用户名: 密码: 验证码:
半金属铋微纳米材料的形貌可控合成及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的几十年里,由于金属微纳米材料独特的性能(与体材相比),使得各种金属微纳米结构在催化作用、摄影术、光子学、电子学、光电子学、信息储存、传感器、生物标记、成像、医学诊断和表面增强光谱等方面有巨大的应用潜力。金属微纳米材料因其独特的特性使得其相应的制备受到广泛研究。金属微纳米材料的独特性能依赖于它们的维度、成分、晶型、形貌和几何结构(如:核-壳,固态和孔结构)。另外,由于微纳米材料的形貌变化可以调整它们的性能在较宽的范围内变化,人们在不同结构形貌微纳材料的可控合成方面做出了许多努力。铋作为一种具有间接带隙能的半金属材料,具有高的各向异性费米面、低的载流子密度、小的有效质量和平均自由程,而成为研究物理现象的理想模型。铋微纳米材料因其在介观物理领域及构造纳米器件方面独特的应用,使得铋微纳米材料的合成也受到国内外许多研究小组的广泛关注。
     本文通过改变实验温度,溶剂,还原剂浓度及表面活性剂等因素,实现了微纳米级Bi的形貌和尺寸的控制,提出了低温液相合成微纳米Bi的新方法。系统的研究了液相下化学还原制备Bi微纳米材料形貌控制及纯度的制备过程。采用液相化学还原过程,在不同的介质中(碱性介质或酸性介质),用不同的还原剂合成了Bi微纳米材料,同时探讨了不同形貌和结构的Bi在可见光或无光下催化降解有机染料的活性。并应用X射线衍射仪(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM),高分辨透射电子显微镜(HRTEM)和紫外可见光谱(UV-visible)等手段对制备的Bi微纳米材料的结构,尺寸,形状,光学性质及催化性能等进行了系统的分析和表征。论文主要结果概括如下:
     首先,在90℃的碱性环境下,用水合肼做还原剂,通过简单快速的液相法成功制备了较大规模形貌可调的Bi微纳米结构。通过PEG种类的改变(如PEG20000,PEG6000或PEG400),选择性制备了多种一维(1D)Bi纳米结构和由1D纳米棒或片状结构组装的三维(3D)分级结构。这种3D结构是有纳米棒状或纳米盘的自组装结构。该微束状结构的长度主要集中在4–5μm,直径约0.5–1μm,其中组装成束状结构的纳米棒的直径大约在10–50nm。对于该束状结构的生长过程提出了可能的生长机理。通过适当的调节合成参数,如表面活性剂的种类,表面活性剂的用量,还原剂的浓度和反应温度等,可以选择性的制备束状,梭状,类球状,盘状和棒状的Bi微纳米结构。
     其次,本论文在碱性环境下,通过水相法用N_2H_4·H_2O作还原剂还原Bi(NO_3)_3,已选择性制备了不同形貌的Bi纳米结构。在不同有机物分子(柠檬酸或乙二醇)作为控制剂下,我们选择性制备了Bi纳米球和Bi纳米棒,通过向体系中引入不同控制剂也成功获得了Bi纳米管。依据合成条件的改变,成功合成了平均直径约100nm的Bi纳米球,长度约50nm或200nm的Bi纳米棒以及长达100–200nm的Bi纳米管。通过对不同实验条件影响的研究,提出了Bi纳米粒子生长的可能机理,并且对所得样品进行了紫外可见光谱的研究。紫外可见光谱显示,由于所合成Bi纳米结构尺寸的减小或形貌的改变,吸收峰发生移动或变宽。另外,在碱性体系中引入一定量的酒石酸(TA),用N_2H_4·H_2O作还原剂还原BiCl_3,选择性制备了Bi纳米立方体和Bi微米球。通过控制粉体的尺寸和分散性,成功合成了边缘长度约150–200nm的Bi纳米立方体和平均直径约10μm的Bi微米球。
     第三,在90℃的碱性介质中,通过简单温和的液相还原法,用次亚磷酸钠(NaH_2PO_2·H_2O)作还原剂来还原Bi(NO_3)_3,成功合成了不同形貌的Bi纳米结构,所得Bi纳米结构为粒子(大小约10–50nm)或带(长度达10μm,宽度达100nm)。在此实验中,酒石酸作为络合剂,通过调节反应中NaOH的量可以有效的控制Bi纳米结构的形貌,氢氧化钠可能影响[Bi_2(C_4H_2O_6)_2]~(2-)的还原速率,最终影响Bi纳米产物的形貌。低的还原速率导致1D Bi纳米带的生成,随后带状结构发生卷曲形成管状结构,并且所得的带状和管状结构的组成单元是由几纳米左右的Bi纳米粒子排列而成的。结果表明,TA和NaOH在制备过程中起到了至关重要的作用。由于Bi的光学特性,所得的Bi纳米结构在各种领域具有较大的潜在应用。据我们所知这是首次在碱性环境中利用NaH_2PO_2·H_2O做还原剂制备出金属Bi纳米材料,整个反应体系在低温条件下进行,因此可以扩展到其它金属的液相还原制备,例如,可以用于Au,Ag,Cu和Pt纳米结构的制备等。
     第四,本文在酸性介质中,通过低温液相还原法,利用NaH_2PO_2·H_2O做还原剂,已合成了大量的Bi微纳米级晶体。所得Bi晶体为盘状(大小约100nm,厚度约几纳米)和多面体(大小约500nm)形状。结果表明延长反应时间,Bi纳米晶体具有向多面体转变的趋势,自组装和导向生长可能是晶体形貌转变的原因。此外,在酸性介质中,用NaH_2PO_2·H_2O做还原剂,体系中TA的引入对1D铋纳米结构的制备起到了至关重要的作用。研究了体系中对Bi纳米结构制备的影响,TA作为形貌控制剂,所得的1D Bi纳米结构具有典型直径约30–50nm,长度可达5μm。通过调节反应温度,选择性制备了Bi纳米棒和纳米带/管状结构。
     最后,以所合成的不同形貌的Bi为研究对象,探讨形貌、结构对Bi在可见光或无光下催化活性的影响,并利用UV-vis结果对Bi样品的催化活性进行了讨论,结果显示,不同形貌结构的Bi微纳米材料在可见光或无光条件下对有机染料具有优异的催化活性。结果显示由1D组装的3D分级Bi束状结构(可见光照射70min后对罗丹明B的降解率达到99%)相对与1D结构的Bi(可见光照射150min后降解率可达99%)具有更为优异的催化活性,基本上可以完全使Rh B(罗丹明B)降解。具有相同形貌Bi微纳米结构,在不同的pH值下,对罗丹明B具有不同的催化活性,且随着体系中pH值的降低,催化活性明显提高。另外,考查不同尺度的铋微纳米材料作为催化剂对Rh B染料降解,Bi纳米粒子(20–50nm),Bi纳米立方体(150–200nm),Bi亚微米多体(400–500nm)及Bi微米球(10μm)对Rh B的降解率分别为100%,98%,97%,68.6%。因此实验结果表明,随着Bi样品尺寸的减少(从微米级到纳米级的转变),催化活性显著提高。而且,所得的Bi微纳米结构在可见光照射下表现出极好的循环稳定性,可以循环利用6次,且具有稳定的催化活性。此外,具有相同形貌的Bi微纳米结构,在不同的光源下,对罗丹明B表现出不同的催化活性。与暗室相比,Bi微纳米材料在可见光下显示了极好的催化活性,这可能是光强度引起的。
     通过本论文的研究,得到了具有不同维数及尺度的Bi微纳米材料,完善了开放体系下水相温和条件下制备Bi微纳米材料的方法。整个论文工作所选用的合成方法简单易行,所得到的Bi金属微纳米材料在光学和催化等领域具有广阔的应用前景。
Fabrication of micro/nanostructures made of various metals has beenintensively studied in the last couple of decades due to their unique properties(compared with bulk materials), which enables them to be promising in applicationsover very broad areas including catalysis, photography, photonics, electronics,optoelectronics, information storage, sensor, biological labeling, imaging, medicaltreatment, and surface-enhanced spectroscopies. The properties of metalmicro/nanostructures are strongly dependent on their dimension, composition,crystallinity, shape and construction geometry (e.g., core-shell, solid, and hollow).The shape-controlled synthesis has received considerable attention recently becausevarying the shape of micro/nanostructures allows one to fine-tune their propertiesover a wide range. Bismuth (Bi), as a semimetal with a very small band overlap,provides a very attractive model system for studying physical phenomena owing tohighly anisotropic fermi surface, low carrier densities, small effective mass andmean free path. Theoretical studies predicted that micro/nanostructured Bi waspotentially useful for mesoscopic physics and fabrication of nanoscale devices,which have stimulated great efforts to synthesize Bi micro/nanomaterials.
     In this thesis a newly rational low-temperature solution-synthetic route waspresented for the synthesis of metallic bismuth (Bi). Results of the thesisdemonstrated that the shape and size of micro/nanoscale Bi could be controlled bychanging the synthetic conditions, such as reaction temperature, solvent,concentration of reductive and kind of surfactants. An aqueous chemical reductionmethod is proposed to prepare Bi micro/nano crystals using different reducing agentin different medium (alkaline medium or acid medium). We also studies the effect ofmorphologies and structures of Bi samples on their catalytic activity to degradationof organic pollutants under visible-light or without light. The structures, sizes,shapes, optical and catalytic properties of the as-prepared Bi products were analyzedand characterized systemically by using XRD, SEM, TEM, HRTEM and UV-visiblespectroscopy. The major results of the thesis are outlined as follows:
     Firstly, Bi with tunable morphologies have been successfully prepared on alarge scale via a simple and rapid solution phase method at90℃with hydrazinehydrate (N_2H_4·H_2O) as reducting agent in alkaline medium. We selectively prepared different shaped1D rodlike nanostructures and3D architectures of Bi by changingthe variety of PEG (such as PEG20000, PEG6000or PEG400). These3Darchitectures were self-assembled by1D nanorods or nanoplates. The micro-bundlestructures had a length of4–5μm, a diameter of0.5–1μm, and the individualnanorods composing the bundles are10–50nm in diameter. A possible formationmechanism for the interesting architectures was proposed to interpret the growthprocess. By rationally adjusting the synthetic parameters such as the variety ofsurfactant, the quantity of surfactant, reductant concentration and reactiontemperature, Bi micro/nanostructures with bundle-like, shuttle-like, quasi-spherical,plate-like and rod-like could be selectively synthesized.
