-(4-甲氧基苯基)-2-氟-2-烯丙醇在相同条件下分别实施面包酵母还原反应,反应进行48小时后,(Z)-异构体可以基本上完全转化为饱和醇,而(E)-异构体没有明显的反应。为了验证具有不同构型的底物的反应活性差异,我们还考证了4-甲基-2-氟-2-戊烯醇(E:Z=1:9)的面包酵母还原反应。(Z)-异构体反应48小时后基本上完全转化为饱和醇,产物的ee值为91%,而(E)-异构体基本上不被还原。上述结果表明,碳碳双键的构型对2-氟烯丙醇类化合物还原反应的影响是至关重要的。此外,面包酵母还原一系列(Z)-3-烷基-2-氟-2-丙烯醇的反应结果表明,随着烷基链的逐渐增长,还原反应的转化率不断降低。2-氟-6-氯-2-己烯醇和2-氟-2-辛烯醇反应48小时后,转化率均高达99%,并分别以91%和92%对映选择性得到相应饱和醇;当烷基为n-C11H23时,2-氟-2-十四烯醇已经不能被面包酵母还原。
Fluoroalcohols are a kind of alcohols contaning fluorine atoms. Because of their unique property, fluoroalcohols as potential intermediates have received much attention in recent years. However, the methods reported for preparing fluorinated primary alcohols with one fluorine atom, especially for introducing a fluorine-containing stereocenter are still few. Therefore, it is necessary to develop new synthetic approaches to chiral primary alcohols with a fluorine-containing stereocenter. In this dissertation, we focous our attention on the study of asymmetric bioreduction of 2-fluoroallyl alcohols mediated by baker's yeast. By this reaction, chiral fluoroalcohols with high enantioselectivity are obtained.
     In order to understand the bioreduction mechanism of substituted allyl alcohols, reduction of 2-alkyl-3-arylallyl alcohols mediated by baker's yeast has been studied in chapter 2. Firstly, the reaction conditions of bioreduction involving pH value, reaction time, concentration of the substrate and the amount of baker's yeast, have been optimized. Next, the effects of the substituents at both 2-position and 3-position of allyl acohols were investigated. The results showed that with the increase of the size of the substituents at 2-position of allyl acohols, the reaction rate decreased sharply. An obvious increase of the reaction rate has been observed when a phenyl group was replaced by a furyl group at 3-position of allyl alcohols, indicating that the reaction was more favorable with the increase of electron density on C=C bond.
     Bioreduction of 2-fluorosubstituted cinnamyl alcohols has been studied in chapter 3. As the atomic radius of fluorine is near to that of hydrogen and less effect on electron density on C=C bond,2-fluorocinnamyl alcohol was almost completely converted into saturated alcohol with 81% ee within 48 h, whereas the conversion of 2-bromocinnamyl alcohol was only 5% due to the large size and electron-withdrawing property of bromine. The electronic property of substituents on benzene ring could also affect the bioreduction of 2-fluorosubstituted cinnamyl alcohols. The decrease in electron density on benzene ring 2-fluoro-3-(4-fluorophenyl)-2-propen-1-ol were reduced into their corresponding saturated alcohols with 92% ee and 82% ee within 48 h, respectively, but only 27% of 2-fluoro-3-(4-chlorophenyl)-2-propen-1-ol was converted. In addition, all of the saturated primary alcohols formed from the bioreduction of 2-fluorosubstituted cinnamyl alcohols mediated by baker's yeast were assigned to be (S)-configuration by analysis of rotation degree and NMR spectra, which is consistent with the stereoselectivity reported previously.
     In order to broaden the substrate spectrum, the configuration effect of C=C bond and bioreduction of a series of (Z)-3-alkyl-2-fluoro-2-propen-l-ols mediated by baker's yeast have been studied. Firstly, the bioreduction of (Z)-and (E)-2-fluoro-3-(4-methoxyphenyl)-2-propen-1-ol were performed respectively. (Z)-isomer could be almost completely converted into saturated alcohols within 48h, whereas (E)-isomer couldn't be reduced by baker's yeast even the reaction time was prolonged to one week. In order to confirm this remarkable difference in reactivity between (E)-and (Z)-isomers, 2-fluoro-4-methyl-2-penten-1-ol (E:Z=1:9) was also tested. The same difference in reactivity was observed. Only (Z)-isomer could be readily reduced into (S)-2-fluoro-4-methyl-pentan-1-ol with 91% ee after 48 h, and (E)-isomer was totally remained in the reaction mixture. As a result, the configuration of the substrate played a crucial role in the reduction of 2-fluoroallyl alcohols mediated by baker's yeast. In addition, the results showed that the reaction rate of (Z)-3-alkyl-2-fluoro-2-propen-l-ols decreased sharply with the increase of the alkyl chain length.6-chloro-2-fluoro-2-hexen-1-ol and 2-fluoro-2-octen-1-ol were consumed completely after bioreduction of baker's yeast within 48 h, and corresponding saturated alcohols were formed with 91%ee and 92% ee respectively. With the alkyl chain length increasing (R=n-C11H23),2-fluoro-2-tetradecen-1-ol was hardly reduced.
引文
[1]Neidleman S G. The Archeology of Enzymology. In:Abramowicz D (ed.) Biocatalysis, Van Nostrand Reinhold, New York,1990, pp1-24.
    [2]Roberts S M, Turner N J, Willetts AJ, et al. Introduction to Biocatalysis Using Enzymes and Micro-organisms, Cambridge University Press, Cambridge,1995, ppl-33.
    [3]Pasteur L. Memoire sur la fermentation alcoolique. Compt. Rend. Acad. Sci. Paris. 1857,45:1032-1036.
    [4]Fischer E. Ber. Influence of configuration on the action of enzymes. Ber. Dtsch. Chem. Ges.1894,27:2985-2993.
