用户名: 密码: 验证码:
以纳米BN为支撑体的催化剂的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于日益严重的能源问题和环境问题,将甲烷和二氧化碳这两种导致温室效应的气体通过重整反应合成工业原料的研究,越来越受到人们的重视。甲烷二氧化碳重整反应制取合成气的CO/H2的摩尔比约为1,是工业上F-T合成和合成甲醇的重要原料。通过重整反应,可以使二氧化碳成为一种碳源,在一定程度上减少温室气体的排放。所以,为了适应能源的结构调整和工业上的需要,近年来越来越多的国家对甲烷二氧化碳重整制合成气展开了大量深入系统的研究。
     本文选择Ni作为催化剂的活性组分,使用等体积浸渍法制备催化剂,通过使用新型BN载体制备甲烷二氧化碳重整反应的催化剂。同时选用传统的γ-Al2O3载体作为对比实验。通过催化剂活性评价装置,测定Ni的含量在5~20wt%时甲烷和二氧化碳的转化率,通过SEM、XRD、TG-DTA、BET等测试手段研究催化剂的微观结构,考察了载体和助催化剂对甲烷和二氧化碳转化率的影响以及影响催化剂积炭的因素。结果显示:通过浸渍法制备的催化剂,活性组分分布在球形载体的表面,使用BN作为催化剂载体的甲烷二氧化碳重整反应的催化活性及抗积炭能力要优于使用γ-Al2O3的载体,当BN材料负载的活性组分Ni的含量在12wt%并且反应温度在800℃的时候,甲烷和二氧化碳的转化率分别为93%和95.3%,高于使用γ-Al2O3的载体的转化率;随着反应温度的升高,甲烷和二氧化碳的转化率均增加,温度越高,转化率越高;当通入气体的流量增加时,甲烷和二氧化碳的转化率降低。通过稳定性测试,使用BN载体反应的稳定性要优于使用γ-Al2O3的载体。
     本文还讨论了载体和加入助催化剂后对甲烷重整反应的催化活性和抗积炭能力的影响。通过SEM和TG表征手段,发现使用BN载体比γ-Al2O3载体拥有更好的抗积炭的能力。当加入碱金属、碱土金属和稀土元素后未对甲烷和二氧化碳的转化率产生明显的影响,稀土元素作为助催化剂能提高催化剂的转化率和抗积炭能力,尤其是加入10wt%的CeO2后,甲烷二氧化碳重整反应的活性和抗积炭能力都得到了提高。通过催化剂的表征手段,反应后催化剂表面的积炭主要是丝状积炭。以过渡金属作为助催化剂的反应活性明显受到了抑制,主要是过渡金属和活性中心发生作用导致活性位的减少,造成活性的降低。
The dry reforming of methane with carbon dioxide has received much attention because of the beneficial utilization of both methane and carbon dioxide which were two major greenhouse gases. Owing to the 1:1 ratio of the products, this reaction has a potentially important role in industry, such as Fisher-Tropsh synthesis and methanol synthesis. Through the reforming reaction, carbon dioxide can become a carbon source, to a certain extent, reduce greenhouse gas emissions. Therefore, in order to adapt to the restructuring of the energy and industrial needs, in recent years, more and more countries study the dry reforming of methane with carbon dioxide reforming launched a thorough study of the system.
     This selection of active components as catalyst method, using incipient wetness method, through the use of new boron nitride supported for the dry reforming of methane with carbon dioxide catalyst. Also choose the traditional Al2O3 supported as contrast experiment. The catalytic activity of the dry reforming of methane with carbon dioxide use a series of the catalysts, which Ni contents were between 5~20wt%. Through modern methods of characterization using XRD, SEM, BET and TG-DTA to test catalyst structure and investigate the influence factors of catalysts about supported and carbon deposition. The experimental results showed that the catalyst which using incipient wetness method, the distribution of active components in the spherical surface of the supported is uniform, The catalytic activity of the dry reforming of methane with carbon dioxide which using boron nitride supported better than using Al2O3 supported, The active components which Ni contents were 12wt% in 800℃, the conversion of methane and carbon dioxide were 95.3% and 93% is better than Al2O3 supported, when the reaction temperature rises, the conversion of carbon dioxide and methane are rising too; the higher temperature was, the better catalytic activity was. When the gas flow increases the conversion of methane and carbon dioxide decreased. Through the stability test, the stability of the reaction using BN supported better than Al2O3 supported.