     Secondly, the dissertation demonstrated a work for selective preparation ofdifferent shaped Bi nanostructures via an aqueous solution process by reducingbismuth nitrate with N_2H_4·H_2O in alkaline medium. Here, Bi nanospheres andnanorods were prepared with different organic molecules (citric acid or ethyleneglycol) as controlling agent. Bi nanotubes could also be obtained by introducingdifferent kinds of controlling agents to the reaction system. By changing thesynthetic conditions,Bi nanospheres with average diameter of100nm, Bi nanorodswith length of50nm or200nm, and Bi nanotubes with length of100–200nm havebeen successfully synthesized. The dissertation also proposed the possible growthmechanism of the Bi samples by studying the influences of different experimentalconditions. And the optical properties of the samples were studied by UV-visspectroscopy. The absorption peaks in UV-visible spectra shift or broaden due to thedecreased sizes or the changed shapes of the synthesized Bi nanostructures. Inaddition, we also demonstrated a work on the preparation of Bi nanocubes and mcirospheres by reducing bismuth chloride with N_2H_4·H_2O through introducing amountsof tartaric acid (TA) to the reaction system in alkaline medium. On controlling thesize and dispersibility of the project powders, Bi nanocubes with an edge length of150–200nm, and Bi mciro spheres with size of10μm have been successfullysynthesized.
     Thirdly, a simple and mild aqueous solution reduction method was successfullyused to synthesize different shaped Bi nanostructures at90℃by reducing bismuthnitrate pentahydrate with sodium hypophosphite (NaH_2PO_2·H_2O) in alkaline medium.The achieved Bi nanostructures exhibited nanoparticles (10–50nm in size) orbelt-like (lengths of up to10μm and widths of up to100nm) shapes. In theexperiments, TA acted as complexing reagent, and the morphologies of the Bi nanostructures can be controlled by adjusting the quantity of NaOH used in thereaction. The quantity of NaOH determined the reduction rates of [Bi_2(C_4H_2O_6)_2]~(2-),which influenced the shape of Bi samples. Low reduction rates resulted in1D Binanostructures as nanobelts, which had tendency to roll to tube-like structures.Interestingly, we found that the belt-like and tube-like structures were constructedby aligned nanoparticles of several nanometers. Results indicated that tartaric acidand NaOH are key factors in our preparation. These Bi nanostructures are expectedto find potential applications in a variety of areas due to their optical characteristics.To the best of our knowledge, this work is the first concerning on the synthesis ofmetal Bi nanostructures in aqueous solution with NaH_2PO_2·H_2O as reductant. Webelieve that the rational low-temperature synthetic route is universal and can beadapted for the preparation of numerous metal materials in solution. For example, itmight be possible to prepare Au, Ag, Cu, and Pt nanostructures via methods similarto those described in this work.
     Fourthly, the thesis also reported a low temperature solution reduction methodemployed in the synthesis of large quantities of micro/nano-sized Bi crystals withNaH_2PO_2·H_2O as reductant in acidic solutions. The achieved Bi crystals exhibitedplate-like (100nm in size and few nanometers in thickness) or polyhedral (500nm insize) shapes. The experimental results suggest that the polyhedral Bi samples weresynthesized by prolonging the reaction time. The assembly and oriented growthshould be the reason. Optical properties of the Bi samples with different shapes werealso investigated by UV–vis method. In addition, it was found that the introductionof TA to the reaction system was essential for the preparation of1D bismuthnanostructures with NaH_2PO_2·H_2O as reducing agent in acidic solutions. Theachieved1D nanostructures have typical diameters of30–50nm and length of up to5μm. The effects of reaction parameters in the system on the preparation of Binanostructures were studied. TA was used as the shape controlling agent, which wasa key factor for getting1D structures in the preparation. Bi nanorods andnanobelt/tube-like structures can be selectively prepared by changing the reactiontemperature.
     Finally, based on the Bi samples with different structures obtained above, westudies the effect of morphologies and structures of Bi samples on their catalyticactivity to degradation of organic pollutants under visible-light or without light. Thecatalytic activity of the Bi samples was discussed via UV-vis results. Resultsindicated that the Bi samples exhibited highly activing for degradation of organic pollutants.3D hierarchical bundlelike Bi structures (the degradation rate of Rh B canreach up to99%after70min’s under visible-light irradiation) had betterperformance than the dispersed1D Bi nanostructures (the degradation rate of Rh Bcan reach up to99%after150min’s under visible-light irradiation). The Rh Bsolution can be thoroughly degraded after70min with the sample of bundle-like Bistructures under visible light irradiation. Bi with the same morphology performeddifferent catalytic activities in Rh B solutions with different pH value. It was foundthat the degradation efficiency increased evidently when the pH value decreased. Inaddition, we also discussed the degradation of Rh B with the Bi nanostructures ascatalysts under various size.100%,98%,97%and68.6%degradation of Rh B isobserved after90min visible light irradiation for Bi nanoparticles (20–50nm),nanocubes (150–200nm), sub-micropolyhedra (400–500nm) and micro-spheres (10μm), respectively. The results indicated that if the grain sizes of the Bi samples arereduced from micro-size to nano-size, their catalytic activities dramatically increase.Furthermore, the Bi samples could be easily recycled six times with little decrease ofthe catalytic activity under visible light irradiation. Bi samples exhibited differentcatalytic activities to Rh B solutions under different illumination. Bimciro/nano-structures under visible light irradiation showed higher catalytic activitythan that in the dark.
     In conclusion, Bi micro/nanomaterials with different dimensions are obtainedby aqueous synthesis method. Our work gives an improved progress on the mildsolution synthesis of Bi micro/nanomaterials. The obtained Bi micro/nanomaterialsare promising in optical and catalytic application.
引文
[1] Feynman R P. There’s is plenty of room at the bottom. Lecture at the annualmeeting of the American Physical Society at the California Intitute ofTechnology.1959–12–29
    [2] Demir R, Okur S, Mavi e. Electrical characterization of CdS nanoparticlesfor humidity sensing applications. Industrial&engineering chemistry research,2012,51(8):3309–3313
    [3] Zhang Y D, Zheng Z, Yang F L. Highly sensitive and selective alcohol sensorsbased on Ag-doped In2O3coating. Industrial&engineering chemistry research,2010,49(8):3539–3543
    [4] Li Z T, Zhu Z N, Liu W J, et al. Reversible plasmonic circular dichroism of Aunanorod and DNA assemblies. Journal of American Chemical Society,2012,134(7):3322–3325
    [5] Mishra S, Ghosh S, Mukhopadhyay R. Ordered self-assembled locked nucleicacid (LNA) structures on gold(111) surface with enhanced single basemismatch recognition capability. Langmuir,2012,28(9):4325–4333
    [6] Labib M, Zamay A S, Muharemagic D. Aptamer-based viability impedimetricsensor for viruses. Analytical Chemistry,2012,84(4):1813–1816
    [7] Gu Y, Di X W, Sun W, et al. Three-dimensional super-localization andtracking of single gold nanoparticles in cells. Analytical Chemistry,201284(9):4111–4117
    [8] Khoa L H, K hler C, Fischer A, et al. Induced surface enhancement in coral Ptisland films attached to nanostructured Ag electrodes. Langmuir,2012,28(13):5819–5825
    [9] Xia W W, Sha J, Fang Y J, et al. Gold nanoparticles assembling on smoothsilver spheres for surface-enhanced Raman spectroscopy. Langmuir,2012,28(12):5444–5449
    [10] Zhang H, Harpster M H, Wilson W C, et al. Surface-enhanced Ramanscattering detection of DNAs derived from virus genomes using Au-coatedparamagnetic nanoparticles. Langmuir,2012,28(8):4030–4037
    [11] Fantechi E, Campo G, Carta D, et al. Exploring the effect of Co doping in finemaghemite nanoparticles. Journal of Physical Chemistry C,2012,116(14):8261–8270
    [12] Klimov V I, Mikhailovsky A A, Xu S, et al. Optical gain and stimulatedemission in nanocrystal quantum dots. Science,2000,290(5490):314–317
    [13] Daniel M C, Astruc D. Gold nanoparticles: assembly, supramolecularchemistry, quantum-size-related properties, and applications toward biology,catalysis, and nanotechnology. Chemical Reviews.2004,104(1):293–346
    [14] Cong Y Q, Park H S, Dang H X, et al. Tantalum cobalt nitride photocatalystsfor water oxidation under visible light. Chemistry of Materials,2012,24(3):579–586
    [15] Sun S H, Murray C B, Weller D, et al. Monodisperse FePt nanoparticles andferromagnetic FePt nanocrystal superlattices. Science,2000,287(5460):1989–1992