    [5]Buchner E. Alcoholic fermentation without yeast cells. [machine translation]. Ber. Dtsch. Chem. Ges.1897,30:117-124.
    [6]Sumner J B, Myrback K. The Enzymes. Academic Press, NY,1950, Vol.1.
    [7]Chibata I. Industrial application of immobilized enzyme systems. Pure and Appl. Chem.1978,50:667-675.
    [8]Bornscheuer U T, Buchholz K. Highlights in biocatalysis-historical landmarks and current trends. Eng. Life Sci.2005,5:309-323.
    [9]May O, Nguyen P T, Arnold F H. Inverting enantioselectivity by directed evolution of hydantoinase for improved production of L-methionine. Nat. Biotechnol.2000,18: 317-320.
    [10]李祖义,吴中柳,陈颖,生物催化进展,2003,23:1446-1451.
    [11]Bornscheuer U T, Kazlauskas R J. Hydrolases in Organic Synthesis. Verlag Chemie, Eeinheim,1999.
    [12]Soda K, Tanaka H, Esaki N. Amino Acids. In:Rehm H J, Reed G (ed.) Biotechnology, Verlag Chemie, Weinheim,1983,3:479.
    [13]Chen S T, Huang W H, Wang K T. Resolution amino acids in a mixture of 2-methyl-2-propanol/water (19:1) catalyzed by alcalase via in situ racemization of one antipodc mediated by pyridoxal 5-phosphate. J. Org. Chem.1994, 59:7580-7581.
    [14]Panke S, Wubbolts M. Advances in biocatalytic synthesis of pharmaceutical intermediates. Current Opinion in Chemical Biology 2005,9:188-194.
    [15]Yamamoto A, Yokozeki K, Kubota K. Japanese patent 01010995.
    [16]Muller M. Chemoenzymatic synthesis of building blocks for statin side chains. Angew. Chem. Int. Ed. Engl.2005,44:362-365.
    [17]Adger B, Bes M T, Grogan G. Application of enzymic Baeyer-Villiger oxidation of 2-substituted cycloalkanones to the total synthesis of (R)-(+)-lipoic acid. J. Chem. Soc. Chem. Commun.1995,15:1563-1564.
    [18]May S W, Padgette S R. Biotechnology, Verlag Chemie, Weinheim,1983, pp 677.
    [19]Jones J B, Beck J F. Asymmetric syntheses and resolution using enzymes. In: Applications of biochemical systems in organic chemistry. Jones JB, Sih CJ, Perlman D (ed.), Wiley, New York,1976, pp236.
    [20]Fronza G, Fuganti C, Mendozza M, et al. Stereochemistry of the double saturation in the formation in baker's yeast of 4-(4-hydroxyphenyl)-2-butanone (Raspberry ketone). Tetrahedron 1996,52:4041-4052.
    [21]Van Dyk M S, Rensburg E, Rensburg I P B, et al. Biotransformation of monoterpenoid ketones by yeasts and yeast-like fungi.J. Mol. Cata. B:Enzym.1998, 5:149-154.
    [22]Ferraboschi P, Grisenti P, Manzocchi A, et al. Baker's yeast-mediated preparation of optically active aryl alcohols and diols for the synthesis of chiral hydroxy acids. J. Chem. Soc., Perkin Trans 1,1990,9:2469-2474.
    [23]Forni A, Moretti I, Prati F, et al. Stereochemcial control in yeast reduction of Fluorinated β-Diketones. Tetrahedron 1994,50:11995-12000.
    [24]Tzianabos O. Polysaccharide immunomoduators as therapeutic agents:structure and biologic function. Clinic Microbio Rev.2000,13:523-533.
    [25]Simon T, Lisbeth O, Jens N. Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol. Biol. Rev.2000,64:34-51.
    [26]Faber K. Biotransformation in Organic Chemistry.5th Edition. Springer-Verlag Berlin Heidelberg,2004.
    [27]Csuk R, Glanzer B I. Baker's yeast mediated transformations in organic chemistry. Chem.Rev.1991,91:49-97.
    [28]Macleod R, Prosser H, Fikentscher L, et al. Asymmetric reductions.12. Stereoselective ketone reductions by fermenting yeast. Biochemistry 1964,3: 838-846.
    [29]Cervinka O, Hub L. Asymmetric reactions. XI. Sterical course of enzymic reduction of methyl alkyl ketones and methyl aryl ketones. Collect. Czech. Chem. Commun. 1966,31:2615.
    [30]Ticozzi C, Zanarotti A. Baker's yeast reduction of 5-acetyl-2-isoxazolines synthesis of enantiomerically pure 2,3-dihydroxy ketones and 1,2,4-triols. Tetrahedron Lett. 1988,29:6167-6170.
    [31]Bucchiarelli M, Foretti I, Prati F, et al. Biotransformations of fluorinated sulphenyl and sulphonyl compounds. Tetrahedron 1989,45:7505-7514.
    [32]Bernardi R, Bravo P, Cardillo R, et al. Homochiral fluo-organic compounds. Microbial reduction of 1-fluoro-3-(p-tolylsulfonyl)propan-2-one and of 1-fluoro-3-(p-tolylsulfenyl)propan-2-one. J. Chem. Soc., Perkin Trans.1988,10: 2831-2834.
    [33]Kitazume T, Kobayashi T. Synthesis of optially active a-fluoro-a-methyl-β-hydroxyesters of erythro or threo configuration with Baker's yeast. Synthesis 1987, (2),187-188.
    [34]Kitazume T, Nakayama Y. Synthetic approach to versatile chiral molecules containing a fluorine atom. J. Org. Chem.1986,51:2795-2799.
    [35]Takano S, Yanase M, Sekiguchi Y, et al. Practical synthesis of (R)-γ-amino-β-hydroxybutanoic acid (GABOB) from (R)-epichlorohydrin. Tetrahedron Lett.1987, 28:1783-1784.
