用户名: 密码: 验证码:
近平滑假丝酵母(Candida parapsilosis)催化立体异构反应动力学及催化过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以外消旋化合物为底物的立体异构反应是手性生物合成中最重要和最具有工业应用前景的制备方法之一。本论文以近平滑假丝酵母(Candida parapsilosis) CCTCC M203011催化立体异构反应制备具有重要工业用途的光学纯苯基乙二醇为模型反应,针对立体异构反应中普遍存在的底物浓度低和反应时间长等制约其工业应用的核心问题,利用动力学和热力学等表征催化特性的研究,在比对获得立体异构反应限制性因子的基础上,以催化特性为导向,在中试规模上对生物催化剂制备和反应过程进行研究,揭示了抑制立体异构反应效率的限制性因素,建立了酶水平的利用辅酶再生进行高效不对称还原制备苯基乙二醇两种光学纯对映体的途径,实现了中试规模下全细胞催化立体异构反应高效制备S-苯基乙二醇的制备。
     (1)分离纯化获得了催化立体异构反应中立体选择性氧化反应的苯基乙二醇脱氢酶,通过底物专一性和辅酶依赖型的研究发现,该酶只能够催化R-苯基乙二醇选择性氧化为羟基苯乙酮及其逆向不对称还原反应,其氧化反应速率与底物浓度相关,其中高浓度的醇类底物会对立体选择性氧化反应产生明显抑制;通过不同底物浓度下表观动力学参数Km’的变化趋势证实苯基乙二醇脱氢酶催化立体选择性氧化反应属于顺序型双底物反应模型;死巷抑制剂作用下的苯基乙二醇脱氢酶失活动力学研究表明在反应过程中按照苯基乙二醇脱氢酶、辅酶以及醇类底物的顺序进行结合;产物抑制动力学研究及双底物反应动力学方程拟合试验表明立体选择性氧化反应遵循Theorell-Chance Bi Bi机制;基于苯基乙二醇脱氢酶催化不对称还原反应能力的基础,通过与甲酸脱氢酶进行偶联,控制不对称还原反应方向,成功实现了酶法R-苯基乙二醇的制备,在底物浓度为60 mmol·l-1时,10h产率分别达到95.8%,产物光学纯度均接近100%e.e.。
     (2)分离纯化获得了催化立体异构反应中不对称还原反应的羰基还原酶,通过底物专一性和辅酶依赖型的研究发现,该酶能够催化羟基苯乙酮不对称还原为S-苯基乙二醇,且该反应为不可逆反应,揭示了立体异构反应高转化率和高光学纯度的化学平衡基础,高浓度的底物羟基苯乙酮浓度不会对不对称还原反应速率产生抑制作用,而高浓度辅酶NADPH会对不对称还原反应反应产生明显抑制;通过不同底物浓度下表观动力学参数Km’的变化趋势证实羰基还原酶催化不对称还原反应属于顺序型双底物反应模型;产物抑制动力学研究以及双底物反应动力学方程拟合试验表明立体选择性氧化反应遵循Theorell-Chance Bi Bi机制;建立了羰基还原酶与葡萄糖脱氢酶或6-磷酸葡萄糖脱氢酶偶联辅酶NADPH的反应体系,成功实现了酶法S-苯基乙二醇的制备,在底物浓度为60 mmol·l-1时,10h产率分别达到91.3%和86.8%,产物光学纯度均接近100%e.e.。
     (3)通过氧化反应和还原反应稳态动力学参数和热力学参数的比较研究发现,无论是在最适作用条件下,还是在中性条件下,羰基还原酶催化不对称还原反应最大速率及催化效率均比苯基乙二醇脱氢酶催化的立体选择性氧化反应速率和催化效率高10倍以上,因此确定氧化反应是立体异构反应的限制性步骤;通过考察温度和pH等重要的环境因子对苯基乙二醇脱氢酶及羰基还原酶催化活性的影响研究,确定苯基乙二醇醇脱氢酶催化立体选择性氧化反应的最佳温度和pH分别为35℃和pH 9.0,羰基还原酶催化不对称还原反应的最佳温度和pH分别为45℃和pH 4.5,结果表明全细胞催化立体异构反应的两个关键蛋白存在不可调和性的矛盾,限制了立体异构反应的效率。
     (4)通过研究影响近平滑假丝酵母生长的培养基组成和培养条件,分别以发酵生物量和单位细胞具有的催化立体异构反应活性为指标,针对微生物催化活性具有重要影响金属离子,利用Plackett-Burman设计实验和响应面优化确定其最优组成;同时利用正交试验考察了影响生物催化剂发酵的培养条件;研究结果显示微生物的生物量与其具备的生物催化活性的非相关性;在最优发酵培养组成及最适发酵条件下,发酵获得生物量达到33.3 g/L,立体异构反应产物光学纯度达到97.0%e.e.;
     (5)在7 L发酵罐水平针对溶氧的研究表明通过调节搅拌转速和通气量提高溶氧水平有利于近平滑假丝酵母发酵生物量的提高,同时保持较好的催化活性;而150 L中试规模微生物生长和催化活性的影响研究表明,过高的氧通量有利于微生物生长而不利于细胞催化活性的形成;通过调节搅拌转速和通气量等手段平衡了微生物生长与催化活性之间的矛盾,成功实现了150 L中试规模高效生物催化剂发酵制备,发酵获得生物量达到47 g/L,立体异构反应产物光学纯度达到99.3%e.e.。
     (6)通过对影响全细胞催化立体异构反应效率的环境因子研究,发现pH、温度、溶氧以及细胞量等环境因子对全细胞催化的立体异构反应影响与酶促反应不尽相同,通过反应条件优化,立体异构反应最适底物浓度达从35 mmol·l-1提高至70 mmol·l-1,产率和产物光学纯度分别达到90%和99%e.e.以上;基于立体异构反应稳态动力学研究中发现的限制性步骤立体选择性氧化反应在高底物浓度下存在的显著抑制作用,利用多种原位分离技术控制反应体系中的底物浓度,其中双水相体系和水-树脂两相反应体系最适底物浓度从70 mmol·l-1提高至220 mmol·l-1,产率和产物光学纯度分别达到90%和99%e.e.以上;并在公斤级中试规模实现了水-树脂两相体系中近平滑假丝酵母全细胞催化立体异构反应,48 h产物光学纯度和产率分别达到99%e.e.和94%以上。
Stereoinversion process catalyzed by microorganism whole cell is one of the most important and best industrial application prospect methods in biocatalyst chiral synthesis. The optically phenyl-1,2ethanediol (PED), key intermediates in the synthesis of pharmaceuticals and fine chemicals, is choosed as the model substrate in this thesis. For the common shortcoming of stereoinversion such as long reaction time and low substrate concertration, the studies of reaction mechanism of stereoinversion, fermentation of biocatalyst and optimization of process are carried out to reveal the factors which hinder the improvement of reaction efficiency. Furthermore, the processes for preparation of different isomers of PED by oxidoreductase coupled with the regeneration of coenzyme are established. The stereoinversion process catalyzed by whole cell is succeeded in pilot scale for the production of optically PED with high efficiency.