    [16] Templeton A C, Wuelfing W P, Murray R W. Monolayer-protected clustermolecules. Accounts of Chemical Research,2000,33(1):27–36
    [17] Crooks R M, Zhao M, Sun L, Chechik V, et al. Dendrimer-encapsulated metalnanoparticles: synthesis, characterization, and applications to catalysis.Accounts of Chemical Research,2001,34(3):181–190
    [18] Mardana A, Ducharme S, Adenwalla S, et al. Ferroelectric control of magneticanisotropy. Nano Letters,2011,11(9):3862–3867
    [19] Sun X M, Li Y D. Cylindrical silver nanowires: preparation, structure, andoptical properties. Advanced Materials,2005,17(21):2626–2630
    [20] Zhong S, Koch T, Wang M, et al. Nanoscale twinned copper nanowireformation by direct electrodeposition. Small,2009,5(20):2265–2270
    [21] Lu X F, Wang C, Wei Y. One-dimensional composite nanomaterials: synthesisby electrospinning and their applications. Small,2009,5(21):2349–2370
    [22] Venkata Kamalakar M, Raychaudhuri A K. A novel method of synthesis ofdense arrays of aligned single crystalline copper nanotubes usingelectrodeposition in the presence of a rotating electric field. AdvancedMaterials,2008,20(1),149–154
    [23] Gong H-M, Zhou L, Su X-R, et al. Illuminating dark plasmons of silvernanoantenna rings to enhance exciton-plasmon interactions. AdvancedFunctional Materials,2009,19(2):298–303
    [24] Zhang J H, Liu H Y, Wang Z L, et al. Shape-selective synthesis of goldnanoparticles with controlled sizes, shapes, and plasmon resonances.Advanced Functional Materials,2007,17(16):3295–3303
    [25] Guisbiers G, Kazan M, Van Overschelde O, et al. Mechanical and thermalproperties of metallic and semiconductive nanostructures. Journal of PhysicalChemistry C,2008,112(11),4097–4103
    [26] B yük U, Mara l N, ad rl E, et al. Variations of microhardness withsolidification parameters and electrical resistivity with temperature forAl-Cu-Ag eutectic alloy. Current Applied Physics,2012,12(1):7–10
    [27] Seo J-H, Yoo Y D, Park N-Y, et al. Superplastic deformation of defect-free Aunanowires via coherent twin propagation. Nano Letters,2011,11(8):3499–3502
    [28] Brent R, Stevens S M, Terasaki O, et al. Coaxial core shell overgrowth ofzeolite L-dependence on original crystal growth mechanism. Crystal Growth&Design,2010,10(12):5182–5186
    [29] Haeng S W, Sreeram C, Ken J K, et al. Observation of nanoparticle-enhancedmarangoni transport near a freezing out front. Journal of Physical Chemistry C,2012,116(10):6052–6057
    [30] Angelomé P C, Mezerji H H, Goris B, et al. Seedless synthesis of singlecrystalline Au nanoparticles with unusual shapes and tunable LSPR in thenear-IR. Chemistry of Materials,2012,24(7):1393–1399
    [31] Jung S J, Shuford K L, Park S. Optical property of a colloidal solution ofplatinum and palladium nanorods: localized surface plasmon resonance.Journal of Physical Chemistry C,2011,115(39):19049–19053
    [32] Norio I, Yoshitomo O, Susumu C, et al. Giant coercivity in a one-dimensionalcobalt-radical coordination magnet. Journal of American Chemical Society,2008,130(1):24–25
    [33] Lue J T. A review of characterization and physical property studies of metallicnanoparticles. Journal of Physics and Chemistry of Solids,2001,62(9-10):1599–1609
    [34] Usov V, Murphy Shvets S I V. Epitaxial growth and magnetic properties of Fenanowedge islands on Mo (110). J. Magnetism and Magnetic Materials,2005,286:18–22
    [35] Zhang L, Liu Y H, Zhang L S, et al. Struetures and magnetic characteristics ofnanometric granular Fe-In2O3Films. Aeta Metallurgioa Sincia,2003,39(l):109–112
    [36] Wamer M G, Reed S M, Hutehison J E. Small, water-soluble, ligand-stabilizedgold nanoparticles synthesized by interfacial ligand exchange reactions. JChemistry Materials,2000,12(11):3316–3320
    [37] Weare W W, Reed S M, Wamer M G, et al. Improved synthesis of small (dCORE≈1.5nm) phosphine-stabilized gold nanoparticles, Journal of AmericanChemical Society,2000,122(51):12890–12891
    [38] Yonezawa T, Yasui K, Kimizuka N. Controlled formation of smaller goldnanoparticles by the use of four-chained disulfide stabilizer. Langmuir,2001,17(2):271–273
    [39] Busalmen J P, Esteve-Nu ez A, Feliu J M. Whole cell electrochemistry ofelectricity-producing microorganisms evidence an adaptation for optimalexocellular electron transport. Environmental science&Technology,2008,42(7):2445–2450
    [40]刘海峰,彭同江,孙红娟,等.一维纳米功能材料研究新进展.化工新型材料综述与专论,2007,35(4):1–3
    [41] Choi S H, Wang K L, Leung L S, et al. Fabrication of bismuth nanowires witha silver nanocrystal shadowmask. Journal of Vacuum Science and Technology,Part A: Vacuum, Surfaces and Films,2000,18(4l):1326–1328
    [42] Albiter M A. Zaera F. Adsorption properties of supported platinum catalystsprepared using dendrimers. Langmuir,2010,26(21),16204–16210
    [43] Xie J P, Zhang Q B, Zhou W J, et al. Template-free synthesis of porousplatinum networks of different morphologies. Langmuir,2009,25(11):6454–6459
    [44] Chen A, Holt-Hindle P. Platinum-based nanostructured materials: synthesis,properties, and applications. Chemical Reviews,2010,110,3767–3804
    [45] Tomiyama S, Takahashi R, Stato S, et al. Preparation of Ni/SiO2catalyst withhigh thermal stability for CO2-reforming of CH4. Applied Catalysis A,2003,241(1–2):349–361
    [46] Bratlie K M, Lee H, Komvopoulos K, et al. Platinum nanoparticle shapeeffects on benzene hydrogenation selectivity, Nano Letters,2007,7(10):3097–3101
    [47] Tien D C, Tseng K H, Liao C Y, et al. Colloidal silver fabrication using thespark discharge system and its antimicrobial effect on staphylococcus aureus.Medical Engineering&Physics,2008,30(8):948–952
    [48] Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, et al. The antibacterialand antifungal activity of a soda-lime glass containing silver nanoparticles.Nanotechnology,2009,20(8):85103
    [49] Atiyeh B S, Costagliola M, Hayek S N, et al. Effect of silver on burn woundinfection control and healing: review of the literature. Burns,2007,33(2):139–148
    [50] Carlson C, Hussain S M, Schrand A M, et al. Unique cellular interaction ofsilver nanoparticles: size-dependent generation of reactive oxygen species.Journal of Physical Chemistry B,2008,112(43):13608–13619
    [51] Yang X, Wang L, Xia Y, et a1. Photoacoustic tomography of a rat cerebralcortex in vivo with Au nanecages as an optical contrast agent. Nano Letters,2007,7(12):3798–3802
    [52] Chen J, Wiley B, Xia Y, et a1. Gold nanocages: engineering their structure forbiomedical applications. Advanced Materials.2005,(17):2255–2261
    [53] Chen J, Wang D, Xia Y, et a1. Immuno gold nanocages with tailored opticalproperties for targeted photothermal destruction of cancer ceils. Nano Letters,2007:7(5):1318–1322
    [54] Okamoto W, Yamaguchi I, Kobayashi T. Local plasmon sensor with goldcolloid monolayers deposited upon glass substrates. Optics Letters,2000,25(6):372–374
    [55] Hanwell M D, Heriot S Y, Richardson T H, et al. Gas and vapour sensingcharacteristics of langmuir-schaeffer thiol encapsulated gold nanoparticle thinfilms. Colloids and Surfaces A,Physicochemical and Engineering Aspects,2006,284–285:379–383
    [56] Wang J, Thomas D F, Chen A. Nonenzymatic electrochemical glucose sensorbased on nanoporous Pt-Pb networks, Analytical Chemistry,2008,80:997–1004
    [57] Ouchi K, Naoki H. Overview of latest work on perpendicular recording media.IEEE Transactions on Magnetics,2000,36(1):16–22
    [58] Bregar V B. Advantages of ferromagnetic nanoparticle composites in microwave absorbers. IEEE Transactions on Magnetics,2004,40(3):1679–1684
    [59] Alphandéry E, Carvallo C, Menguy N, et al. Chains of cobalt dopedmagnetosomes extracted from AMB-1magnetotactic bacteria for applicationin alternative magnetic field cancer therapy. Journal of Physical Chemistry C,2011,115(24):11920–11924
    [60] Liang C-H, Wang C-C, Lin Y-C, et al. Iron oxide/gold core/shell nanoparticlesfor ultrasensitive detection of carbohydrate-protein interactions. AnalyticalChemistry,2009,81(18):7750–7756
    [61] Cuong H P, Rieadro V, Benoit L, Cavralho A, et al. About the octopus-likegrowth mechanism of carbon nanofibers over graphite supported nickelcatalyst, Journal of Catalysis,2006,240(2):194–202
    [62] Tsai C-I, Wang C-Y, Tang J, et al. Electrical properties and magnetic responseof cobalt germanosilicide nanowires. ACS Nano,2011,5(12):9552–9558
    [63] Braos G P, Maierlles T P, Rodrguez C E. Gas-phase hydrogenation ofacetonitrile on zirconium-doped mesoporous silica-supported nickel catalysts.Journal of Molecular Catalysis A: Chemical,2003,193(1–2):185–196
    [64] Takimoto M, Nakamura Y, Kimura K, et al. Highly enantioselective catalyticcarbon dioxide incorporation reaction: nickel-catalyzed asymmetriccarboxylative cyclization of bis-1,3-dienes. Journal of American ChemicalSociety,2001,126(19):5956–5957