    [36]Bucciarelli M, Forni A, Moretti I. et al. Asymmetric reduction of trifluoromethyl and methyl ketones by yeast; an improved method. Synthesis 1983, (11),897-899.
    [37]Kitazume T, Lin J T. Synthesis approach to optically pure trifluoromethylated compounds. J. Fluorine Chem.1987,34:461-470.
    [38]Nakamura K, Inoue Y, Shibahara J, et al. Asymmetric reduction of β-and γ-nitro ketones by baker's yeast. Tetrahedron Lett.1988,29:4769-4770.
    [39]Takano S. Synthesis of natural products using chiral glycol precursors. Pure Appl. Chem.1987,59:353-362.
    [40]Itoh T, Yoshinaka A, Sato T, et al. A simple stereocontrolled synthesis of optically active deoxysugars L-rhodinose and D-amicetose. Chem. Lett.1985,1679-1780.
    [41]Kozikowski AP, Mugrage BB, Li CS, et al. Chemistry of baker's yeast reduction products:Use of optically active (S)-(+)-1-(p-toluenesulfonyl)propan-2-ol and (S)-(+)-1-(phenylsulfonyl)propan-2-ol in synthesis. Tetrahedron Lett.1986,27: 4817-4820.
    [42]Bernardi R. Ghiringhelli D. A short efficient synthesis of (1S,3S,5R)-and (1S,3S,5R)-1,3-dimethyl-2,9-dioxabicyclo[3.3.1]nonane. J. Org. Chem.1987,52: 5021-5022.
    [43]Drian C L, Greene A E. Efficient, stereocontrolled total syntheses of racemic and natural brefeldin-A. J. Am. Chem. Soc.1982,104:5473-5483.
    [44]Belan A, Bolte J, Fauve A, et al. Use of biological systems for the preparation of chiral molecules.3. Application in pheromone synthesis:preparation of sulcatol enantiomers.J. Org. Chem.1987,52:256-260.
    [45]Akamatsu S. Phytochemical reduction in the cyclohexanes. Biochem. Z.1923,142: 188-190.
    [46]Wimmer Z, Budesinsky M, Romanuk M, et al. Biotransformation of 2-(4-methoxybenzyl)-1-cyclohexanone by means of Saccharomyces cerevisiae. Collect. Czech. Chem. Commun.1987,52:2326-2327.
    [47]Li F, Cui J N, Qian X H. Baker's yeast-mediated enantioselective reduction of substituted fluorenones. Chem. Commun.2006,8:865-867.
    [48]Kertesz D J, Kluge A F. Application of baker's yeast-mediated reductions of bicyclo[4.2.0.]oct-2-en-7-ones to the enantioselective synthesis of prostacyclin analogs. J. Org. Chem.1988,53:4962-4968.
    [49]Seebach D, Eberle M. (R)-Ethyl-4-tert-butoxy-3-hydroxybutanoate, a versatile chiral building block for EPC (enantiomerically pure compound) syntheses, by yeast reduction of 4-tert-butoxy-3-oxobutanoate. Synthesis 1986,1:37-40.
    [50]Seebach D, Renaud P, Schweizer W B, et al. Preparation by yeast reduction and determination of the sense of chirality of enantiomerically pure ethyl (-)-4,4,4-trichloro-3-hydroxy-and (+)-4,4,4-trifluoro-3-hydroxybutanoate. Helv. Chim. Acta 1984,67:1843-53.
    [51]Seebach D, Zuger M F, Giovannini F, et al. Preparative microbial reduction of (3-oxoesters with Thermoanaerobium brockii. Angew. Chem. Int. Ed. Engl.1984,23: 151-152.
    [52]Fuganti C, Grasselli P, Seneci P F, et al. Further information on the steric course of the baker's yeast reduction of 4-substituted-3-oxobutanoates. Tetrahedron Lett.1986, 27:5275-76.
    [53]Deshong P, Lin M-T, Perez J J. Total synthesis of the (+)-pheromone of the male swift moth. Tetrahedron Lett.1986,27:2091-2094.
    [54]Tschaen D M, Fuentes L M, Lynch J E, et al. An efficient synthesis of 4-benzoyloxyazetidinone:an important carbapenem intermediate. Tetrahedron Lett. 1988,29:2779-2782.
    [55]Mori K. Synthesis of optically active pheromones. Tetrahedron,1989,45: 3233-3298.
    [56]Kramer A, Pfander H. The C45 and C50 carotenoids.1. Synthesis of (R)-and (S)-lavandulol. Helv. Chim. Acta 1982,65:293-301.
    [57]Sih C J, Zhou B, Gopalan A S, et al. Strategies for controlling the stereochemical course of yeast reductions. In:Selectivity, a goal for synthetic efficiency, proceedings,14th Workshop Conference, Hoechst; Bartmann, W., Trost, B. M., Eds.; Verlag Chemie:Weinheim,1984; pp 250-261.
    [58]Vanmiddlesworth F, Sih C J. A model for predicting diastereoselectivity in yeast reductions. Biocatalysis 1987,1:117-127.
    [59]Sih C J, Zhou B-N, Gopalan A S, et al. Enantioselective reduction of β-keto-ester by baker's yeast. Ann. N. Y. Acad. Sci.1984,434:186-193.
    [60]Shieh W, Gopalan A S, Sih C J. Stereochemical control of yeast reductions.5. Characterization of the oxidoreductases involved in the reduction of beta-keto esters. J. Am. Chem. Soc.1985,107:2993-2994.
    [61]Heidlas J, Engel K H, Tressl R. Enantioselectivities of enzymes involved in the reduction of methylketones by baker's yeast. Enzyme Microb. Technol.1991,13: 817-821.
    [62]Nakamura K, Inoue K, Ushio K, et al. Stereochemical control in microbial reduction. Part 5. Effect of allyl alcohol on reduction of β-keto esters by baker's yeast. Chem. Lett.1987,679-682.