     The influence of the supported and assistant catalytic for the dry reforming of methane with carbon dioxide was discussed. Through modern methods of characterization using SEM and TG, found using boron nitride supported has much better stability and assistant catalytic than Al2O3 supported. When joining the alkali metal and rare earth elements in the catalytic, the conversion of methane and carbon dioxide were not change, and the rare earth elements is good help of carbon deposition and ability, especially after joining the CeO2 contents was 10wt% in the catalytic for the dry reforming of methane with carbon dioxide, the catalytic active and resistance carbon deposition improved. Through modern methods of characterization, the characterization of catalyst surface carbon deposition is mainly filamentous. When joining the transition metal in the catalyst the reaction activity was restrained, is mainly by the transition metal and activity center in the active function, reduce the activity.
引文
[1]王海涛,田树勋,李振花.甲烷部分氧化制合成气催化反应的研究[J].天津工业大学学报,2004, 23(1):43~45
    [2]陈兴权,赵天生.甲烷二氧化碳重整催化剂的研究进展[J].宁夏石油化工,2003, (1): 15~17
    [3]阎子峰,宋林花.天然气有效利用途径回顾[J].石油大学学报(自然版),1997, 21(l):103~108
    [4]化工部天然气化工信息站.国内碳-化学进展-甲烷化学及合成气化学[J].天然气化工,1995, 20(3):44~49
    [5]黄海燕,沈志虹.天然气转化制合成气的研究[J].石油与天然气化工,2000, 29(6):276~279
    [6] Satterfield C N. Heterogeneous Catalysis in Industrial Practice. New York: McGraw Hill, 1991
    [7]黄海燕,沈志虹.天然气转化制合成气的研究[J].石油与天然气化工,2000, 29(6):276~279
    [8]李文兵,齐智平.甲烷制氢技术研究进展[J].天然气工业,2005, 25(2):165~168
    [9] Huff M, Torniainen PW, Schmidt LD. Partial oxidation of alkanes over noble metal coated monoliths[J]. Catal. Today, 1994, 21(1): 113~128
    [10]李琼玖,叶传湘.天然气转化制合成气工艺方法[J].氮肥设计,1996, 34(5):45~48
    [11] Stamkiewicz A, Moulijin J A. Carbon dioxide reforming of methane to synthesis gas[J]. Chem. Eng. Prog, 2000, 55: 5945~5967
    [12] Kolios G, Frauhammer J. Carbon dioxide reforming of methane to synthesis gas[J]. Chem. Eng. Sci., 2000, 55: 5945~5967
    [13] Mariana M V. Autothermal reforming of methane over Pt/ZrO2/Al2O3 catalysts[J]. Appl. Catal., A: General, 2005, 281(1): 19~24
    [14]王胜,王树东,袁中山.甲烷自热重整制氢热力学分析[J].燃料化学学报,2006, 34(2):222~225
    [15]蔡秀兰,董新发,林伟明. Ni基催化剂载体对甲烷自热重整制氢反应的影响[J].天然气工业,2006, 26(7):130~132
    [16]陈吉祥,王日杰,张继炎.甲烷与二氧化碳重整制取合成气研究进展[J].天然气化工,2003, 28:32~37
    [17]魏永刚,王华,何方.甲烷与二氧化碳催化重整制取合成气的研究进展[J].应用化工,2005, 12:721~730
    [18] Wu Jeffrey C S, Chou H C. Bimetallic Rh-Ni BN catalyst for methane reforming with CO2 [J]. Chem. Eng. J., 2009, 6130: 1~7
    [19] Ashcrift A T, Cheetham A K, Green M L H. Partial oxidation of methane to synthesis gas using carbon dioxide [J]. Nature, 1991, 52: 225~226
    [20]徐占林,崔湘浩,甄开吉.六铝酸BaMAl11O19-δ催化剂CH4/CO2重整制合成气[J].分子催化,1999, 13(6):447~452
    [21] Wang H Y, Au C T. Carbon dioxide reforming of methane to syngas over SiO2-supported rhodium catalysts[J]. Appl. Catal., A: General, 1997, 155: 239~252
    [22] Bhat R N, Sachtler W M H. Potential of zeolite supported rhodium catalysts for the CO2 reforming of CH4[ J]. Appl. Catal., A: General, 1997, 150: 279~296
    [23]徐恒泳,孙希贤,范业梅. CH4-CO2转化制合成气的研究(I):催化剂及其催化性能[J].石油化工,1992, 21(3):147~153
    [24] Tokunage O, Ogasawara S. Reduction of carbon dioxide with methane over Ni-catalyst[J]. React. Kinet. Catal. Lett., 1989, 39: 69~74