    [65] Xu C X, Su J X, Xu, X H, et al. Low temperature CO oxidation overunsupported nanoporous gold. Journal of American Chemical Society,2007,129(1):42–43
    [66] Xia R, Wang J L, Wang R Y, et al. Correlation of the thermal and electricalconductivities of nanoporous gold. Nanotechnology,2010,21(8):085703
    [67] Ge, X B, Wang L Q, Liu Z N, et al. Nanoporous gold leaf for amperometricdetermination of nitrite. Electroanalysis,2011,23(2):381–386
    [68] Ren B, Li X Q, She C X, et al. Surface Raman spectroscopy as a versatiletechnique to study methanol oxidation on rough Pt electrodes. Electrochimica.Acra,2000,46(2–3):193–205
    [69] Koenigsmann C, Zhou W-P, Adzic R R, et al. Size-dependent enhancement ofelectrocatalytic performance in relatively defect-free, processed ultrathinplatinum nanowires. Nano Letters,2010,10(8):2806–2811
    [70] Christoffersen E, Liu P, Ruban A, et al. Anode materials for low-temperaturefuel cells: A density functional theory study. Journal of Catalysis,2001,199(1):123–131
    [71] Liu H S, Song C J, Zhang L, et al. A review of anode catalysis in the directmethanol fuel cell. Journal of Power Sources,2006,155(2):95–110
    [72] Schultze J W, Heidelberg A, Rosenkranz C, et a1. Principles of electrochemical nanotechnology and their application for materials and systems.Electrocbim Acta,2005,51(5):775–786
    [73] Chu X, Duan D X, Yu R Q. Amperometric glucose biosensor based onelectrodeposition of platinum nanoparticles onto covalently immobilizedcarbon nanotube electrode. Talanta,2007,71(5):2040–2047
    [74] Liu W T. Nanopartieles and their biological and environmental applications. JBiose. Bioeng,2006,102(1):1–7
    [75] Rajendr N G, Munetaka O, Anuradha T. Simultaneous determination ofguanosine and guanosine-5’-triphosphate in biological sample using goldnanoparticles modified indium tin oxide electrode, Analytica Chimica Acta,2007,581(12):32–36
    [76] Gao G Y, Guo D J, Li H L. Electroeatalytic oxidation of formaldehyde onpalladium nanopartieles supposed on multi-walled carbon nanotubes. Joutnalof Power Sources,2006,162(2):1094–1098
    [77] Yin A-X, Min X-Q, Zhang Y-W, et al. Shape-selective synthesis andfacet-dependent enhanced electrocatalytic activity and durability ofmonodisperse sub-10nm Pt-Pd tetrahedrons and cubes. Journal of AmericanChemical Society,2011,133(11):3816–3819
    [78] Alonso E, Forniés J, Fortu o C, et al. Behavior of P-Pt and P-Pd bonds inphosphido complexes toward electrophilic fragments. Inorganic Chemistry,2009,48(16):7679–7690
    [79] Huo S J, Xue X K, Li Q X, et al. Seeded-growth approach to fabrication ofsilver nanoparticle films on silicon for electrochemical ATR surface-enhancedIR absorption spectroscopy. Journal of Physical Chemistry B.2006,110(51):25721–25728
    [80] Lakowicz J R, Ray K, Chowdhury M, et al. Plasmon-controlled fluorescence:a new paradigm in fluorescence spectroscopy. Analyst,2008,133(10):1308–1346
    [81] Brolo A G, Germain P, Hager G. Investigation of the adsorption of L-cysteineon a polycrystalline silver electrode by surface-enhanced Raman scattering(SERS) and surface-enhanced second harmonic generation (SESHG). Journalof Physical Chemistry B,2002,106(23):5982–5987
    [82] Baldelli S, Eppler A S, Anderson E, et al. Surface enhanced sum frequencygeneration of carbon monoxide adsorbed on platinum nanoparticle arrays.Journal of Chemical Physics,2000,113(13):5432–5438
    [83] Mohanty P, Yoon I, Kang T, et al. Simple vapor-phase synthesis ofsingle-crystalline Ag nanowires and single-nanowire surface-enhanced Ramanscattering. Journal of American Chemical Society,2007,129(31):9576–9577
    [84] Xia W W, Sha J, Fang Y J, et al. Gold nanoparticles assembling on smoothsilver spheres for surface-enhanced Raman spectroscopy. Langmuir,2012,28(12):5444–5449
    [85] Felidj N, Truong S L, Aubard J, et al. Gold particle interaction in regulararrays probed by surface enhanced Raman scattering. Journal of ChemicalPhysics,2004,120(15):7141–7146
    [86] Mcfarland A D, Young M A, Dieringer J A, et al. Wavelength-scannedsurface-enhanced Raman excitation spectroscopy. Journal of PhysicalChemistry B,2005,109(22):11279–11285
    [87] Xia Y N, Xiong Y J, Lim B, et al. Shape-controlled synthesis of metalnanocrystals: simple chemistry meets complex physics. Angewandte ChemieInternational Edition,2009,48:60–103
    [88] Yu D B, Yam V W-W. Controlled synthesis of monodisperse silver nanocubesin water. Journal of American Chemical Society,2004,126,13200–13201
    [89] Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles.Science,2002,298(5601):2176–2179
    [90] Yu D, Yam V W W. Hydrothermal-induced assembly of colloidal silverspheres into various nanoparticles on the basis of HTAB-modified silvermirror reaction. Journal of Physical Chemistry B,2005,109(12):5497–5503
    [91] Seo D, Park J C, Song H. Polyhedral gold nanocrystals with oh symmetry:from octahedra to cubes, Journal of American Chemical Society,2006,128(46):14863–14870
    [92] Hoefelmeyer J D, Niesz K, Somorjai G A, et al. Radial anisotropic growth ofrhodium nanoparticles. Nano Letters,2005,5(3):435–438
    [93] Chen J, McLellan J M, Siekkinen A, et al. Facile synthesis of gold-silvernanocages with controllable pores on the surface. Journal of AmericanChemical Society,2006,128(4):14776–14777
    [94] Rycenga M, McLellan J M, Xia Y N. Controlling the assembly of silvernanocubes through selective functionalization of their faces. AdvancedMaterials,2008,20(12):2416–2420
    [95] Jana N R, Gearheart, L, Obare S O, et al. Anisotropic chemical reactivity ofgold spheroids and nanorods. Langmuir,2002,18(3):922–927
    [96] Gole A, Murphy C J. Seed-mediated synthesis of gold nanorods: role of thesize and nature of the seed, Chemistry of Materials,2004,16(19):3633–3640
    [97] Petrova H, Perez J J, Pastoriza-Santos I, et al. On the temperature stability ofgold nanorods: colnparison between thermal and ultra fast lase-inducedheating. Physical Chemistry Chemical Physics,2006,8(7):814–821
    [98] Xiong Y, Cai H, Wiley B J, et al. Synthesis and mechanistic study ofpalladium nanobars and nanorods. Journal of American Chemical Society,2007,129(12):3665–3675
    [99] Xiong Y, Cai H, Yin Y, Xia Y. Synthesis and characterization of five foldtwinned nanorods and right bipyramids of palladium. Chemical PhysicsLetters,2007,440(4–6):273–278
    [100] Wiley B, Sun Y, Xia Y. Polyol Synthesis of silver nanostructures: control ofproduct morphology with Fe(II) or Fe(III) species. Langmuir,2005,21(18):8077–8080
    [101] Edgar J A, Mcdonagh A M, Cortie M B. Formation of gold nanorods by astochastic “popcorn” mechanism. ACS Nano,2012,6(2):1116–1125
    [102] Opletal G, Grochola G, Chui Y H, et al. Stability and transformations of heatedgold nanorods. Journal of Physical Chemistry C,2011,115(11):4375–4380
    [103] Dumestre F, Chaudret B, Amiens C, et al. Unprecedented crystallinesuper-lattices of monodisperse cobalt nanorods. Angewandte Chemie,2003,115(42):5371–5374
    [104] Hao E, Kelly K L, Hupp J T, et al. Synthesis of silver nanodisks usingpolystyrene mesospheres as templates. Journal of American Chemical Society,2002,124(51):15182–15183
    [105] Jin R, Cao Y, Mirkin C A, Kelly K L, et al. Photoindueed conversion of silvernanospheres to nanoprisms. Science,2001,294(5548):1901–1903
    [106] Jin R, Cao Y C, Hao E, et al. Controlling anisotropic nanoparticles growththrough plasmon exeitation. Nature,2003,425(6957):487–490
    [107] Xiong Y, Mclellan J M, Chen J, et al. Kinetically controlled synthesis oftriangular and hexagonal nanoplates of palladium and their SPR/SERSproperties. Journal of American Chemical Society,2005,127(48):17118–17127
    [108] Xiong Y, Washio I, Chen J, et al. Poly(vinyl pyrrolidone): a dual functionalreductant and stabilizer for the facile synthesis of noble metal nanoplates inaqueous solutions, Langmuir,2006,22(20):8563–8570
    [109] Washio I, Xiong Y, Yin Y, et al. Reduction by the end groups of poly(vinylpyrrolidone): a new and versatile route to the kinetically controlled synthesisof Ag triangular nanoplates. Advanced Materials,2006,18(13):1745–1749
    [110] Sun X, Dong S, Wang E. Large-scale synthesis of micrometer-scalesingle-crystalline Au plates of nanometer thickness by a wet-chemical route.Angewandte Chemie International Edition,2004,116,6520;2004,43(46):6360–6363
    [111] Liu B, Xie J, Lee J Y, et al. Optimization of high-yield biological synthesis ofsingle-crystalline gold nanoplates. Journal of Physical Chemistry B,2005,109(32):15256–15263
    [112] Leng Y, Wang Y, Li X, et al. Controlled synthesis of triangular and hexagonalNi nanosheets and their size-dependent properties. Nanotechnology,2006,17(19):4834
    [113] Wang Y, Jiang X, Herricks T, et al. Single crystalline nanowires of lead:large-scale synthesis, mechanistic studies, and transport measurements.Journal of Physical Chemistry B,2004,108(25):8631–8604