    [63]Nakamura K, Kawai Y, Oka S, et al. Stereochemical control in microbial reduction.8. Stereochemical control in microbial reduction of β-keto esters. Bull. Chem. Soc. Jpn. 1989,62:875-879.
    [64]Nakamura K, Higaki M, Ushio K, et al. Stereochemical control of microbial reduction.2. Reduction of β-keto esters by immobilized baker's yeast. Tetrahedron Lett.1985,26:4213-4216.
    [65]Chibata I, Tosa T, Sato T. Immobilized aspartase-containing microbial cells. Preparation and enzymic properties. Appl. Microbiol.1974,27:878-875.
    [66]Nakamura K, Kawai Y, Ohno A. A novel method to synthesize (L)-p-hydroxyl esters by the reduction with baker's yeast. Tetrahedron Lett.1990,31:267-270.
    [67]Ushio K, Hada J, Tanaka Y-J, et al. Allyl bromide, a powerful inhibitor against R-enzyme activities in baker's yeast reduction of ethyl 3-oxoalkanoates. Enzyme Microb. Technol.1993,15:222-228.
    [68]Hoffmann R W, Ladner W, Helbig W. Stereoselective synthesis of alcohols, XVIII. Synthesis of (3S,4S)-4-methyl-3-heptanol and of (5S,6S)-anhydroserricornin. Liebigs Ann. Chem.1984,1170-1179.
    [69]Hoffmann R W, Helbig W, Ladner W. Synthesis of (6S,7S)-anhydro-serricornine. Tetrahedron Lett.1982,23:3479-3482.
    [70]Buisson D, Azerad R. Diastereoselective and enantioselective microbial reduction of cyclic alpha-alkyl beta-ketoesters. Tetrahedron Lett.1986,27:2631-2634.
    [71]Deol B S, Ridley D D, Simpson G W. Asymmetric reduction of carbonyl compounds by yeast. Ⅱ. Preparation of optically active α-and β-hydroxy carboxylic acid derivatives. Aust. J. Chem.1976,29:2459-2467.
    [72]Iriuchijima S, Ogawa M. Synthesis of (S)-N-benzyloxycarbonyl-4-amino-2-hydroxybutanoic acid. Synthesis 1982,41-42.
    [73]Brooks D W, Mazdiyasni H, Chakrabarti S. Chiral cyclohexanoid synthetic precursors via asymmetric microbial reduction of prochiral cyclohexanediones. Tetrahedron Lett.1984,25:1241-1244.
    [74]Brooks D W, Woods K W. Chiral building blocks for fused cyclopentanoids: enantioselective synthesis of 5-methylbiocyclo[3.3.0]oct-l-ene-3,6-dione and derivatives.J. Org. Chem.1987,52:2036-2039.
    [75]Brooks D W, Mazdiyasni H, Grothaus P G. Asymmetric microbial reduction of prochiral 2,2-disubstituted cycloalkanediones.J. Org. Chem.1987,52:3223-3232.
    [76]Brooks D W, Mazdiyasni H, Sallay P. Microbial reduction of 2,2-disubstituted-1,3-cycloheptanediones. J. Org. Chem.1985,50:3411-3414.
    [77]Fujisawa T, Kojima E, Sato T. (2S,3S)-1-Phenylthio-2,3-butanediol. Auseful chiral building block for a simple syntheses of (4R,5S)-5-hydroxyhexan-4-olide and (4R,5S)-5-hydroxy-2-hexen-4-olide. Chem. Lett.1987,2227-2228.
    [78]Takeshita M, Sato T. Synthesis of optically active 1-phenyl-1,2-propanediol by use of baker's yeast. Chem. Pharm. Bull.1989,37:1085-1086.
    [79]Tischer W, Bader J, Simon H. Purification and some properties of a hitherto-unknown enzyme reducing the carbon-carbon double bond of α,β-unsaturated carboxylate anions. Eur. J. Biochem.1979,97:103-112.
    [80]Tischer W, Tiemeyer W, Simon H. Stereospecific hydrogenations with immobilized microbial cells or enzymes. Biochimie 1980,62:331-339.
    [81]Simon H, Bader J, Gunther H, et al. Chiral compounds via biocatalytic reductions. Angewandte Chemie 1985,97:541-555.
    [82]Dauphin G, Gourcy J-G, Veschambre. Microbiological synthesis of optically active (2R,3S)-2,3-deuteriocyclohexan-1-ones and (2R,3S)-2-methyl-3-deuteriocyclohexan 1-one. Enantiospecific anti-addition of hydrogen to the double bond of cyclohex-2-en-l-ones. Tetrahedron:Asymmetry 1992,3:595-598.
    [83]Fronza G, Fuganti C, Mendozza M, et al. Stereochemistry of the double bond saturation in the formation in baker's yeast of 4-(4-hydroxyphenyl)-2-butanone (raspberry ketone). Tetrahedron 1996,52:4041-4052.
    [84]Fronza G, Fuganti C, Grasselli P, Mele A, et al. On the mode of baker's yeast reduction of C7-C10 2-alken-4-olides. Tetrahedron Lett.1993,34:6467-6470.
    [85]Fronza G, Fuganti C, Mendozza M, et al. Stereochemical aspects of flavor biogeneration through baker's yeast mediated reduction of carbonyl-active double bonds. Pure Appl. Chem.1996,68:2065-2071.
    [86]Fuganti C, Grasselli P. Baker's yeast mediated synthesis of natural products. Whitaker JR, Sonnet PE (ed.) Biocatalysis in agricultural biotechnology, ACS symp. Ser.389, Am. Chem. Soc, Washington,1989, p359.
    [87]Suemune H, Hayashi N, Funakoshi K, et al. Synthesis by microbial reduction of (S)-13-hydroxy-(9Z,11E)-octadecadienoic acid, a defensive substance in rice. Chem. Pharm. Bull. 1985,33:2168-2170.