     Firstly, the fermentation culture medium, especially the effect of metal ions, was observed by Plackett-Burman design and optimized by response surface analysis while biomass and catalytic ability of cell as the indicator. The cultues conditions including pH, temperature and culture time were also optimized by orthogonal experimental design. At the optimized condition, the biomass and optical purity of product reached 33.3 g/L and 97.0%e.e. respectively.
     Secondly, the effect dissolved oxygen to the fermentation of biocatalyst was carried out in the 7 L and 150 L fermentor. It was proved that high oxygen throguout was benifitful to the biomass and harmful to the stereoselectity of cell. The biomass and optical purity of product reached 47 g/L and 99.3% e.e. at the controlled dissolved oxygen by adjusting of stirring speed and air volume in 150 L fermentor, respectively.
     Thirdly, the dehydrogenase, CPADH, which catalyzed the stereoselectly oxidation reaction of stereoinversion, was purified and characteristiced including the substrate specificity and coenzyme independent. CPADH catalyzed the reversible oxidation reaction was inhibited by the high concerntration of substrate. It was indicated that the oxidation reaction followed Theorell-Chance BiBi mechanism by the studies of apparent michaelis constant Km'at different substrate concerntration without product inhibitation, studies of dead-end inhibition and studies of product inhibitation. Based on the ability of catalyzing reduction reaction of CPADH, the asymmetric reduction process for R-PED production coupled with NADH regeneration catalyzed by formate dehydrogenase was estabolished with high yeild and optical purity of 95.8% and 100%e.e. at the substrate concerntration of 60 mmol·l-1, respectively.
     Forthly, the carbonyl reductase, CPCR, which catalyzed the asymmetric reduction reaction of stereoinversion, was purified and characteristiced including the substrate specificity and coenzyme independent. CPCR catalyzed the irreversible reduction reaction was inhibited by the high concerntration of coenzyme. It was indicated that the reduction reaction also followed Theorell-Chance Bi Bi mechanism by the studies of apparent michaelis constant Km'at different substrate concerntration without product inhibitation and studies of product inhibitation. The asymmetric reduction processes for S-PED production coupled with NADPH regeneration catalyzed by glucose dehydrogenase or glucose-6-phosphate dehydrogenase were established with high yeild of 91.3% and 86.8% and the same optical purity of 100%e.e. at the substrate concerntration of 60 mmol·l-1, respectively.
     Fifthly, it was suggested that the oxidation reaction was the restrict step of the whole stereoinversion process after the comparasion of kinetic and thermodynamic studies of CPCR and CPADH. The effct of enviromental factors includes optimal reaction temperature and pH value to the kinetic and thermodynamic parameters shown that the great difference between CPCR and CPADH caused the low efficiency of stereoinversion reaction. The optimal eaction temperature and pH value of CPADH was 35℃and 9.0 while it of CPCR was 45℃and 4.5.
     Sixly, it was found that thefactors including pH value, reaction temperature, dissolved oxygen and biomass to the stereoinversion cataylzed by whole cell was quite different with it in the reaction catalyzed by the purified enzyme. The optimal substrate concerntration was improved from 35 mmol·l-1 to 70 mmol·l-1 with high yeild and optical purity of more than 90% and 99%e.e. Based on the fact that the restrictive step of stereoinversion reaction was inhibited by high concerntration of substrate, in situ product removal (ISPR) techniche was applied to decrease the concerntration of substrate in reaction phase and remove the inhibition of substrate. The substrate concerntration was improved from 70 mmol·l-1 to 220 mmol·l-1 with high yeild and optical purity of more than 90% and 99%e.e. in the bi-aqueous phase system and resin-aqueous phase system. The process of resin-aqueous phase system was succeeding to scale up to 100L reactor with high yeild and optical purity of 94% and 99%e.e. after 48 h.
引文
1. Pociecha D, Glogarova M, Gorecka E. Behavior of frustrated phase in ferroelectric and antiferroelectric liquid crystalline mixtures [J]. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics,2000,61:6674-6677.
    2. Archer P, Dierking I. Quantitative experimental determination of the Landau-potential of chiral enantiomer doped ferroelectric liquid crystals [J]. Eur Phys J E Soft Matter,2005,18(4): 373-381.
    3. White T J, Brickera R L, Natarajana L V, et al. Electromechanical and light tunable cholesteric liquid crystals [J]. Optics Communications,2010,283(18):3434-3436
    4. Xie Y, Xu J-H, Lu W-Y, et al. Adzuki bean:A new resource of biocatalyst for asymmetric reduction of aromatic ketones with high stereoselectivity and substrate tolerance [J]. Bioresource Technology,2009,100(9):2463-2468
    5. Chaubey A, Parshad R, Koul S, et al. Enantioselectivity modulation through immobilization of Arthrobacter sp. lipase:Kinetic resolution of fluoxetine intermediate [J]. Journal of Molecular Catalysis B:Enzymatic,2006,42(1-2):39-44.