    [114] Lu X. Yavuz M S, Tuan H-Y, et al. Ultrathin gold nanowires can be obtainedby reducing polymeric strands of oleylamine-AuCl complexes formed viaaurophilic interaction. Journal of American Chemical Society,2008,130(28):8900–8901
    [115] Chen J, Herricks T, Geissler M, et al. Single-crystal nanowires of platinumcan be synthesized by controlling the reaction rate of a polyol process. Journalof American Chemical Society,2004,126(35):10854–10855
    [116] Song Y, Garcia R M, Dorin R M, et al. Synthesis of platinum nanowirenetworks using a soft template. Nano Letters,2007,7(12):3650–3655
    [117] Rao C N R, Kulkarni G U P, Thomas J, et al. Metal nanopartieles and theirassemblies. Chemical Society Reviews,2000,29(1):27–35
    [118] Calandra P, Giordano C, Longo A, et al. Physicochemical investigation ofsurfaetan-coated gold nanoparticles synthesized in the confined space of dryreversed micelles. Materials Chemistry and Physies,2006,98(2–3):494–499
    [119] Mafuné F, Kohno J, Takeda Y, et al. Formation of gold nanoparticles by laserablation in aqueous solution of surfactant. Journal of Physical Chemistry B,2001,105(22):5114–5120
    [120] Mafuné F, Kohno J, Takeda Y, et al. Formation of nanonetworks and smallgold nanoparticles by irradiation of intense pulsed laser onto goldnanoparticles. Journal of Physical Chemistry B,2003,107(46):12589–12596
    [121] Jin R W, Cao Y W, Mirkin C A, et al. Photoinduced conversion of silvernanospheres to nanoprisms. Science,2001,294(5548):1901–1903
    [122] Shi H, Zhang L, Cai W. Preparation and optical absorption of goldnanoparticles within pores of mesoporous silica. Materials Research Bulletin,2000,35(10):1689–1695
    [123] Chen S H, Fan Z Y, Carroll D L. Silver nanodisks: synthesis, characterization,and self-assembly. Journal of Physical Chemistry B,2002,106(42):10777–10781
    [124] Yi Q, Huang W, Yu W, et al. Hydrothermal synthesis of titanium-supportednickel nanoflakes for electrochemical oxidation of glucose. Electroanalysis,2008,20(18):2016–2022
    [125] Capek I. Preparation of metal nanoparticles in water-in-oil (W/O)microemulsions. J. Advances in Colloid and Interface Seience.2004,110(1–2):49–74
    [126] Hao C C, Xiao F, Yuan S L. Preparation of nanometer copper in inversemicroemulsions. Materials Review,2007,21(5A):65–66
    [127] Shankar S S, Rai A, Ahmad A, et al. Controlling the optical properties oflemongrass-extract synthesized gold nano triangles and potential applicationin infrared-absorbing optical coatings. Chemistry of Materials,2005,17(3):566–572
    [128] Kasthuri J, Veerapandian S, Rajendiran N. Biological synthesis of silver andgold nanoparticles using apiin asredueing agent. Colloid Surfaces B.Biointerfaces,2009,68(1):55–60
    [129] Hoffman M, Veinot J G C. Understanding the formation of elemental germanium by thermolysis of sol-gel derived organogermanium oxide polymers. Chemistry of Materials,2012,24(7):1283–1291
    [130] LuoY L. Preparation of water-soluble, well-stable noble metal nanoprticles inthe presence of2-mercapto-5-benzimidazole-sulfonie acid sodium. Joumal ofMaterials Letters,2008,62(21–22):3758–3760
    [131] Hofmann Ph. The surfaces of bismuth: structural and electronic properties,Progress in Surface Science,2006,81(5):191–245
    [132]王军伟.低维铋系纳米结构的合成、结构与性能研究:[清华大学博士学位论文].北京:清华大学化学系,2003,4–5
    [133]胡汉祥,丘克强,何晓梅,等.金属铋的结构与磁致电阻及热电效应.有色金属,2005,57(4):13–15
    [134]曹锡章,宋天佑,王杏乔.无机化学.北京:高等教育出版社,2002:693–704
    [135] Dresselhaus M S, Lin Y M, Rabin O, et al. Nanowires and nanotubes.Materials Science and Engineering: C,2003,23(1–2):129–140
    [136] Rogacheva E I, Grigorov S N, Nashchekina O N, et al. Quantum-size effects inn-type bismuth thin films. Applied Physics Letters,2003,82(16):2628-2630
    [137] Black M R, Lin Y M, Cronin S B, et al. Infrared absorption in bismuthnanowires resultingfrom quantum confinement. Physical Review B,2002,65(19):195417–195421
    [138] Banerjee S, Cash B D, Dominitz (Chair) J A. The role of endoscopy in themanagement of patients with peptic ulcer disease. Gastrointestinal Endoscopy,2010,71(4):663–668
    [139]杨文君.枸橼酸铋雷尼替丁治疗幽门螺杆菌阳性的消化性溃疡68例临床观察.重庆医学,2009,38(3):373–374
    [140]马庆凯,李海英.胶体果胶铋治疗慢性胃炎50例临床疗效观察.临床和实验医学杂志,2009,8(3):83-83
    [141]李安振,汤小梅.中西医结合治疗幽门螺旋杆菌感染160例疗效观察.中国医药导报,2008,5(32):53–54
    [142]邓麦芹.超导及超导材料的应用.科技信息,2009,(8):82–83
    [143] Tian M L, Wang J, Zhang Q, et al. Superconductivity and quantum oscillationsin crystalline Bi nanowire. Nano Letters,2009,9(9):3196–3202
    [144] Tian M L, Wang J G, Kumar N, et al. Observation of superconductivity ingranular Bi nanowires fabricated by electrodeposition. Nano Letters,2006,6(12):2773–2780
    [145] Kim S-J, Ponou S, F ssler T F, et al. Cation substitution effects in the systemSr2xBaxBi3(0≤x≤1.3): structural distortions induced by chemical pressure.Inorganic Chemistry,2008,47(9):3594–3602
    [146] Munzarová M L, Hoffmann R. Strong electronic consequences of intercalationin cuprate superconductors: the case of a trigonal planar AuI3complexstabilized in the Bi2Sr2CaCu2Oylattice. Journal of American Chemical Society,2002,124(19):5542–5549
    [147] Masur L J, Buczek D, Harley E, et a1. The status of commercial anddevelopmental HTS wires. Physica C: Superconductivity,2003,392–396(2):989–997
    [148] Weihrich R, Matar S F, Anusca I, et al. Palladium site ordering and theoccurrence of superconductivity in Bi2Pd3Se2xSx. Journal of Solid StateChemistry,2011,184(4):797–804
    [149] Zhang X C, Li C S, Zhang P X, et a1. Effect of phase assemblage of precursorpowder on microstructure and properties of Bi(Pb)-2223/Ag tapes. Rare MetalMaterials and Engineering,2003,32(9):715
    [150]胡小方,杨晶磊,伍小平,等. Bi-2223/Ag高温超导带材内部结构损伤演化及力学性能研究.实验力学,2004,19(1):67-71
    [151] Suárez P, Cáceres D, Cordero E, et al. Magnetic coupling in coreless toroidaltransformers with Bi-2223windings. Physica C: Superconductivity,2000,341-348(4):2531–2533
    [152] Hao Q B, Li C S, Zhang S N, et al. Effect of oxygen partial pressure on thesuperconductivity of Bi-2212wires during post-annealing. Physica C:Superconductivity,2011,471(21–22):1100–1102
    [153]赵芳霞,汤玉飞,王鹏,等.含纳米铋粉锂基润滑脂抗磨减摩性能研究.2011,(1):26–29
    [154] Rohr O. Bismuth-a new metallic but non-toxic replacement for lead as EPadditive in grease. NLGI Spokeman,1993,57(2):6–13
    [155]赵彦保,张治军,吴志申,等.液相分散法制备硬脂酸修饰铋纳米微粒.无机化学学报,2003,(9):997–1000
    [156] Zhao Y B, Zhang Z J, Dang H X. A simple way to prepare bismuthnanoparticles. Materials Letters,2004,58(5):790–793
    [157] Rohr O. Bismuth-the new ecologically green metal for modern lubricatingengineering. Industril Lubrication and Tribology,2004,54:153–164
    [158]杨江海,张振忠,赵芳,等.不同分散剂修饰的纳米铋粉在基础油中分散稳定性研究.润滑与密封,2009,34(2):31–34
    [159]齐文凤.纳米金属粉的制备及其润滑性能研究:[南京工业大学硕士学位论文].南京,2006,52–64
    [160]孙磊,赵土士,吴志申,等.表面修饰Bi纳米微粒的制备及摩擦学性能.润滑与密封,2006,(7):97–99
    [161]王德国,冯大鹏.几种纳米粒子作润滑脂添加剂的试验研究.机械工程材料,2005,29(4):58–59
    [162]郑夏莲,许华.铋层状结构无铅压电陶瓷的研究进展.自然科学,2007,29(4):15–18
    [163] Gao L F, Huang Y Q, Hu Y, et a1. Dielectric and ferro-electric properties of(1-x) BaTiO3-xBi0.5Na0.5TiO3ceramics. Ceramics International,2007,33(6):605–609
    [164]王伟,顾世浦,单丹,等. A位掺杂Sr1-xLa2x/3Bi4Ti4O15陶瓷的铁电介电性能.扬州大学学报,2006,9(4):38–41
    [165] Watcharapasom A, Jiansifisomboon S. Grain growth kinetics in dy-dopedBi5Na0.5TiO3ceramics. Ceramics International,2008,34(4):769–772
    [166] Xie R J, Akimune Y. Lead-free piezoelectric ceramics in the (1-x)Sr2NaNb5O15-xCa2NaNb5O15(0.05≤x≤0.35) system. Journal of MaterialsChemistry,2002,(12):3156–3161
    [167] Cho K H, Park H Y, Ahn C W, et a1. Microstrueture and piezoelectricproperties of0.95(Na0.5K0.5) NbO3-0.05SrTiO3ceramics. Journal of theAmerican Ceramic Society,2007,90(6):1946–1948
    [168] Li G R, Zheng L Y, Yin Q R, et al. Microsturcture and ferroelectricpropertiesof MnO2-doped bismuth-layer (Ca, Sr) Bi4Ti4O15ceramics. Journalof Applied Physics,2005,98(6):064108–7
    [169] Li S, Lin Y-H, Zhang B-P, et al. Controlled fabrication of BiFeO3uniformmicrocrystals and their magnetic and photocatalytic behaviors. Journal ofPhysical Chemistry C,2010,114(7):2903–2908
    [170] Castro A, Vila E, Jiménez R, et al. Synthesis, structural characterization, andproperties of perovskites belonging to the xBiMnO3-(1-x) PbTiO3System.Chem. Mater.,2010,22(2):541–550
    [171] Yan H X, Li C E, Zhou J G, et al. A-site substitution effects on the structuresand properties of CaBi4Ti4O15ceramics. Japanese Journal of Applied Physics,2000,39:6339–6342
    [172] Takeuchi T, Tani T, Saito Y. Unidirectionally textured CaBi4Ti4O15ceramicsby the reactive templated grain growth with an extrusion. Japanese Journal ofApplied Physics,2000,39(9B):5577–5580
    [173]徐骏,胡强,林刚,等. Sn-Bi系列低温无铅焊料及其发展趋势.电子工艺技术,2009,30(1):1–4
    [174]徐骏,胡强,贺会军,等.一种无银的锡铋铜系无铅焊料及其制备方法:中国:200610089257,4[P]
    [175] Guo W X, Shu D, Chen H Y. Study on the structure and property of leadtellurium alloy as the positive grid of lead-acid batteries. Journal of Alloysand Compounds,2009,475(1–2):102–109