    [88]Fuganti C, Grasselli P, Servi S, et al. Baker's yeast mediated preparation of (S)-3-(2-furyl)-2-methylpropan-1-ol a bifunctional chiral C5 isoprenoid synthon. Synthesis of (4R,8R)-4,8-dimethyldecanal, a pheromone of Tribolium castaneum. J. Chem. Soc., Perkin Trans.1988,3061-3065.
    [89]D'Arrigo P, Lattanzio M, Fantoni GP, et al. Chemo-enzymatic synthesis of the active enatiomer of the anorressant 2-benzylmorpholine. Tetrahedron:Asymmetry 1998,9: 4021-4026.
    [90]Fardelone LC, Augusto J, Rodrigues R, et al. Baker's yeast mediated asymmetric reduction of cinnamaldehyde derivatives. J. Mol. Cata. B:Enzym.2004,29:41-45.
    [91]Serra S, Fuganti C. Baker's yeast mediated biohydrogenation of sulphur-functionlised methacrolein derivatives. Stereochemical aspects of the reaction and preparation of the two enantiomers of useful C4 bifunctional chiral synthons. Tetrahedron:Asymmetry 2001,12:2191-2196.
    [92]Fuganti C, Grasselli P. Synthesis of the C14 chromanyl moiety of natural a-tocopherol (vitamin E). J. Chem. Soc., Chem. Commun.1982,205-206.
    [93]Gramatica P, Manitto P, Monti D, et al. Regio-and stereoselective hydrogenation of methyl substituted pentadien-1-ols by Baker's yeast. Tetrahedron 1988,44: 1299-1304.
    [94]D'Arrigo P, Fuganti C, Fantoni GP, et al. Extractive biocatalysis:a powerful tool in selectivity control in yeast biotransformations. Tetrahedron 1998,54:15017-15026.
    [95]Hogberg HE, Hedenstrom E, Fagerhag J. Baker's yeast reduction of thiophenepropaenals. Enantioselective synthesis of (S)-2-methyl-l-alkanols via baker's yeast mediated reduction of 2-methyl-3-(2-thiophene)propenals. J. Org. Chem.1992,57:2052-2059.
    [96]Huang Y-K, Zhang F-L, Gong Y-F. A convenient approach to (S)-2-ethylhexan-1-ol mediated by baker's yeast. Tetrahedron Lett.2005,46:7217-7219.
    [97]Li N, Zhang F-L, Gong Y-F. Highly stereoselective bioreduction and one-way isomerization of 2-alkyl-4,4,4-tricholo-2-butenals. Tetrahedron Lett.2007,48: 1895-1898.
    [98]Fuganti C, Grasselli P, Servi S. Synthesis of (-)-frontalin from the (2S,3R)-diol prepared from a-methylcinnamaldehyde and fermenting baker's yeast. J. Chem. Soc., Perkin Trans.1 1983,241-244.
    [99]Sato T, Hanayama K, Fujisawa T. Preparation of chiral C5-building blocks for terpene synthesis by baker's yeast reduction of sulfur-functionalized prenyl derivatives. Tetrahedron Lett.1988,29:2197-2200.
    [100]Kergomard A, Renard M F, Veschambre H. Microbiological reduction of α,β-unsaturated ketones by Beauveria sulfurescens. J. Org. Chem.1982,47:792-798.
    [101]Utaka M, Konishi S, Takeda A. Asymmetric reduction of (Z)-3-chloro-3-alken-2-ones with fermenting baker's yeast. Tetrahedron Lett.1986,27:4737-4740.
    [102]Clark W M, Kassick A J, Plotkin M A, et al. A highly enantioselective conjugate reduction of 3-arylinden-l-ones using baker's yeast for the preparation of (S)-3-arylindan-l-ones. Org. Lett.1999,1:1839-1842.
    [103]Leuenberger H G, Boguth W, Widmer E, et al. Synthesis of optically active natural carotenoids and structurally related compounds. I. Synthesis of the chiral key compound (4R,6R)-4-hydroxy-2,2,6-trimethylcyclohexanone. Helv. Chim. Acta. 1976,59:1832-1849.
    [104]Utaka M, Konishi S, Mizuoka A, et al. Asymmetric reduction of the prochiral carbon-carbon double bond of methyl 2-chloro-2-alkenoates by use of fermenting baker's yeast. J. Org. Chem.1989,54:4989-4992.
    [105]Utaka M, Konishi S, Okubo T, et al. A facile synthesis of optically pure L-armentomycin and its D-isomer. Highly enantioselective reduction of the C---C double bond of methyl (E)-and (Z)-2,4,4-trichloro-2-butenoate by using baker's yeast. Tetrahedron Lett.1987,28:1447-1449.
    [106]Takabe K, Hiyoshi H, Sawada H, et al. Baker's yeast reduction of 3-phenylthiomethyl-2-butenolide and its derivatives:Synthesis of versatile chiral C5-building blocks for terpenoid synthesis. Tetrahedron:Asymmetry 1992,3: 1399-1400.
    [107]Ono N, Kaji A. Reductive cleavage of aliphatic nitro groups in organic synthesis. Synthesis 1986,693-704.
    [108]Ohta H, Kobayashi N, Ozaki K. Asymmetric reduction of nitro olefins by fermenting baker's yeast. J. Org. Chem.1989,54:1802-1804.
    [109]Anda A F, Roberts K D, Smallridge A J, et al. Mechanism of the yeast mediated reduction of nitrostyrenes in light petroleum. J. Chem. Soc, Perkin Trans.I 1998, 501-504.
    [110]Dumanski P G, Florey P, Knettig M, et al. The baker's yeast-mediated reduction of conjugated methylene groups in an organic solvent. J. Mol. Catal. B:Enzym.2001, 11:905-908.