    [25] Osaki T, Horiuchi T, Suzuki K. Catalyst performance of MoS2 and WS2 for the CO2-reforming of CH4 Suppression of carbon deposition[J]. Appl. Catal., A: General, 1997, 155: 229~238
    [26] Claridge J B, York A P E, Brungs A. New Catalysts for the Conversion of Methane to Synthesis Gas: Molybdenum and Tungsten Carbide[J]. J.Catal., 1998, 180(1): 85~100
    [27]朱洪法.催化剂载体制备及应用技术.北京:石油工业出版社,2002. 5~10
    [28]储伟.催化剂工程.成都:四川大学出版社,2006. 13~14
    [29]阎子峰.纳米催化技术.北京:化学工业出版社,2003. 295~305
    [30] Bradfird N C J, Vannice M A. CO2 reforming of CH4[J]. Cat. Rev. - Sci. Eng., 1999, 41: 1~42
    [31] Sachtler W M H, Bhat R N. Potential of zeolite supported rhodium catalysts for the CO2 reforming of CH4[J]. Appl.Catal., 1997, 150(2): 279~296
    [32] Chang J S, Park S E, Chon H. Catalytic activity and coke resistance in the carbon dioxide reforming of methane to sythesis gas over zeolite-supported Ni catalysts. Appl. Catal., A, 1996, 145(1-2): 111~124
    [33] Luo J Z, Yu Z L, Au C T. CO2-CH4 reforming over Ni-La2O3/5A: an investigation on carbon deposition and reaction steps[J]. Catal, 2000, 194(2): 198~210
    [34]金杏妹.工业应用催化剂.上海:华东理工大学出版社,2004. 30~35
    [35]许越.催化剂设计与制备工艺.北京:化学工业出版社,2003. 209~215
    [36] Wu Jeffrey C S, Chen W C. A novel BN supported bi-metal catalyst for selective hydrogenation of crotonaldehyde[J]. Appl. Catal., A: General, 2005, (289): 179~185
    [37] Jeffrey C S W, Lin Z A, Pan J W. A novel boron nitride supported Pt catalyst for VOC incineration[J]. Appl. Catal., A: General 2001, (219): 117~124
    [38] Claus J H J. Boron Nitride: A Novel Support for Ruthenium-Based Ammonia SynthesisCatalysts[J]. J. Catal., 2001, (200): 1~3
    [39] Wu Jeffrey C S, Cheng T S, Lai C L. Boron nitride supported PtFe catalysts for selective hydrogenation of crotonaldehyde[J]. Appl. Catal., A: General, 2006, (314): 233~239
    [40] Lin C A, Wu Jeffrey C S, Pan J W. Characterization of Boron-Nitride-Supported Pt Catalysts for the Deep Oxidation of Benzene[J]. J. Catal., 2002, (210): 39~45
    [41] Wu Jeffrey C S, Lin S J. Novel BN supported bi-metal catalyst for oxydehydrogenation of propane[J]. Chem. Eng. J., 2008, (140): 391~397
    [42]王幸宜.催化剂表征.上海:华东理工大学出版社,2008. 63~73
    [43]刘维桥,孙桂大.固体催化剂实用研究方法.北京:中国石化出版社,2000. 15~23
    [44] Hegarty M E S, Connor O A M, Ross J R H. Syngas production from natural gas using ZrO2-supported metals[J]. Catal. Today, 1998, 42(3): 225~232
    [45] Wang Y, Rozmiarek R T. Higly active and stable Rh/MgO-Al2O3 catalysts for methane steam reforming[J]. Catal.Today, 2004, 98(4): 575~581
    [46] Nakagawa K, Anzai K, Matsui N. Effect of support on the conversion of methane to synthesis gas over supported iridium catalysts[J]. Catal. Lett., 1998, 51(1): 63~167
    [47]许峥,张鎏,张继炎.超细镍基催化剂上CH4-CO2重整反应的性能II.制备方法对催化性能和抗积碳性能的影响[J].催化学报,2000, 21:309~313
    [48] Torniainen P, Chu X, Schmidt L D. J. Comparison of monolith-supported metals ofr the direct oxidation of methane to syngas[J]. J. Catal., 1994, 146(1): 1~10
    [49]宫丽红,史克英,徐恒泳.甲烷二氧化碳转化制合成气稀土助剂抗积炭性能的研究[J].哈尔滨师范大学自然科学学报,1999, 15(2):73~76
    [50]许珊,王晓东,赵睿.甲烷催化制氢的研究进展[J].化学进展,2003, 15(2):141~150
    [51]宋一兵,赵修华,纪红兵. CH4、CO2与O2催化氧化重整制合成气的研究-催化剂中CeO2的作用及影响[J].天然气化工,1998, 23(4):12~14