    [176] Peixoto L C, Osório W R. Microstructure and electrochemical corrosionbehavior of a Pb-1wt%Sn alloy for lead-acid battery components. Journal ofPower Sources,2009,192(2):724–729
    [177] Lin G F, Zhou G S, Li D G, et a1.Effect of cerium on gas evolution behaviorof Pb-Ca-Sn alloy. Journal of Rare Earths,2006,24(2):232–237
    [178]杨文兵,夏鹏.钙锡含量对铅钙合金耐腐蚀性能的影响.蓄电池,2004,(4):155–157
    [179]李万千,唐有根.添加铈对铅钙合金在硫酸溶液中电化学性能的影响.化学学报,2008,66(16):1857–1862
    [180]陈奕曼,彭曙光,魏文武,等.铅银和铅银斓合金作为正极板栅的性质研究.蓄电池,2008,(1):9-13
    [181]秦春段,王涛,苏勇.铋对铅酸蓄电池用Pb-Ca-Sn合金性能的影响.蓄电池,2011,48(3):104–107
    [182] Li L, Zhang Y, Li G H, et al. A route to fabricate single crystalline bismuthnanowire arrays with different diameters. Chemical Physics Letters,2003,378(3–4):244–249
    [183] Li L, Yang Y W, Huang X H, et al. Fabrication and electronic transportproperties of Bi nanotube arrays. Applied Physics Letters,2006,88(10):103119–3
    [184] Yang D C, Meng G W, Xu Q L, et al. Electronic transport behavior of bismuthnanotubes with a predesigned wall thickness. Journal of Physical Chemistry C,2008,112(23):8614–8616
    [185] Liu X Y, Sun P, Ren S, et al. Electrodeposition of high-pressure-stable bccphase bismuth flowerlike micro/nanocomposite architectures at roomtemperature without surfactant. Electrochemistry Communications,2008,10(1):136–140
    [186] Jiang S, Huang Y-H, Luo F, et al. Synthesis of bismuth with variousmorphologies by electrodeposition. Inorganic Chemistry Communications,2003,6(6):781–785
    [187] Liu K, Chien C L, Searson P C, et al. Structural and magneto-transportproperties of electrodeposited bismuth nanowires. Applied Physics Letters,1998,73(10):1436–1438
    [188] Yang F Y, Liu K, Hong K M, et al. Large magnetoresistance ofelectrodeposited single-crystal bismuth thin films. Science,1999,284(5418):1335–1337
    [189] Huber T E, Nikolaeva A, Gitsu D, et al. Quantum confinement andsurface-state effects in bismuth nanowires. Journal of Physica E,2007,37(1–2):194–199
    [190] Li L, Yang Y W, Li G H, et al. Conversion of a Bi nanowire array to an arrayof Bi-Bi2O3core-shell nanowires and Bi2O3nanotubes. Small,2006,2(4):548–553
    [191] Li L, Yang Y W, Fang X S, et al. Diameter-dependent electrical transportproperties of bismuth nanowire arrays. Solid State Communications,2007,141(9):492–496
    [192] Xu J, Zhang W H, Morris M A, et al. The formation of ordered bismuthnanowire arrays within mesoporous silica templates. Materials ChemistryPhysics,2007,104(1):50–55
    [193] Zhu Y G, Dou X C, Huang X H, et al. Thermal properties of Bi nanowirearrays with different orientations and diameters. Journal of PhysicalChemistry B,2006,110(51):26189–26193
    [194] Zhang Z B, Gekhtman D, Dresslhaus M S, et al. Processing andcharacterization of single-crystalline ultrafine bismuth nanowires. Chemistryof Materials,1999,11(7):1659–1665
    [195] Zhang Z B, Sun X Z, Dresslhaus M S, et al. Magnetotransport investigationsof ultrafine single-crystalline bismuth nanowire arrays. Applied PhysicsLetters,1998,73(11):1589–159l
    [196] Heremans J P, Thrush C M. Thermoelectric power of bismuth nanowires.Physical Review B,1999,59(19):12579–12583
    [197] Heremans J, Thrush C M, Zhang Z B, et al. Magnetoresistance of bismuth nanowire arrays: A possible transition from one-dimensional to three-dimensional localization. Physical Review B,1998,58(16): R1009l–R10095
    [198] Costa-Krǎer J L, Carcía-Moehales N, Olin H. Conductance quantization inbismuth nanowires at4K. Applied Physics Letters,1997,78(26):4990–4993
    [199] Piraux L, Dubois S, Duvml J L, et al. Fabrication and properties of organicand metal nanocylinders in nanoporous membranes. Journal of MaterialsResearch,1999,14(7):3042–3050
    [200] Liu K, Chien C L, searson P C. Finite-size effects in bismuth nanowires.Physical Review B,1998,58(22):14681–14684
    [201] Tang C J, Zhang Y X, Wang G Z, et al. Fabrication of urchin-like bismuthnanostructures via a facile solvothermal route. Chemistry Letters,2008,37(7):722–723
    [202] Xu Y B, Ren Z M, Ren W L, et al. Magnetic-field-assisted solvothermalgrowth of single-crystalline bismuth nanowires. Nanotechnology,2008,19(11):115602
    [203] Chen J, Wu L M, Chen L. Syntheses and characterizations of bismuthnanofilms and nanorhombuses by the structure-controlling solventless method.Inorganic Chemistry,2007,46(2):586–591
    [204] Liu X-Y, Zeng J-H, Zhang S-Y, et al. Novel bismuth nanotube arrayssynthesized by solvothermal method. Chemical Physics Letters,2003,374(3–4):348–352
    [205] Gao Y B, Niu H L, Zen C, et al. Preparation and characterization ofsingle-crystalline bismuth nanowires by a low-temperature solvothermalprocess. Chemical Physics Letters,2003,367(1–2):141–144
    [206] Wang Y, Chen J, Chen L, et al. Shape-controlled solventless syntheses of nanoBi disks and spheres. Crystal Growth&Design,2010,10(4):1578–1584
    [207] Yarema M, Kovalenko M V, Hesser G. Highly monodisperse bismuthnanoparticles and their three-dimensional superlattices. Journal of theAmerican Ceramic Society,2010,132(43):15158–15159
    [208] Fu R L, Xu S, Lu Y N, et al. Synthesis and characterization of triangularbismuth nanoplates. Crystal Growth&Design,2005,5(4):1379–1385
    [209] Wang Y W, Kim J S, Kim K S, et al. Diameter-and length-dependent volumeplasmon excitation of bismuth nanorods investigated by electron energy lossspectroscopy, Chemistry of Materials,2007,19(16):3912–3916
    [210] Li Y D, Wang J W, Deng Z X, et al. Bismuth nanotubes: a rationallow-temperature synthetic route. Journal of American Chemical Society,2001,123(40):9904–9905
    [211] Wang J W, Wang X, Li Y D, et al. Synthesis and characterization of bismuthsingle-crystalline nanowires and nanospheres. Inorganic Chemistry,2004,43(23):7552–7556
    [212] Liu H, Wang Z L. Bismuth spheres grown in self-nnested cavities in a siliconwafer. Journal of American Chemical Society,2005,127(43):15322–15326
    [213] Wang W Z, Poudel B, Ma Y, et al. Shape control of single crystalline bismuthnanostructures, J. Phys. Chem. B.2006,110(51):25702–25706
    [214] Wang Y W, Kim K S. Large-scale polyol synthesis of single-crystal bismuthnanowires and the role of NaOH in the synthesis process. Nanotechnology,2008,19(2):265–303
    [215] Wang Y L, Xia Y N. Bottom-up and top-down approaches to the synthesis ofmonodispersed spherical colloids of low melting-point metals. Nano letters,2004,4(10):2047–2050
    [216] Tang C J, Li G H, Dou X C, et al. Thermal expansion behaviors of bismuthnanowires. Journal of Physical Chemistry C,2009,113(14):5422–5427
    [217] Li J, Fan H Q, Chen J, et al. Synthesis and characterization of poly(vinylpyrrolidone)-capped bismuth nanospheres. Colloid and Surface A,2009,340(1–3):66–69
    [218] Yang B J, Li C, Hu H M, et al. A room-temperature route to bismuth nanotubearrays. European Jouranl of Inorganic Chemistry,2003,2003(20):3699–3702
    [219] Gutiérrez M, Henglein A. Nanometer-sized Bi particles in aqueous solution:absorption spectrum and some chemical properties. Journal of Physical andChemical,1996,100(18):7656–7661
    [220] Wang Y W, Hong B H, Kim K S. Size control of semimetal bismuthnanoparticles and the UV-visible and IR absorption spectra. Journal ofPhysical Chemistry B,2005,109(15):7067–7072
    [221] Wang F D, Tang R, Buhro W E, et al. Size-and shape-controlled synthesis ofbismuth nanoparticles. Chemistry of Materials,2008,20(11):3656–3662
    [222] Balan L, Billaud D, Fort Y, et al. A new synthesis of ultrafine nanometre-sizedbismuth particles. Nanotechnology,2004,15(8):940–944
    [223] Wang Q, Jiang C L, Cao D H, et al. Growth of dendritic bismuth microspheresby solution-phase process. Materials Letters,2007,61(14–15):3037–3040
    [224] Chen Y T, Gong R, Zhang W, et al. Synthesis of single-crystalline bismuthnanobelts and nanosheets. Materials Letters,2005,59(8–9):909–911
    [225] Reppert J, Rao R, Skove M, et al. Laser-assisted synthesis and opticalproperties of bismuth nanorods, Chemical Physics Letters,2007,442(4–6):334–338
    [226] Wagner J B, Willinger M-G, Müller J-O, et al. Surface-charge-inducedreversible phase transitions of Bi nanoparticles. Small,2006,2(2):230–234
    [227] Foos E E, Stroud R M, Berry A D, et al. Synthesis of nanocrystalline bismuthin reverse micelles. Journal of American Chemistry Society,2000,122(29):7114–7115
    [228] Fang J Y, Stokes K L, Wiemann J, et al. Nanocrystalline bismuth synthesizedvia an in situ polymerization-microemulsion process. Materials Letters,2000,42(1–2):113–120
    [229] Fang J Y, Stokes K L, Joan A, et al. Microemulsion-processed bismuthnanoparticles. Materials Science and Engineering: B,2001,83(1–2):254–257
    [230] Bhimarasetti G, Sunkara M K. Synthesis of sub-20-nm-sized bismuth1-Dstructures using gallium-bismuth systems. Journal of Physical Chemistry B,2005,109(34):16219–16222
    [231] Honda K, Fujishima A. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238(5358):37–38