    [111]Sakai T, Matsumoto S, Hidaka S, et al. Asymmetric reduction of carbon-carbon double bonds of conjugated enones with fermenting baker's yeast. Bull. Chem. Soc. Jpn.1991,64:3473.
    [112]Stuermer R, Hauer B, Faber K, et al. Asymmetric bioreduction of activated C=C bonds using enoate enoate reductases from the old yellow enzyme family. Curr. Opin. Chem. Biol.2007,11:203-213.
    [113]Muller A, Hauer B, Rosche B. Asymmetric alkene reduction by yeast old yellow enzymes and by a novel Zymomonas mobilis reductase. Biotechnol. Bioeng.2007, 98:22-29
    [114]Swiderska M A, Stewart J D. Stereoselective enone reductions by Saccharomyces carlsbergensis old yellow enzyme. J. Mol. Catal. B Enzym.2006,42:52-54.
    [115]Swiderska M A, Stewart J D. Asymmetric bioreductions of P-nitro acrylates as a route to chiral β2-amino acids. Org. Lett.2006,8:6131-6133.
    [116]Hall M, Stueckler C, Kroutil W, et al. Asymmetric bioreduction of activated alkenes using cloned 12-oxophytodienoate reductase isoenzymes OPR-1 and OPR-3 from Lycopersicon esculentum (tomato):a striking change of stereoselectivity. Angew. Chem. Int. Ed.2007,46:3934-3937.
    [117]Wada M, Yoshizumi A, Noda Y, et al. Production of a doubly chiral compound, (4R,6R)-4-Hydroxy-2,2,6-trimethylcyclohexanone, by two-step enzymatic asymmetric reduction. Appl. Environ. Microbiol.2003,69:933-937.
    [118]Kataoka M, Kotaka A, Thiwthong R, et al. Cloning and overexpression of the old yellow enzyme gene of Candida macedoniensis, and its application to the production of a chiral compound. J. Biotechnol.2004,114:1-9.
    [119]Shimoda K, Kubota N, Hamada H. Asymmetric reduction of a, (3-unsaturated carbonyl compounds with reductases from Nicotiana tabacum. Tetrahedron Asymmetry 2004,15:2443-2446.
    [120]Hall M, Stueckler C, Hauer B, et al. Asymmetric bioreduction of activated C=C bonds using Zymomonas mobilis NCR enoate reductase and old yellow enzymes OYE 1-3 from yeasts. Eur. J. Org. Chem.2008,1511-1516.
    [121]Muller A, Stiirmer, Hauer B, et al. Stereospecific alkyne reduction:novel activity of old yellow enzymes. Angew. Chem. Int. Ed.2007,46:3316-3318.
    [122]Rohdich F, Wiese A, Feicht R, et al. Enoate reductases of Clostridia. Cloning, sequencing, and expression. J. Biol. Chem.2001,276:5779-5787.
    [123]Mikami K, Itoh Y, Yamanaka M. Fluorinated carbonyl and olefinic copounds:Basic character and asymmetric catalytia reactions. Chem. Rev.2004,104:1-16.
    [124]Smart B E. In Orgariofluorine Chemistry:Principles and Commercial Applications. New York:Plenum,1994, pp 57-58.
    [125]Hewawasam P, Gribkoff V K, Pendri Y, et al. The synthesis and characterization of BMS-204352 (MaxiPostTM) and related 3-fluorooxindoles as openers of Maxi-K potassium channels. Bioorg. Med. Lett.2002,12:1023-1026.
    [126]Fuhrmann U, Stumpp H H, Chwalisz K, et al. Synthesis and biological activity of a novel, highly potent progesterone receptor antagonist. J. Med. Chem.2000,43: 5010-5016.
    [127]Ma J-A, Cahard D. Asymmetric fluorination, trifluoromethylation, and perfluoroalkylation reactions. Chem. Rev.2004,104:6119-6146.
    [128]Differding E, Lang R W. New fluorinating reagent-I. The first enantioselective fluorination reaction. Tetrahedron Lett.1988,29:6087-6090.
    [129]Takeuchi Y, Satoh A, Suzuki T, et al. Enantioselective fluorination of organic molecules. I. Synthetic studies of the agents for electrophilic enantioselective fluorination of carbanions. Chem. Pharm. Bull.1997,45:1085-1088.
    [130]Shibata N, Liu Z, Takeuchi Y. Novel enantioselective fluorinating agents, (R)-and (S)-N-fluoro-3-tert-butyl-7-nitro-3,4-dihydro-2H-benzo [e] [1,2]thiazine 1,1-dioxides. Chem. Pharm. Bull.2000,48:1954-1958.
    [131]Takeuchi Y, Suzuki T, Satoh A, et al. N-Fluoro-3-cyclohexyl-3-methyl-2,3-dihydrobenzo[1,2-d]isothiazole 1,1-dioxide:an efficient agent for electrophilic asymmetric fluorination of enolates. J. Org. Chem.1999,64:5708-5711.
    [132]Liu Z, Shibata N, Takeuchi Y. Novel methods for the facile construction of 3,3-disubstituted and 3,3-spiro-2H,4H-benzo[e]1,2-thiazine-1,1-diones:synthesis of (11S,12R,14R)-2-fluoro-14-methyl-11-(methylethyl)spiro [4H-benzo [e]-1,2-thiazine-3,2'-cyclohexane]-1,1-dione, an agent for the electrophilic asymmetric fluorination of arylketone enolates. J. Org. Chem.2000,65:7583-7587.
    [133]Carhard D, Audouard C, Plaquevent J-C, et al. Design, synthesis, and evaluation of a novel class of enantioselective electrophilic fluorinating agents:N-fluoro ammonium salts of cinchona alkaloids (F-CA-BF4). Org. Lett.2000,2:3699-2701.
    [134]Desmurs, J-R, Hebrault D, Carhard D, et al. (Rhodia Chimie France). PCT Int. Appl. WO2001090107,2001.