    6. Ema T, Moriya H, Kofukuda T, et al. High enantioselectivity and broad substrate specificity of a carbonyl reductase:Toward a versatile biocatalyst [J]. J Org Chem,2001,66(5):8682-8684.
    7. Chen Y, Lie F, Li Z. Enantioselective benzylic hydroxylation with Pseudomonas monteilii TA-5:A simple method for the syntheses of (R)-Benzylic alcohols containing reactive functional groups [J]. Advanced Synthesis & Catalysis,2009,351(13):2107-2112.
    8. Matsuda T, Yamanaka R, Nakamura K. Recent progress in biocatalysis for asymmetric oxidation and reduction [J]. Tetrahedron:Asymmetry,2009,20(5):513-557.
    9. Herrera S. Industrial biotechnology and sustainable chemistry [J]. Nature Biotechnology, 2004,22:671-675
    10. Frazzetto G. White biotechnology [J]. EMBO reports,2003,4(9):835-837.
    11. Pekkarinen M. Industrial or white biotechnology, a policy agenda for Europe [J].2006.
    12.国家中长期科学和技术发展规划纲要(2006-2020 年).http://www.gov.cn/jrzg/2006-02/09/content_183787.htm [J].2006.
    13. Schmid A, Dordick J S, Hauer B, et al. Industrial biocatalysis today and tomorrow [J]. Nature,2001,409:258-268.
    14. Faber K. Biotransformations in organic chemistry [J]. a Textbook, edn 4 Berlin: Springer-Verlag,2000.
    15. Koeller K M, Wong C H. Enzymes for chemical synthesis [J]. Nature,2001,409:232-240.
    16. Zhao H, Chockalingam K, Chen Z. Directed evolution of enzymes and pathways for industrial biocatalysis [J]. Curr Opin Biotechnol,2002,13:104-110.
    17. Stewart J D. Dehydrogenases and transaminases in asymmetric synthesis. [J]. Curr Opin Chem Biol,2001,5:120-129.
    18. Li Z, Beilen J B v, Duetz W A, et al. Oxidative biotransformations using oxygenases [J]. Curr Opin Chem Biol 2002,6:136-144.
    19. Gruber C C, Lavandera I, Faber K, et al. From a racemate to a single enantiomer: deracemization by stereoinversion [J]. Advanced Synthesis & Catalysis,2006,348(14):1789-1805.
    20. Nakamura K, Yamanaka R, Matsuda T, et al. Recent developments in asymmetric reduction of ketones with biocatalysts [J]. Tetrahedron:Asymmetry,2003,14:2659-2681.
    21. Golebiowski E S A, Johnson C R. Enantioselective synthesis through enzymatic asymmetrization [J]. Tetrahedron Letters,1996,52:3769-3826.
    22. Wang Y F, Chen C-S, Girdaukas G, et al. Bifunctional chiral synthons via biochemical methods. III. Optical purity enhancement in enzymic asymmetric catalysis [J]. J Am Chem Soc,1984, 06:3695-3696.
    23. Garcia-Urdiales E, Alfonso I, Gotor V. Enantioselective enzymatic desymmetrizations in organic synthesis [J]. Chem Rev,2005,105:313-354.
    24. Kagan H B, Fiaud J C. Kinetic resolution [J]. Top stereochem,1988,18:249-330.
    25. Straathof A J J, Jongejan J A. The enantiomeric ratio:Origin, determination and prediction [J]. Enzyme Microb Technol,1997,1(21):559-571.
    26. Faber K. Non-Sequential Processes for the Transformation of a racemate into a single stereoisomeric product:proposal for stereochemical classification [J]. Chem Eur J,2001,7:5004-5010.
    27. Gutierrez M-C, Furstoss R, Alphand V. Microbiological transformations enantioconvergent Baeyer-Villiger oxidation via a combined whole cells and ionic exchange resin-catalysed dynamic kinetic resolution process [J]. Adv Synth Catal,2005,347:1051-1059.
    28. Wallner S R, Pogorevc M, Trauthwein H, et al. Biocatalytic enantio-convergent preparation of sec-alcohols using sulfatases [J]. Eng Life Sci,2004,4:512-516.
    29. Pamies O, Backvall J-E. Combination of enzymes and metal catalysts. A powerful approach in asymmetric catalysis [J]. Chem Rev,2003,103:3247-3261.
    30. Pellissier H. Dynamic kinetic resolution [J]. Tetrahedron Letters,2003,59:8291-8327.
    31. Kim M-J, Ahn Y, Park J. Dynamic kinetic resolutions and asymmetric transformations by enzymes coupled with metal catalysis [J]. Curr Opin Biotechnol,2002,,13:578-587.
    32. Pamies O, Backvall J-E. Chemoenzymatic dynamic kinetic resolution [J]. Trends Biotechnol, 2004,22:130-135.
    33. Hafner E W, Wellner D. Demonstration of imino acids as products of the reactions catalyzed by D- and L-amino acid oxidases [J]. Proc Natl Acad Sci,1971,68:987-991.
    34. Carnell A J. Stereoinversions using microbial redox-reactions. [J]. Adv Biochem Eng Biotechnol,1999,63:57-72.
    35. Nakamura K, Matsuda T, Harada T. Chiral synthesis of secondary alcohols using Geotrichum candidum [J]. Chirality,2002,14,:703-708.
    36. Patel R N. Biocatalytic synthesis of intermediates for the synthesis of chiral drug substances [J]. Curr Opin Biotechnol,2001,12:587-604.
    37. Azerad R, Buisson D. Dynamic resolution and stereoinversion of secondary alcohols by chemo-enzymatic processes [J]. Curr Opin Biotechnol,2000,11:565-571.
    38. Strauss U T, Felfer U, Faber K. Biocatalytic transformation of racemates into chiral building blocks in 100% chemical yield and 100% enantiomeric excess [J]. Tetrahedron:Asymmetry,1999,,10: 107-117.
    39. Bosetti A, Bianchi D, Cesti P. Enzymatic resolution of 1,2-diols:comparison between hydrolysis and transesterification reactions [J]. J Chem Soc Perkin TransⅠ,1992:2395-2398.