    [232] Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB’s in thepresence of titanium dioxide in aqueous suspensions. Bulletin ofEnvironmental Contamination and Toxicology,1976,16(6):697–701
    [233] Frank S N, Bard A J. Semiconductor electrodes.12. photoassisted oxidationsand photoelectrosynthesis at polycrystalline TiO2electrodes. Journal ofAmerican Chemical Society,1977,99(14):4667–4675
    [234] Sano T, Negishi N, Koike K, et al. Preparation of a visible-light-responsivephotocatalyst from a complex of Ti4+with a nitrogen-containing ligand.Journal of Materials Chemistry,2004,14(3):380–384
    [235] Wei W, Dai Y, Guo M, et al. Density functional theory study of Ag adsorptionon SrTiO3(001) surface. Journal of Physical Chemistry C,2010,114(24):10917–10921
    [236] Liu Z, Sun D D, Guo P, et al. An efficient bicomponent TiO2/SnO2nanofiberphotocatalyst fabricated by electrospinning with a side-by-side dual spinneretmethod. Nano Letters,2007,7(4):1081–1085
    [237] Yu J G, Yu X X. Hydrothermal synthesis and photocatalytic activity ofzineoxide hollow spheres. Environmental science&Technology,2008,42(13):4902–4907
    [238] Deng D, Martin S T, Ramanathan S. Synthesis and charaeterization ofone-dimensional flat ZnO nanotower arrays as high-efficiency adsorbents forthe photocatalytic remediation of water pollutants. Nanoscale,2010,2(12):2685–2691
    [239] Hayat K, Gondal M A, Khaled M M, et al. Nano ZnO synthesis by modifiedsol gel method and its application in heterogeneous photocatalytic removal ofphenol from water. Applied Catalysis A: General,2011,393(1–2):122–129
    [240] Yu J G, Yu X X, Huang B B, et al. Hydrothermal synthesis and visible-lightphotocatalytic activity of novel cage-like ferrie oxide hollow spheres. CrystalGrowth&Design,2009,9(3):1474–1480
    [241] Wang C H, Shao C L, Wang L J, et al. Electrospinning preparation,characterization and photocatalytic properties of Bi2O3nanofibers. Journal ofColloid and Interface Science,2009,333(1):242–248
    [242] Zhang Y G, Chen L Y, Zheng Z, et al. A redox-hydrothermal route to β-MnO2hollow octahedral. Solid State Sciences,2009,11(9):1265–1269
    [243] Cheng J-H, Shao G, Yu H-J, et al. Excellent catalytic and electrochemicalproperties of the mesoporous MnO2nanospheres/nanosheets. Journal of Alloysand Compounds,2010,505(1):163–167
    [244] Kominami H, Oki K, Kohno M, et al. Novel solvothermal synthesis ofniobium(V) oxide powders and their photocatalytic activity in aqueoussuspensions. Journal of Materials Chemistry,2001,11(2):604–609
    [245] Fu X, Yang Q, Wang J, et al. Photocatalytic degradation of water-soluble dyesby LaCoO3. Journal of Rare Earths,2003,21(4):424–426
    [246]杨秋华,傅希贤,桑丽霞,等.钙钦矿型LaFeO3和SrFeO3的光催化性能.硅酸盐通报,2003,22(3):15–18
    [247] Ahuja S, kutty T R N. Nanopartieles of SrTiO3prepared by gel to crystalliteconversion and their photocatalytic activity in the mineralization of phenol.Journal of Photochemistry and Photobiology A: Chemistry,1996,97(1–2):99–107
    [248] Hideki K, Akikiko K. Photocatalytic water splitting into H2and O2overVarious tantalite photocatalysts. Catalysis Today,2003,78(1–4):561–569
    [249] Zhang H, Lu M, Liu S, et al. Preparation and photocatalytic property ofperovskite Bi4Ti3O12films. Materials Chemistry and Physics,2009,114(2–3):716–721
    [250] Lou X, Jia X, Xu J, et al. Hydrothermal synthesis, characterizationphotocatalytic properties of Zn2SnO4nanoerystal. Materials Science andEngineering: A,2006,432(1–2):221–225
    [251] Lv W, Liu B, Qiu Q, et al. Synthesis, charaeterization and photocatalyticproperties of spinel CuA12O4nanoparticles by a sonochemical method.Journal of Alloys and Compounds,2009,479(1–2):480–483
    [252] Zou Z G, Ye J H, Sayama K, et al. Direct splitting of water under visible lightirradiation with an oxide semiconductor photocatalyst. Nature,2001,413(6856):625–627
    [253] Yi Z G, Ye J H, Kikugawa N, et al. An orthophosphate semiconductor withphotooxidation properties under visible-light irradiation. Nature Materials,2010,9(7):559–56
    [254] Fang X S, Zhai T Y, Gautam U K, et al. ZnS nanostrnetures: from synthesis toapplications. Progress in Materials Science,2011,56(2):175–287
    [255] Barzegar M,Habibi-yangjeh A, Behboudnia M. Ultrasonic-assisted preparation and charaeterization of CdS nanoparticles in the presence of ahalide-free and low-cost ionic liquid and photocatalytic activityl. Journal ofPhysics and Chemistry of Solids,2010,71(9):1393–1397
    [256] Hirai T, Suzuki K, Komasawa I. Preparation and photocatalytic properties ofcomposite CdS nanoparticles-titanium dioxide partieles. Journal of Colloidand Interface Science,2001,244(2):262–265
    [257] Cheng Z G, Wdllg S Z, Wang Q, et al. A facile solution chemical route toself-assembly of CuS ball-flowers and their appliecation as an efficientphotocatalyst. CrystEngComm,2010,12(1):144–149
    [258] Ishikawa A, Takata T,Matsumura T, et al. Oxysulfides In2Ti2S2O5as stablephotocatalysts for water oxidation and reduction under visible-light irradiation.Journal of Physical Chemistry B,2004,108(8):2637–2642
    [259] Kudo A, Tsuji I, Kato H. AgZnIn2S4solid solution photocatalyst for H-2evolution from aqueous solutions under visible light irradiation. ChemicalCommunications,2002,(17):1958–1959
    [260] Wang P, Huang B B, Qin X Y, et al. Ag@AgCI: a highly efficient and stablephotocatalyst active under visible light. Angewandte Chemie InternationalEdition,2008,47(41):7931–7933
    [261] Wang P, Huang B B, Lou Z Z, et al. Synthesis of highly efficient Ag@AgCIplasmonic photocatalysts with various structures. Chemistry-A EuropeanJournal,2010,16(2):538–544
    [262] Maruthamuthu P, Gurunathan K, Subramanian E, et al. Visible light-inducedhydrogen production from water with Pt/Bi2O3/RuO2in presence of electronrelay and photosensitizer. International Journal of Hydrogen Energy,1994,19(11):889–893
    [263] Zhang C, Zhu Y F. Synihesis of square Bi2WO6nanoplates as high-activityvisible-ligh-driven photocatalysts. Chemistry of Materials,2005,17(13):3537–3545
    [264] Fan Dong, Yanjuan Sun, Min Fu, et al. Novel in situ N-doped (BiO)2CO3hierarchical microspheres self-assembled by nanosheets as efficient anddurable visible light driven photocatalyst. Langmuir,2012,28(1):766–773
    [265] Tang J W, Zou Z G, Ye J H. Efficient photocatalytic decomposition of organiccontaminants over CaBi2O4under visible-light irradiation. AngewandteChemie International Edition,2004,43(34):4463–4466
    [266] Wu X H, Qin W, Li L, et al. Photocatalytic property of nanostrueturedFe3+-doped Bi2O3films. Catalysis Communications,2009,10(5):600–604
    [267]吕伟,吴莉莉,徐润春,等.二维纳米结构-氧化铋纳米片的制备与表征.山东大学学报(工学版),2008,38(1):109–112
    [268] Brezesinski K, Ostermann R, Hartmann P, et al. Exceptional photocatalyticactivity of ordered mesoporous β-Bi2O3thin films and electrospun nanofibermats. Chemistry of Materials,2010,22(10):3079–3085
    [269] Wu X H, Qin W, He W D. Thin bismuth oxide films prepared through thesol-gel method as photocatalyst. Journal of Molecular Catalysis A: Chemical,2007,261(2):167–171
    [270] Zhang L S, Wang W Z, Yang J, et al. Sonochemical synthesis of nanocrystallite Bi2O3as a visible-light-driven photocatalyst. Applied CatalysisA: General,2006,308:105–110
    [271] Zhou L, Wang W Z, Xu H L, et al. Bi2O3Hierarchical nanostruetures:controllable synthesis, growth mechanism, and their application inphotocatalysis. Chemistry-A European Journal,2009,15(7):1776–1782
    [272] Soitah N, Yang C H. Effect of Fe3+doping on structural, optical and electricalproperties delta-Bi2O3thin films. Current Applied Physics,2010,10(3):724–728
    [273] Gurunathan K. Photocatalytic hydrogen production using transition metalions-doped gamma-Bi2O3semiconductor partieles. International Journal ofHydrogen Energy,2004,29(9):933–940
    [274] Cheng H F, Huang B B, Dai Y, et al. Visible-light photocatalytic activity of themetastable Bi20TiO32synthesized by a high-temperature quenching method.Journal of Solid State Chemistry,2009,182(8):2274–2278
    [275] Zhang L W, Xu T G, Zhao X, et al. Controllable synthesis of Bi2MoO6andeffect of morphology and variation in local structure on photocatalyticactivities. Applied Catalysis B: Environmental,2010,98(3–4):138–146
    [276] Shan Z C, XiaY J, Yang Y X, et al. Preparation and photocatalytic activity ofnovel effieicnt photocatalyst Sr2Bi2O5. Materials Letters,2009,63(1):75–77
    [277] Chen C, Cheng J R, Yu S W, et al. Hydrothermal synthesis operovskitebismuth ferrite crystallites. Journal of Crystal Growth,2006,291(1):135–139
    [278] Luo J H, Maggard P A. Hydrothermal synthesis and photocatalytic activitiesof SrTiO3-coated Fe2O3and BiFeO3. Advanced Materials,2006,18(4):514–517
    [279] Ghosh S, Dasgupta S, Sen A, et al. Low temperature synthesis of bismuthferrite nanoparticles by a ferrioxalate precursor rmethod. Materials ResearchBulletin,2005,40(12):2073–2079
    [280] Park T J, Mao Y B, Wang S S. Synthesis and characterization of multiferroieBiFeO3nanotubes. Chemical Communications,2004,(23):2708–2709