    [52]严洪杰,杨骏英,周德幢. CeO2对Ni/γ-Al2O3,Pt/γ-Al2O3中Ni Pt分散度的影响[J].天然气化工,1992, 17(5):26
    [53]史克英,徐恒泳,张桂玲,等.天然气-二氧化碳-水蒸气-氧转化制合成气的研究-稀土助剂的作用[J].催化学报,2002, 23(l):15~18
    [54]姬涛,董新法,林维明. CH4、CO2和O2制合成气镍基催化剂的研究III.助剂CeO2的作用[J].天然气化工,2001, 26(l):23~26
    [55]傅利勇,吕绍洁,邱发礼. CH4、CO2和O2制合成气反应中载体对Ni催化剂抗氧化性能的影响[J].分子催化,1999, 13(5):367~372
    [56]傅利勇,吕绍洁,谢卫国.助剂对CH4、CO2和O2制合成气反应催化剂性能的影响[J].燃料化学学报,1999, 27(6):511~516
    [57] Chang J S, Park J W. Catalytic behavior of supported KNiCa catalyst and mechanistic consideration for carbon dioxide reforming of methane[J]. Catal., 2000, 195(1): 1~11
    [58]刘生玉,丁一慧,晋萍.煤层CH4-CO2重整制合成气抗积炭催化剂的研究[J].煤炭学报,1999, 24(2):l94~197
    [59]路勇,邓存,丁雪加.担载型钴金属催化剂上甲烷与二氧化碳转化制合成气[J].催化学报,1995, 16(6):447~452
    [60] Gueerror R A. Coopearative action of cobalt and MgO for the catalysed reforming of CH4 with CO2[J]. Catal. Today, 1994, 21: 194~197
    [61]李春义,余长春,沈师孔. Ni/A12O3催化剂上CH4部分氧化制合成气积炭的原因[J].催化学报,2001, 22(4):377~382
    [62]徐占林,林险峰,李青仁. Ni取代六铝酸镧催化剂LaNiAl11O19表面积炭研究[J].应用化学,2001, 18(11):908~911
    [63] Tomishige K, Kanazawa S, Suzuki K. Effective heat supply from combustion to reforming in methane reforming with CO2 and O2:comparison between Ni and Pt catalysts[J]. Appl. Catal.,A: Genreal, 2002, 233: 35~44
    [64] Brendan M C C, Alan B D, Jona T N C. Spectroscopic investigation of conjugated polymer/single-walled carbon nanotubes interactions[J]. Chem. Phys. Lett., 2001, 350: 27~32
    [65]李文英,孙泉. CH4-CO2重整反应镍催化剂的积碳性能研究[J].燃料化学学报,1997, 25(5):460~464
    [66] Zhang Z L, Verkios X E. Carbon dioxide reforming of methane to synthesis gas over supported Ni catalysts[J]. Catal.Today, 1994, 21: 589~595
    [67] Fajardie F R, Tempere J F. Activity of Rhx+ Species in CO Oxidation and NO Reduction in a CO/NO/O2 Stoichiometric Mixture over a Rh/CeO2-ZrO2 Catalyst[J]. J. Catal., 1998, 197(2): 469~476
    [68]金荣超,陈燕馨.甲烷部分氧化Ni催化剂及助剂的研究[J].物理化学学报,1998, 14(8):737
    [69] VanKeulen, Seshan A N J, Hoebink K. TAP investigations of the CO2 reforming of CH4 over Pt/ZrO2[J]. Catal., 1997, 166(2): 306~314
    [70]魏俊梅,徐柏庆,孙科强. CO2重整CH4负载纳米ZrO2负载Ni催化剂的研究(II)-催化剂组成与反应条件对催化剂性能的影响[J].高等学校化学学报,2002, 23(11):2106~2111
    [71] Goula M A, Lemonidou A A, Efstathiou A M. Characterization of carbonaceous species formed during reforming of CH4 with CO2 over Ni/CaO-Al2O3 catalysts studied by various transient techniques[J]. Catal., 1996, 161(2): 626~640
    [72] Claridge J B, Green M L H, Tsang S C. A study of carbon deposition on catalysts during the partial oxidation of methane to synthesis gas[J]. Catal. Lett., 1993, 22(4): 299~305
    [73] Souza M M V M, Aranda D A G, Schmal M. Coke formation on Pt/ZrO2/Al2O3 catalysts during CH4 reforming with CO2[J]. Ind.Eng.Chem.Res., 2002, 41(18): 4681~4685
    [74]董新法,姬涛,林维明. CH4、CO2与O2制合成气催化剂研究VI.催化剂表面积炭种类和积炭动力学研究[J].分子催化,2004, 18(4):261~265
    [75]刘晰,陶家林,于作龙.加压下甲烷部分氧化反应中催化剂上积碳形态的研究[J].催化学报,2003, 24(1):17~21
    [76] Snoeck J W, Froment G F, Fowles M F. Filamentous carbon formation and gasification: Thermodynamics, driving force, nucleation, and steady-state growth[J]. J. Catal., 1997, 169(1): 240~249
    [77] Snoeck J W, Froment G F, Fowles M F. Kinetic study of the carbon filament formation by methane cracking on a nickel catalyst[J]. Catal., 1997, 169(1): 250~262

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700