    40. Stampfer W K B, Kroutil W. On the organic solvent and thermostability of the biocatalytic redox system of Rhodococcus ruber DSM 44541 [J]. Biotechnol Bioeng,2003,81:865-869.
    41. Wendhausen J, R M, P.J. S, Joekes I, et al. Continuous process for large-scale preparation of chiral alcohols with baker's yeast immobilized on chrysotile fibers[[J]. J Mol Catal B Enzym,1998,5: 69-73.
    42. Barbieri C, Bossi L D, P A, et al. Bioreduction of aromatic ketones:preparation of chiral benzyl alcohols in both enantiomeric forms [J]. J Mol Catal B Enzym,2001,11:415-421.
    43. Hummel W. New alcohol dehydrogenases for the synthesis of chiral compounds. [J]. Adv Biochem Eng Biotechnol,1997,58:145-184.
    44. Pekala E, Zelaszczyk D. Alcohol dehydrogenases as tools for the preparation of enantiopure metabolites of drugs with methyl alkyl ketone moiety [J]. Sci Pharm,2009,77:9-17.
    45. Rozzell D. Method for the stereoselective production of chiral vicinal aminoalcohols: establishing two chiral centers by diastereoselective reduction [J]. Applied Biocatalysis in Specialty Chemicals and Pharmaceuticals,2001,13:191-199.
    46. Buisson D, Baba S E, Azerad R. Yeast-catalysed asymetric reduction of benzil and benzoin to hydroxybenzoin [J]. Tetrahedron Lett,1986,27:4453-4454.
    47. Shimizu S, Hattori S, Hata H, et al. One-stepmicrobial conversion of a racemic mixture of pantoyl lactone to optically active D-(-)-Pantoyl Lactone [J]. Appl Environ Microbiol,1987,53(3): 519-522.
    48. Cardus G J, Carnell A J, Trauthwein H, et al. Microbial deracemisation of N-(1-hydroxy-1-phenylethyl) benzamide [J]. Tetrahedron:Asymmetry,2004,15:239-243.
    49. Comasseto J V, Omori A T, Andrade L H, et al. Bioreduction of fluoroacetophenones by the fungi Aspergillus terreus and Rhizopus oryzae [J]. Tetrahedron:Asymmetry,2003,14(6):711-715
    50. Kagohara E, Pellizari V H, Comasseto J V, et al. Biotransformations of substituted phenylethanols and acetophenones by environmental bacteria [J]. Food Technol Biotechnol,2008, 46(4).
    51. Nakamura K, Inoue Y, Matsuda T, et al. Microbial deracemization of 1-arylethanol [J]. Tetrahedron Letters,1995,36(35):6263-6266
    52. Nakamura K, Fujii M, Ida Y. Stereoinversion of arylethanols by Geotrichum candidum [J]. Tetrahedron:Asymmetry,2001,12(22):3147-3153.
    53. Andrade L H, Utsunomiya R S, Omori A T, et al. Edible catalysts for clean chemical reactions:Bioreduction of aromatic ketones and biooxidation of secondary alcohols using plants [J]. Journal of Molecular Catalysis B:Enzymatic,2006,38(2):84-90
    54. Zhu D M, Hyatt B A, Hua L. Enzymatic hydrogen transfer reduction of alpha-chloro aromatic ketones catalyzed by a hyperthermophilic alcohol dehydrogenase [J]. J Mol Catal B-Enzym, 2009,56(4):272-276.
    55. Burda E, Hummel W, Modular G H. Chemoenzymatic one-pot syntheses in aqueousmedia: combination of a palladium-catalyzed cross-coupling with an asymmetric biotransformation [J]. Angew Chem-Int Edit,2008,47(49):9551-9554.
    56. Zilbeyaz K, Kurbanoglu E B. Production of (R)-1-(4-Bromo-phenyl)-ethanol by locally isolated Aspergillus niger using ram horn peptone [J]. Bioresour Technol,2008,99(6):1549-1552.
    57. Takemoto M, Achiwa K. The synthesis of optically active pyridyl alcohols from the corresponding racemates by Catharanthus roseus cell cultures [J]. Tetrahedron:Asymmetry,1995, 6(12).
    58. Takemoto M, Matsuoka Y, Achiwa K, et al. Biocatalytic dediastereomerization of dibenzylbutanolides by plant cell cultures [J]. Tetrahedron Letters,2000,41(4):499-502.
    59. Takemoto M, Achiwa K. Synthesis of styrenes through the biocatalytic decarboxylation of trans-cinnamic acids by plant cell cultures [J]. Chem Pharm Bull,2001,49(5):639-641.
    60. Demir A S, Hamamci H, Sesenoglu O, et al. Fungal deracemization of benzoin [J]. Tetrahedron Letters,2002,43(36):6447-6449
    61. Ogawa J, Xie S-X, Shimizu S. Stereoinversion of optically active 3-pentyn-2-ol by Nocardia species [J]. Biotechnol Lett,1999,21(4):331-335.
    62. Xie S-X, Ogawa J, Shimizu S. Production of (R)-3-pentyn-2-ol through stereoinversion of racemic 3-pentyn-2-ol by Nocardia fusca AKU 2123. [J]. Appl Microbiol Bio-technol,1999,52: 327-331.
    63. S-X. X, Ogawa J, Shimizu S. NAD+-dependent (S)-specific secondary alcohol dehydrogenase involved in stereoinversion of 3-pentyn-2-ol catalyzed by Nocardia fusca AKU 2123. [J]. Biosci Biotechnol Biochem,1999,63:1721-1729.
    64. Patel R N. Enzymatic synthesis of chiral intermediates for crug cevelopment [J]. Advanced Synthesis & Catalysis,2001,343(6-7):527-546.
    65. Nestl B M, Voss C V, Bodlenner A, et al. Biocatalytic racemization of sec-alcohols and a-hydroxyketones using lyophilized microbial cells [J]. Applied Microbiology and Biotechnology, 2007,76(5):1001-1008.