    [135]Shibata N, Suzuki E, Takeuchi Y. A fundamentally new approach enantioselective fluorination based on cinchona alkaloid derivatives/selectfluor combination. J. Am. Chem. Soc.2000,122:10728-10729.
    [136]Shibata N, Suzuki E, Asahi T, et al. Enantioselective fluorination mediated by cinchona alkaloid derivatives/selectfluor combinations:reaction scope and structural information for N-fluorocinchona alkaloids. J. Am. Chem. Soc.2001,123: 7001-7009.
    [137]Mohar B, Baudoux J, Plaquevent J-C, et al. Electrophilic fluorination mediated by cinchona alkaloids:Highly enantioselective synthesis of a-fluoro-a-phenylglycine derivatives. Angew. Chem. Int. Ed.2001,40:4214-4216.
    [138]Zoute L, Audouard C, Plaquevent J-C, et al. Enantioselective synthesis of BMS-204352 (MaxiPost) using N-fluoroammonium salts of cinchona alkaloids (F-CA-BF4). Org. Biomol. Chem.2003,1:1833-1834.
    [139]Hintermann L, Togni A. Catalytic enentioselective fluorination of β-ketoesters. Angew. Chem. Int. Ed.2000,39:4359-4362.
    [140]Togni A, Mezzetti A, Barthazy P, et al. Developing catalytic enantioselective fluorination. Chimia 2001,55:801-805.
    [141]Hamashima Y, Yagi K, Takano H, et al. An efficient enantioselective fluorination of various β-ketoesters catalyzed by chiral palladium complexes.J. Am. Chem. Soc. 2002,124:14530-14531.
    [142]Ma J-A, Cahard D. Copper (Ⅱ) triflate-bis(oxazoline)-catalyzed enantioselective electrophilic fluorination of β-ketoester. Tetrahedron:Asymmetry 2004,15: 1007-1011.
    [143]Kim D Y, Park E J. Catalytic enantioselective fluorination of P-ketoesters by phase-transfer catalysis using chiral quaternary ammonium salts. Org. Lett.2002,4: 545-547.
    [144]Marigo M, Fielenbach D, Braunton A, et al. Enantioselective formation of stereogenic carbon-fluorine centers by a simple catalytic method. Angew. Chem. Int. Ed.2005,44:3703-3706.
    [145]Beeson T D, MacMillan D W C. Enantioselective organocatalytic α-fluorination of aldehyde. J. Am. Chem. Soc.2005,127:8826-8828.
    [146]Steiner D D, Mase N, Barbas Ⅲ C F. Direct asymmetic a-fluorination of aldehydes. Angew. Chem. Int. Ed.2005,44:3706-3710.
    [147]Bruns S, Haufe G. Enantioselective introduction of fluoride into organic compounds: First asymmetric ring opening of epoxides by hydrofluorinationg reagents. J. Fluorine. Chem.2000,104:247-254.
    [148]Saburi M, Shao L, Sakurai T, Uchida Y. Asymmetric hydrogenation of 2-fluoro-2-alkenoic acids catalyzed by Ru-binap complexes:A convenient access to optically active 2-fluoroalkanoic acids. Tetrahedron Lett.1992,33:7877-7880.
    [149]Engman M, Diesen J S, Andersson P G. Iridium-catalyzed asymmetric hydrogenation of fluorinated olefins using N,P-ligands:A struggle with hydrogenolysis and selectivity. J. Am. Chem. Soc.2007,129:4536-4537.
    [150]Kitazume T, Ishikawa N. Asymmetrical reduction of perfluoroalkylated ketones, ketoesters and vinyl compounds with baker's yeast. Chem. Lett.1983,237-238.
    [151]Arai S, Oku M, Ishida T, Shioiri T. Asymmeric alkylation reaction of a-fluorotetralone under phase-transfer catalyzed conditions. Tetrahedron Lett.1999, 40:6785-6789.
    [152]Huber D P, Stanek K, Togni A. Consecutive catalytic electrophilic fluorination/amination of β-keto esters:toward α-fluoro-α-amino acids? Tetrahedron: Asymmetry 2006,17:658-664.
    [1]Blacklock T J, Sohar P, Butcher J W, et al. An enantioselective synthesis of the topically-active carbonic anhydrase inhibitor MK-0507:5,6-dihydro-(S)-4-(ethylamino)-(S)-6-methyl-4H-thieno[2,3-b]thiopyran-2-sulfonamide 7,7-dioxide hydrochloride. J. Org. Chem.1993,58:1672-1679.
    [2]Shaw N M, Robins K T, Kiener A. Lonza:20 years of biotransformations. Adv. Synth. Catal.2003,345:425-435.
    [3]Patel R N, Chu L, Chidambaram R, et al. Enantioselective microbial reduction of 2-oxo-2-(1',2',3',4'-tetrahydro-1',1',4',4'-tetramethyl-6'-naphthalenyl)acetic acid and its ethyl ester. Tetrahedron Asymmetry 2002,13:349-355.
    [4]ChumPradit S, Kung M, Panyachotipun C, et al. Iodinated tomoxetine derivatives as selective lignads for serotonin and norepinephrine uptkae sites. J. Med. Chem. 1992,35:4492-4497.
    [5]Fuganti C, Grasselli P, Servi S, et al. Bakers' yeast mediated preparation of (S)-3-(2-furyl)-2-methylpropan-1-ol, a bifunctional chiral C5 isoprenoid synthon: Synthesis of (4R,8R)-4,8-dimethyldecanal, a pheromone of Tribolium castaneum. Journal of the Chemical Society, Perkin Transactions 1,1988,12:3061-3065.
    [6]Getman D P, DeCrescenzo G A, Heintz R M, et al. Discovery of a novel class of potent inhibitors containing the (R)-(hydroxyethyl)urea isostere. J. Med. Chem. 1993,36:288-291.