    66. Hasegawa J, Ogura M, Tsuda S, et al. High-yield production of optically active 1,2-Diols from the corresponding racemates by Microbial Stereoinversion [J]. Agric Biol Chem,1990,54(7): 1818-1827.
    67. Cabonb O, Buisson D, Larcheveque M, et al. The microbial reduction of 2-chloro-3-oxoesters [J]. Tetrahedron:Asymmetry,1995,,6(9):2199-2210.
    68. Prelog V. Specification of the stereospecificity of some oxido-reductases by diamond lattice sections [J]. Pure Appl Chem,1964,,9:119-130.
    69. Bradshaw C W, Fu H, Shen G J, et al. A pseudomonas sp. alcohol dehydrogenase with broad substrate specificity and unusual stereospecificity for organic synthesis [J]. J Org Chem,1992,57: 1526-1532.
    70. Bradshaw C W, Hummel W, Wong C H. Lactobacillus kefir alcohol dehydrogenase:a useful catalyst for synthesis [J]. J Org Chem,,1992,57:1532-1536.
    71. Sogabe S, Yoshizumi A, Fukami T A, et al. he crystal structure and stereospecificity of levodione reductase from Corynebacterium aquaticum M-13 [J]. J Biol Chem,2003, 278(19387-19395).
    72. Hasmann F A, Gurpilhares D B, Roberto I C, et al. New combined kinetic and thermodynamic approach to model glucose-6-phosphate dehydrogenase activity and stability [J]. Enzyme and Microbial Technology,2007,40(4):849-858.
    73. JJ H, WJ G, SJ N, et al. Reduction of S-nitrosoglutathione by human alcohol dehydrogenase 3 is an irreversible reaction as analysed by electrospray mass spectrometry. [J]. Eur J Biochem,2003, 270(6):1249-1256.
    74. Sytkowski A J, Vallee B L. Chemical reactivities of catalytic and noncatalytic zinc or cobalt atoms of horse liver alcohol dehydrogenase:differentiation by their thermodynamic and kinetic properties [J]. PNAS,1976,73 (2):344-348.
    75. Goncalves L P B, Antunes O A C, Oestreicher* E G. Thermodynamics and kinetic aspects involved in the enzymatic resolution of (R,S)-3-fluoroalanine in a coupled system of redox reactions catalyzed by dehydrogenases [J]. Org Process Res Dev,2006,10(3):673-677.
    76. Dalziel K. Kinetic Studies of Liver Alcohol Dehydrogenase and pH with Coenzyme Preparations of High Purity [J]. the journal of biological chemistrs,1963,238(8):2850-2857.
    77. Pire C, Camacho M L, Ferrer J, et al. NAD(P)+-glucose dehydrogenase from Haloferax mediterranei:kinetic mechanism and metal content [J]. J Mol Catal B Enzym,2000,10:409-417.
    78. Olsthoorn A J J, Otsuki T, Duine J A. Negative cooperativity in the steady-state kinetics of sugar oxidation by soluble quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus [J]. Eur J Biochem,1998,255:255-261.
    79. Figueroa-Sato C G, Valenzuela-Sato E M. Kinetic study of porcine kidney betaine aldehyde dehydrogenase [J]. Biochem Biophy Re Commun,2000,269:596-603.
    80. Harris R A, Hawes J W, Popov K M, et al. Studies on the regulation of the mitochondrial alpha-ketoacid dehydrogenase complexes and their kinases [J]. Adv Enzyme Regul,1997,37(271).
    81. Schmitt U, Jahnke K, Rosenbaum K, et al. Purification and characterization of dihydropyrimidine dehydrogenase from Alcaligenes eutrophus. [J]. Archiv Biochem Biophy,1996, 332 175-182.
    82. Zhao Y, DeLancey G B. A predictive thermodynamic model for the bioreduction of acetophenone to phenethyl alcohol using resting cells of Saccharomyces cerevisiae [J]. Biotechnology and Bioengineering,1999,64:442-451.
    83. Cai J, Pietzsch M, Theobald U, et al. Fast purification and kinetic studies of the glycerol-3-phosphate dehydrogenase from the yeast Saccharomyces cerevisiae [J]. Journal of Biotechnology,1996 49 19-27.
    84. Yao C-T, Lai C-L, Hsieh H-S, et al. Establishment of steady-state metabolism of ethanol in perfused rat liver:the quantitative analysis using kinetic mechanism-based rate equations of alcohol dehydrogenase [J]. Alcohol,2010,44:541-551.
    85. Brendskag M K, McKinley-McKee J S, Winberg J-O. Drosophila lebanonensis alcohol dehydrogenase:pH dependence of the kinetic coeffcients [J]. Biochimica et Biophysica Acta,1999, 1431:74-86.
    86. Prosise G L, Luecke H. Crystal Structures of Tritrichomonas foetus Inosine Monophosphate Dehydrogenase in Complex with Substrate, Cofactor and Analogs:A Structural Basis for the Random-in Ordered-out Kinetic Mechanism [J]. J Mol Biol,2003,326:517-527.
    87. Andrew G S, Warrilow, David C L, et al. Phanerochaete chrysosporium NADPH-cytochrome P450 reductase kinetic mechanism [J]. Biochemical and Biophysical Research Communications,2002,299 189-195.
    88. Lamb D C, Warrilow A G S, Venkateswarlu K, et al. Activities and kinetic mechanisms of native and soluble NADPH-cytochrome P450 reductase [J]. Biochemical and Biophysical Research Communications,2001,286:48-54.
    89. Fawcett T, Copse C L, Simon J W, et al. Kinetic mechanism of NADH-enoyl-ACP reductase from Brassica napus [J]. FEBS Letters,2000 484:65-68.
    90. Marcinkeviciene J, Jiang W, Kopcho L M, et al. Enoyl-ACP reductase (FabI) of Haemophilus influenzae:steady-State kinetic mechanism and inhibition by rriclosan and hexachlorophene [J]. Archives of Biochemistry and Biophysics,2001,390(1):101-108.
    91. Kung-Chao D T-Y, Tai H-H. NAD+-dependent 15-hydroxyprostaglandin dehydrogenase from porcine kidney:Ⅱ. Kinetic studies [J]. Biochimica et Biophysica Acta (BBA)-Enzymology, 1980,614(1):14-24.
    92. Al-Kassim L S, Tsai C S. Studies of NADP+-preferred secondary alcohol dehydrogenase from Thermoanaerobium brockii [J]. Biochem Cell Biol,1990,68(6):907-913.
    93. Wedler F C, Ley B W, Shames S L, et al. Preferred order random kinetic mechanism for homoserine dehydrogenase of Escherichia coli (Thr-sensitive) aspartokinase/homoserine dehydrogenase-I:equilibrium isotope exchange kinetics. [J]. Biochim Biophys Acta,1992,1119(3): 247-249.
    94. Sampathkumara P, Morrisona J F. Chorismate mutase-prephenate dehydrogenase from Escherichia coli kinetic mechanism of the prephenate dehydrogenase reaction [J]. Biochimica et Biophysica Acta,1982,702(2):212-219.
    95. Bautista J, Garrido-Pertierra A, Soler G. Glucose-6-phosphate dehydrogenase from Dicentrarchus labrax liver:kinetic mechanism and kinetics of NADPH inhibition [J]. Biochimica et Biophysica Acta,1988,967(3):354-363.
    96. Bonete M J, Camacho M L, Cadenas E. Kinetic mechanism of Halobacterium halobium NAD+-glutamate dehydrogenase [J]. Biochimica et Biophysica Acta,1989,990(2):150-155.
    97. Karsten W E, Viola R E. Chemical and kinetic mechanisms of aspartate-β-semialdehyde dehydrogenase from Escherichia coli [J]. Biochimica et Biophysica Acta,1991,1077(2,):209-219
    98. Alonso J-M, Garrido-Pertierra A. Kinetic properties of 5-carboxymethyl-2-hydroxymuconate semialdehyde dehydrogenase from Escherichia coli [J]. Biochimie,1986,68(5):731-737.
    99. Cannistraro V J, Borac L I, Jr. T C. Subunit structure and kinetic properties of L-β-hydroxyacid dehydrogenase of Drosophila [J]. Biochimica et Biophysica Acta,1979,569(1): 1-5.
    100.Rashkovetsky L G, Maret W, Klyosov A A. Human liver aldehyde dehydrogenases:new method of purification of the major mitochondrial and cytosolic enzymes and re-evaluation of their kinetic properties [J]. Biochimica et Biophysica Acta,1994,1205(2):301-307.
    101.Pereira D A, Pinto G F, Oestreicher E G. Kinetic mechanism of the oxidation of 2-propanol catalyzed by Thermoanaerobium brockii alcohol dehydrogenase [J]. Journal of Biotechnology,1994, 34(1):43-50.
    102.Ohba H, Inano H, Tamaoki B-i. Kinetic mechanism of porcine testicular 17B-hydroxysteroid dehydrogenase[J]. Journal of Steroid Biochemistry,1982,17(4):381-386.
    103.Lee A R, Balinsky J B. A kinetic study of glutamate dehydrogenase from Xenopus laevis[J]. International Journal of Biochemistry,1974,5(11-12):795-805.
    104.Popov V O, Gazaryan I G, Egorov A M, et al. NAD-dependent hydrogenase from the hydrogen-oxidizing bacterium Alcaligenes eutrophus Z1. Kinetic studies of the NADH-dehydrogenase activity [J]. Biochimica et Biophysica Acta,1985,827(3):466-471.
    105.Cloete F, Viljoen C C, Scott W E, et al. A steady-state kinetic investigation of the mechanism of action of NAD(P)H dehydrogenase of the cyanobacterium, Microcystis aeruginosa [J]. Biochimica et Biophysica Acta,1986,870(2):279-291.
    106.Gooding O W, Voladri R, Bautista A, et al. Development of a practical biocatalytic process for (R)-2-methylpentanol [J]. Org Process Res Dev,2010,14(1):119-126.
    107.Shaked Z e, Whitesides G M. Enzyme-catalyzed organic synthesis:NADH regeneration by using formate dehydrogenase [J].1980,102:7104-7105.
    108.Simon H, Bader J, Gunther H, et al. Chiral compounds synthesized by biocatalytic reductions [J]. Angewandte Chemie International Edition in English,1985,24(7):539-553.
    109.Arnaud A, Y.Gueguen, Chemardin P, et al. Enhancement of aromatic quality of Muscat wine by the use of immobilized β-glucosidase [J]. J Biotechnol,1997,55:151-156.
    110.Bommarius A S, Schwarm M, Drauz K. Biocatalysis to amino acid-based chiral pharmaceuticals-examples and perspectives [J]. J Mol Cat B:Enzymatic,1998,5(1-11).
    111.Leonida M D, Fry A J, Sobolov S B, et al. Two-enzyme cross-linked crystals for chiral synthesis coupled with electroenzymatic regeneration of the cofactor. [J]. Intl J Biochromat,2001,6: 207-211.
    112.Wong C H, Whitesides G M. Enzyme-catalyzed organic synthesis:NAD(P)H cofactor regeneration by using glucose-6-phosphate and the glucose-5-phosphate dehydrogenase from Leuconostoc mesenteroides [J]. J Am Chem Soc,1981,103:4809-4893.
    113.Duncan G, Tarling C A, Bingle W H, et al. Evaluation of a new system for developing particulate enzymes based on the surface (S)-layer protein (RsaA) of Caulobacter crescentus [J]. Appl Biochem Biotechnol,2005,127:95-110.
    114.Wong C, Drueckhammer D G, Sweers H M. Enzymatic vs. fermentative synthesis: thermostable glucose dehydrogenase catalyzed regeneration of NAD(P)H for use in enzymatic synthesis [J]. J Am Chem Soc,1985,107(13):4028-4031.
    115.Rehm H-J, G.Reed. Biotechnology & Biotransformation (8a) [B]. Wiley,1998:396-397.
    116.H. Engelkinga R P, G. Wichb and D. Weuster-Botza. Reaction engineering studies on P-ketoester reductions with whole cells of recombinant Saccharomyces cerevisiae [J]. Enzyme and Microbial Technology,2006,38(3-4):536-544.