    [7]Rao A V R, Gurjar M K, Pal S, et al. Synthesis of a novel C2-symmetrical (2S,5S)-2,5-bis-[(1,1-dimethylethoxy)carbonylaminol]-1,6-diphenylhex-3-ene: Application in the synthesis of potential HIV protease inhibitor. Tetrahedron Lett. 1995,36:2505-2508.
    [8]Sakayu S, Michihiko K, Masaaki K, et al. Stereoselective reduction by ethyl 4-chloro-3-oxobutanoate by a microbial aldehyde reductase in an organic solvent-water diphasic system. Appl. Environ. Microbiol.1990,56:2374-2377.
    [9]Kaellstroem K, Andersson P G. Asymmetric hydrogenation of trisubstituted alkenes with Ir-NHC-thiazole complexes. Tetrahedron Lett.2006,47:7477-7480.
    [10]Xie J H, Zhou Z T, Zhou Q L. Ru-catalyzed asymmetric hydrogenation of racemic aldehydes via dynamic kinetic resolution:efficient synthesis of optically active primary alcohols. J. Am. Chem. Soc.2007,129:1868-1869.
    [11]王萍.面包酵母还原α-烷基-β-芳基丙烯醛的研究:[硕士学位论文].华中科技大学图书馆,2008年.
    [12]Nongkhlaw R L, Nongrum R, Myrboh B. Synthesis of substituted hexa-3,5-dienoic acid methyl esters from conjugated dienones. Journal of the Chemical Society, Perkin Transactions 12001,11:1300-1303.
    [13]盛荣,刘滔,胡永洲.依帕司他的合成工艺改进.浙江大学学报(医学版),2003-324:356-358.
    [14]Habib-Zahmani H, Hacini S, Rodriguez J, et al. An operationally simple base-catalyzed multi-component domino transformation. Stereoselective preparation of trisubstituted alkenes and 1,3-dienes. Synthesis 2005,13: 2151-2156.
    [1]Smart B E. Fluorine substituent effects (on bioactivity). J. Fluorine Chem.2001,109: 3-11.
    [2]Thayer A M. Fabulous fluorine. C & E News.2006,84:15-24.
    [3]卿凤翎,邱小龙,有机氟化学,科学出版社,2007.
    [4]Smart B E. In Organofluorine Chemistry:Principles and Commercial Applications, New York:Plenum,1994.
    [5]Nohira H, Kamei M, Nakamura S, et al. JP 62093248, JP 04024556, US 4798680, US 4873018,1989.
    [6]Kalaritis P, Regenye R W, Partridge J J, et al. Kinetic resolution of 2-substituted esters catalyzed by a lipase ex. Pseudomonas fluorescens. J. Org. Chem.1990,55:812-815.
    [7]Elias E. a-Fluorinated aldehydes. I. Saturated aliphatic aldehydes. Bulletin de la Societe Chimique de France 1964,2254-2257.
    [8]Gilley C B, Buller M J, Kobayashi Y. New entry to convertible isocyanides for the ugi reaction and its application to the stereocontrolled formal total synthesis of the proteasome inhibitor omuralide. Org. Lett.2007,9:3631-3634.
    [9]Kaukoranta P, Engman M, Hedberg C, etal. Iridium catalysts with chiral imidazole-phosphine ligands for asymmetric hydrogenation of vinyl fluorides and other olefins. Adv. Synth. Catal.2008,350:1168-1176.
    [1]Gramatica P, Ranzi B M, Manitto P. Reduction of cinnamyl alcohols and cinnamaldehydes by Saccharomyces cerevisia. Bioorg. Chem.1981,10:22-28.
    [2]Elkik E, Imbeaux M. A convenient synthesis of ethyl (diethoxyphosphoryl) fluoroacetate from ethyl fluoroacetate. Synthesis 1989,861-862.
    [3]Thenappan A, Burton D J. Reduction-olefination of esters:A new and efficient synthesis of α-fluoro α, β-unsaturated esters. J. Org. Chem.1990,55:4639-4642.
    [4]Tsai H-J, Thenappan A, Burton D J. An expedient synthesis of α-fluoro-α, β-unsaturated diesters. Tetrahedron Lett.1992,35:6579-6582.
    [5]Tsai H-J, Thenappan A, Burton D J. A novel intramolecular horner-wadsworth-emmons reaction:A simple and general route to α-fluoro-α, β-unsaturated diesters. J. Org. Chem.1994,59:7085-7091.
    [6]Shen Y, Ni J. Novel sequential transformations of phosphonate. Highly stereoselective synthesis of perfluoroalkylated α-fluoro-α,β-unsaturated esters. J. Org. Chem.1997,62:7260-7262.
    [7]Lemonnier G, Zoute L, Dupas G, et al. Diehylzinc-mediated one-step stereoselective synthesis of a-fluoroacrylates from aldehydes and ketones. Two different pathways depending on the carbonyl partner. J. Org. Chem.2009,74:4124-4131.
    [8]Ocampo R. Dolbier W R. Jr. The reformatsky reaction in organic synthesis. Recent advances. Tetrahedron 2004,60:9325-9374.
    [9]Sano S, Kuroda Y, Saito K, et al. Tandem reduction-olefination of triethyl 2-acyl-2-fluoro-2-phosphonoacetates and a synthetic approach to Cbz-Gly-y[(Z)-CF=C]-Gly dipeptide isostere. Tetrahedron 2006,62:11881-11890.
    [10]Umezawa J, Takahashi O, Furuhashi K, et al. Stereo-and regiocontrolled synthesis of fluorohydrins from optically active epoxides. Tetrahedron:Asymmetry 1993,4: 2053-2060.
    [11]Davis F A, Han W. Diasteroselective fluorination of chiral imide enolates using N-fluoro-O-benzenedisulfonimide(NFOBS). Tetrahedron Lett.1992,33:1153-1156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700