    117.Nie Y, Xu Y, Mu X Q. Highly enantioselective conversion of racemic 1-phenyl-1,2-ethanediol by stereoinversion involving a novel cofactor-dependent oxidoreduction system of Candida parapsilosis CCTCC M203011 [J]. Org Process Res Dev,2004,8:246-251.
    118.MM B. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem,1976,72:248-254.
    119.Nie Y, Xu Y, Yang M, et al. A novel NADH-dependent carbonyl reductase with unusual stereoselectivity for (R)-specific reduction from an (S)-1-phenyl-1,2-ethanediol-producing microorganism:purification and characterization [J]. Letters in Applied Microbiology,2007,44: 555-562.
    120.Rubach J K, Ramaswamy S, Plapp B V. Contributions of valine-292 in the nicotinamide binding site of liver alcohol dehydrogenase and dynamics to catalysis [J]. Biochemistry,2001,40(42): 2686-12694.
    121.Rubach J K, Plapp B V. Amino acid residues in the nicotinamide binding site contribute to catalysis by horse liver alcohol dehydrogenase [J]. Biochemistry,2003,42(10):2907-2915.
    122.Mulcahy P, O'Flaherty M, Jennings L, et al. Application of kinetic-based biospecific affinity chromatographic systems to ATP-dependent enzymes:studies with yeast hexokinase [J]. Analytical Biochemistry,2002,309(2,):279-292.
    123.Cleland W W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. [J]. Biochim Biophys Acta,1963,67:104-137.
    124.Nie Y, Xu Y, Wang H, et al. Complementary selectivity to (S)-1-phenyl-1,2-ethanediol-forming Candida parapsilosis by expressing its carbonyl reductase in Escherichia coli for (R)-specific reduction of 2-hydroxyacetophenone. [J]. Biocatalysis and Biotransformation,2008,26(3):210-219.
    125.Al-Kassim L S, Tasi C S. Studies of NADP(+)-preferred secondary alcohol dehydrogenase from Thermoanaerobium brockii [J]. Biochem Cell Biol,1990,68:907913.
    126.Leskovac V, Trivic S, Anderson B M. Comparison of the chemical mechanisms of action of yeast and equine liver alcohol dehydrogenase [J]. Eur J Biochem,1999,264(3):840-847.
    127.Bastos F M, Franca T K, Machado G D C, et al. Kinetic modelling of coupled redox enzymatic systems for in situ regeneration of NADPH [J]. J Mol Catal B Enzym,2002,19-20: 459-465.
    128.Arrhenius S. Ubre die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Sauren [J]. Zeitschrift fur Physik Chimie,1889,4:226-248.
    129.Hildebrandt P, Musidlowska A, Bornscheuer U T. Cloning, functional expression and biochemical characterization of a stereoselective alcohol dehydrogenase from Pseudomonas fluorescens DSM50106 [J]. Appl Microbiol Biotechnol,2002,59:483-487.
    130.Jaureguibeitia A, Saa L, Llama M J. Purification, characterization and cloning of aldehyde dehydrogenase from Rhodococcus erythropolis UPV-1 [J]. Appl Microbiol Biotechnol,2007,73(5): 1073-1086.
    131.Assa P, Ozkan M, Ozcengiz G. Thermostability and regulation of Clostridium thermocellum L-lactate dehydrogenase expressed in Escherichia coli. [J]. Ann Microbiol,2005,55(3):193-197.
    132.Noriyuki K, Ikuo S, Miho Y, et al. Purification and characterization of a yeast carbonyl reductase for synthesis of optically active (R)-styrene oxide derivatives [J]. Biosci Biotech Biochem 2005,69(1):79-86.
    133.Wada M, Kawabata H, Kataoka M, et al. Purification and characterization of an aldehyde reductase from Candida magnoliae [J]. J Mol Catal B:Enzym,1999,6(3):333-339.
    134.Tamura Y, Ohkubo A, Iwai S, et al. Two Forms of NAD-Dependent d-Mandelate Dehydrogenase in Enterococcus faecalis IAM 10071 [J]. Appl Environ Microbiol,2002,68(2): 947-951.
    135.Soni P, Kansal H, Banerjee U C. Purification and characterization of an enantioselective carbonyl reductase from Candida viswanathii MTCC 5158 [J]. Process Biochemistry,2007,42 1632-1640.
    136.Hummel W, Schutte H, Kula M-R. D-(-)-Mandelic acid dehydrogenase from Lactobacillus curvatus [J]. Applied Microbiology and Biotechnology,1988,28(4-5):433-439.
    137.Muhammad Y, Fewson C A. L(+)-Mandelate dehydrogenase from Rhodotorula graminis purification, partial characterization and identification as a flavocytochrome b [J]. Biochemical journal, 1993,293(2):455-460.
    138.Hirano J, Miyamoto K, Ohta H. Purification and characterization of the alcohol dehydrogenase with a broad substrate specificity originated from 2-phenylethanol-assimilating Brevibacterium sp. KU 1309 [J]. Journal of Bioscience and Bioengineering,2005,100(3):318-322.
    139.Genda T, Nakamatsu T, Ozak H. Purification and characterization of malate dehydrogenase from Corynebacterium glutamicum [J]. Journal of Bioscience and Bioengineering,2003,95(6): 562-566.
    140.Inoue K, Makino Y, Itoh N. Purification and characterization of a novel alcohol dehydrogenase from Leifsonia sp. Strain S749:a promising biocatalyst for an asymmetric hydrogen Transfer Bioreduction [J]. Applied and Enviromental Microbiology,2005,71(7):3633-3641.
    141.Stoop J M H, Williamson J D, Conkling M A, et al. Characterization of NAD-dependent mannitol dehydrogenase from celery as affected by ions, chelators, reducing agents and metabolites [J]. Plant science,1998,131(1):43-51.
    142.Schenkels P, Duine J A. Nicotinoprotein (NADH-containing) alcohol dehydrogenase from Rhodococcus erythropolis DSM 1069:an efficient catalyst for coenzyme-independent oxidation of a broad spectrum of alcohols and the interconversion of alcohols and aldehydes [J]. Microbiology,2000, 146:775-785.
    143.Ludwig B, Aaundi A, Kendall K. A long-chain secondary alcohol dehydrogenase from Rhodococcus erythropolis ATCC 4277 [J]. Appl Environ Microbiol,1995,61(10):3729-3733.
    144.Werf M J v d, Ven C v d, Barbirato F, et al. Stereoselective carveol dehydrogenase from Rhodococcus erythropolis DCL14 [J]. J Biol Chem,1999,274(37):26296-26304.
    145.Itoh N, Morihama R, Wang J, et al. Purification and characterization of phenylacetaldehyde reductase from a styrene-assimilating Corynebacterium strain, ST-10. [J]. Appl Environ Microbiol, 1997,63(10):3783-3788.
    146.Kataoka M, Sakai H, Morikawa T-i, et al. Characterization of aldehyde reductase of Sporobolomyces salmonicolor [J]. Biochimica et Biophysica Acta,1992,1122(1):57-62.
    147.Shimizu S, Kataoka M, Kita K. Chiral alcohol synthesis with microbial carbonyl Reductases in a water-organic solvent two-phase system [J]. Annals of the New York Academy of Sciences,1998, 864:87-95.
    148.Hallinan K O, Crout D H G, Hunt J R, et al. Yeast catalysed reduction of β-keto esters (2): optimisation of the stereospecific reduction by Zygosaccharomyces Rouxii [J]. Biocatalysis and Biotransformation,1995,12(3):179-191.
    149.Peters J, Minuth T, Kula M R. A novel NADH-dependent carbonyl reductase with an extremely broad substrate range from Candida parapsilosis:purification and characterization. [J]. Enzyme Microb Technol,1993,15(11):950-958.
    150.Yamamoto H, Matsuyama A, Kobayashi Y, et al. Purification and characterization of (S)-1,3-butanediol dehydrogenase from Candida parapsilosis. [J]. Biosci Biotechnol Biochem,1995, 59(9):1769-1770.
    151.Hata H, Shimizu S, Hattori S, et al. Ketopantoyl-lactone reductase from Candida parapsilosis:purification and characterization as a conjugated polyketone reductase [J]. Biochimica et Biophysica Acta 1989,990(2):175-181.
    152.Chen Q, Hu Y, Zhao W, et al. Cloning, expression, and characterization of a novel (S)-specific alcohol dehydrogenase from Lactobacillus kefir [J]. Applied Biochemistry and Biotechnology,2010,160(1):19-29.
    153.AJ B, NC B, CR. L. Purification and characterisation of an NAD(+)-dependent secondary alcohol dehydrogenase from Pseudomonas maltophilia MB11L. [J]. FEMS Microbiol Lett,1992, 72(1):49-55.
    154. Singh A, Bhattacharyy M S, Banerjee U C. Purification and characterization of carbonyl reductase from Geotrichum candidum [J]. Process Biochemistry,2009,44(9):986-991.
    155.Kataoka M, Kotaka A, Thiwthong R, et al. Cloning and overexpression of the old yellow enzyme gene of Candida macedoniensis, and its application to the production of a chiral compound [J]. Journal of Biotechnology,2004,114(1-2):1-9
    156.Pramila R, Divakar S. Lipase catalyzed esterification of terpineol with various organic acids:application of the Plackett-Burman design [J]. Process Biochemistry,2001,36:1125-1128.
    157.Guha M, Ali S Z, Suvendu Bhattacharya. Screening of variables for extrusion of rice flour employing a Plackett-Burman design [J]. Journal of Food Engineering,2003,57(135-144).
    158.Chakravarti R, V. Sahai. Optimization of compactin production in chemically defined production medium by Penicillium citrinum using statistical methods [J]. Process Biochemistry,2002, 38:481-486.
    159.Pujari V, Chandra T S. Statistical optimization of medium components for enhanced riboflavin production by a UV-mutant of Eremothecium ashbyii [J]. Process Biochemistry,2000,36: 31-37.
    160.Ghanem N B, Yusef H H, Heba K. Mahrouse. Production of Aspergillus terreus xylanase in solid-state cultures:application of the Plackett-Burman experimental design to evaluate nutritional requirements [J]. Bioresource Technology,2000,,73:113-121.
    161.Manohar B, Divakar S. Applications of surface plots and statistical designs to selected lipase catalysed esterification reactions [J]. Process Biochemistry,2004,39:847-853.
    162.Albertsson P A. Partition of cell particles and macromolecules [J]. New York:John Wiley & Sons,1986,3rd ed:100-300.
    163.Zijlstra G M, Gooijer C D, Tramper J. Extractive bioconversions in aqueous two-phase systems [J]. Current Opinion in Biotechnology,1998,9(2):171-176.
    164.Bertoluzzo M G, Rigatuso R, Farruggia B, et al. Cosolutes effects on aqueous two-phase systems equilibrium formation studied by physical approaches [J]. Colloids and Surfaces B: Biointerfaces,2007,59(2):134-140.
    165.Lou W Y, Zong M H, Smith T J. Use of ionic liquids to improve whole-cell biocatalytic asymmetric reduction of acetyltrimethylsilane for efficient synthesis of enantiopure (S)-1-trimethylsilylethanol [J]. Green Chemistry,2006,8(2):147-155.
    166.Matsuda T, Yamagishi Y, Koguchi S, et al. An effective method to use ionic liquids as reaction media for asymmetric reduction by Geotrichum candidum [J]. Tetrahedron Letters,2006, 47(27):4619-4622.
    167.Mateo C, Palomo J M, Fernandez-Lorente G, et al. Improvement of enzyme activity, stability and selectivity via immobilization techniques [J]. Enzyme Microb Technol,2007,40(6):1451-1463.
    168.Buque E M, Straathof A J J, Heijnen J J, et al. Immobilization affects the rate and enantioselectivity of 3-oxo-ester reduction by baker's yeast [J]. Enzyme Microb Technol,2002,31: 656-664.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700