    [281] Yao W F, Xu X H, Zhou J T, et al. Photocatalytic property of silleniteBi24AlO39crystals. Journal of Molecular Catalysis A: Chemical,2004,212(1–2):323–328
    [282] Hou L R, Yuan C Z, Peng Y. Preparation and photocatalytic property ofsunlight-driven photocatalyst Bi38ZnO58. Journal of Molecular Catalysis A:Chemical,2006,252(1–2):132–135
    [283] Chang X F, Huang J, Tan Q Y, et al. Photocatalytic degradation of PCP-Naover BiOI nanosheets under simulated sunlight irradiation. CatalysisCommunications,2009,10(15):1957–1961
    [284] An H Z, Du Y, Wang T M, et al. Photocatalytic properties of BiOX (X=CI, Br,and I). Rare Metals,2008,27(3):243–250
    [285] Wu S J, Wang C, Cui Y F, et al. Synthesis and photocatalytic properties ofBiOCl in anowire arrays. Materials Letters,2010,64(2):115–118
    [286] Zheng Y, Duan F, Chen M Q, et al. Synthesis Bi2O2CO3nanostruetures: novelphotocatalyst with controlled special surface exposed. Journal of MolecularCatalysis A: Chemical,2010,317(1–2):34–40
    [287] Li L S, Cao R G, Wang Z J, et al. Template synthesis of hierarehieal Bi2E3(E=S, Se, Te) core-shell microspheres and their electrochemical andphotoresponsive properties. Journal of Physical Chemistry C,2009,113(42):18075–18081
    [288] Chen R G, Bi J H, Wu L, et al. Template-free hydrothermal synthesis andphotocatalytic performances of novel Bi2SiO5nanosheets. InorganicChemistry,2009,48(19):9072–9076
    [289] Henle J, Simon P, Frenzel A, et al. Nanosized BiOX (X=CI,Br,I) partielessynthesized in reverse microemulsions. Chemistry of Materials,2007,19(3):366–373
    [290] Shang M, Wang W Z, Zhang L. Preparation of BiOBr lamellar structure withhigh photocatalytic activity by CTAB as Br source and template. Journal ofHazardous Materials,2009,167(1–3):803–809
    [291] Zhang J, Shi F J, Lin J, et al. Self-assembled3-D architectures of BiOBr as avisible light-driven photocatalyst. Chemistry of Materials,2008,20(9):2937–2941
    [292] Zhang X, Ai Z H, Jia F L, et al. Generalized one-pot synthesis,charaeterization, and photocatalytic activity of hierarchical BiOX (X=CI,Br,I) nanoplate microspheres. Journal of Physical Chemistry C,2008,112(3):747–753
    [293] Guillard C, Disdier J, Monnet C, et al. Solar efficiency of a new depositedtitania photocatalyst: chlorophenol, pesticide and dye removal applications.Applied Catalysis B: Environmental,2003,46(2):319–332
    [294] Tennakone K, Ketipearachchi U S. Photocatalytic method for removal ofmercury from contaminated water. Applied Catalysis B: Environmental,1995,5(4):343–349
    [295] Augugliaro V, Loddo V, Marcì G, et al. Photocatalytic oxidation of cyanides inaqueous titanium dioxide suspensions. Journal of Catalysis,1997,166(2):272–283
    [296] Kabra K, Chaudhary R, Sawhney R L. Treatment of hazardous organic andinorganic compounds through aqueous-phase photocatalysis: a review.Industrial&engineering chemistry research,2004,43(24):7683–7696
    [297] Paleologou A, Marakas H, Xekoukoulotakis N P, et al. Disinfection of waterand wastewater by TiO2photocatalysis, sonolysis and UV-C irradiation.Catalysis Today,2007,129(l–2):136–142
    [298] Pal A, Pelikollell S O, Yu L E, et al. Photocatalytic inactivation of airbornebacteria in a continuous-flow reactor. Industrial&engineering chemistryresearch,2008,47(20):7580–7585
    [299] Skorb E V, Antonouskaya L I, Belyasova N A, et al. Antibacterial activity ofthin-filrn photocatalysts based on metal-modified TiO2and TiO2:In2O3nanocomposite. Applied Catalysis B: Environmental,2008,84(1–2):94–99
    [300] Wang P, Huang B, Qin X, et al. Ag-AgBr@WO3·H2O vlsible-liglitphotocatalyst for bacteria destruction. Inorgani Chemistry,2009,48(22):10697–10702
    [301] Benlabbou A K, Derriehe Z, Folix C, et al. Photocatalytic inactivation ofEscherischla colil: effect of concentration of TiO2and microorganism, nature,and intensity of UV irradiation. Applied Catalysis B: Environmental,2007,76(3–4):257–263
    [302] Chowdhury P, Moreira J, Gomaa H, et al. Visible-solar-light-drivenphotocatalytic degradation of phenol with dye-sensitized TiO2: parametric andkinetic study. Industrial&engineering chemistry research,2012,51(12):4523–4532
    [303] Jiang J, Gu F, Shao W, et al. Fabrication of spherical multi-hollow TiO2nanostructures for photoanode film with enhanced light-scattering performance. Industrial&engineering chemistry research,2012,51(7):2838–2845
    [304] Nakamura I, Negishi N, Kutsuna S, et al. Role of oxygen vacancy in theplasma-treated TiO2photocatalyst with visible light activity for NO removal.Journal of Molecular Catalysis A: Chemical,2000,161(1):205–212
    [305] Mare P T, Veromica G M, Miguel A B, et al. Degradation of chlorophenols bymeans of advanced oxidation processes: a general review, Applied Catalysis B:Environmental,2004,47(4):219–256
    [306] Sun C Y, Zhao D, Chen C C, et al. TiO2-mediated photocatalytic debromination of decabromodiphenyl ether: kinetics and intermediates. Environmental science&Technology,2009,43(1):157–162
    [307] Che Y K, Yang X M, Liu G L, et al. Ultrathin n-type organic nanoribbons withhigh photoconductivity and application in optoelectronic vapor sensing ofexplosives. Journal of American Chemical Society,2010,132(16):5743–5750
    [308] Levin A J, Black M R, and Dresselhaus M S. Indirect L to T point opticaltransition in bismuth nanowires. Physical Review B,2009,79(16):165117–10
    [309] Zhang G R, Zeng Z. The electronic structure of a Bi/Sb superlattice nanowire,physica status solidi (c),2007,4(2):448–450
    [310] Norin B. Temperature and pressure dependence of the band structure inbismuth. Physica Scripta.1977,15:341–348
    [311] Liu Y, Allen R E. Electronic structure of the semimetals Bi and Sb electronicstructure of the semimetals Bi and Sb. Physical Review B,1995,52(3):1566–1577
    [312] Manthiram K, Alivisatos A P. Tunable localized surface plasmon resonances intungsten oxide nanocrystals. Journal of American Chemical Society,2012,134(9):3995–3998
    [313] Rivest J B, Fong L-K, Jain P K, et al. Size dependence of a temperature-induced solid-solid phase transition in copper(I) sulfide. J. Physical Chemistry Letters,2011,2(19):2402–2406
    [314] Burda C, Chen X B, Narayanan R, et al. Chemistry and properties ofnanocrystals of different shapes. Chemical Reviews,2005,105(4):1025–1102
    [315] Li H B, Chai L L, Wang X Q, et al. Hydrothermal growth and morphologymodification of β-NiS three-dimensional flowerlike architectures, CrystalGrowth&Design,2007,7(9):1918–1922
    [316] Li Y Y, Liu J P, Huang X T, el. Hydrothermal synthesis of Bi2WO6uniformhierarchical microspheres, Crystal Growth&Design,2007,7(7):1350–1355
    [317] Tang Ming L, Liu N, Dionne J A, et al. Observations of shape-dependenthydrogen uptake trajectories from single nanocrystals. Journal of AmericanChemical Society,2011,133(34):13220–13223
    [318] Polking M J, Urban J J, Milliron D J, et al. Size-dependent polar ordering incolloidal GeTe nanocrystals. Nano Letters,2011,11(3):1147–1152
    [319] Wang Y, Angelatos A S, Caruso F. Template synthesis of nanostructuredmaterials via layer-by-layer assembly. Chemistry of Materials,2008,20(3):848–858
    [320] Polking M J, Zheng H, Ramesh R, et al. Controlled synthesis andsize-dependent polarization domain structure of colloidal germanium telluridenanocrystals. Journal of American Chemical Society,2011,133(7):2044–2047
    [321] Zhou Y, Shimizu T. Lipid nanotubes: a unique template to create diverseone-dimensional nanostructures. Chemistry of Materials,2008,20(3):625–633
    [322] Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxidenanowire arrays, Science,2006,312(5771):242–246
    [323] Xia Y N, Yang P D, Sun Y G, et al. One-dimensional nanostructures: synthesis,characterization, and applications, Advanced Materials,2003,15(5):353–389
    [324] Huang J X, Tao A R, Connor S. A general method for assembling singlecolloidal particle lines. Nano Letters,2006,6(3):524–529
    [325] Gao F, Lu Q Y, Xie S H, et al. A simple route for the synthesis of multi-armedCdS nanorod-based materials. Advanced Materials,2002,14(21):1537–1540
    [326] Shen G Z, Bando Y, Lee C J. Synthesis and evolution of novel hollow ZnOurchins by a simple thermal evaporation process. Journal of PhysicalChemistry B,2005,109(21):10578–10583
    [327] Teng X W, Yang H. Synthesis of platinum multipods: an induced anisotropicgrowth. Nano Letters,2005,5(5):885–891
    [328] Fang X S, Ye C H, Zhang L D, et al. Direct observation of the growth processof MgO nanoflowers by a simple chemical route. Small,2005, l(4):422–428
    [329] Liu B, Zeng H C, Fabrication of ZnO “dandelions” via a modified kirkendallprocess. Journal of American Chemical Society,2004,126(51):16744–16746
    [330] Leng N, Gao L Z, Ping F, et al. Three-dimensional functionalized tetrapod-likeZnO nanostructures for plasmid DNA delivery. Small,2006,2(5):621–625
    [331] Liu J R, Huang X T, Li Y Y, et al. Self-assembled CuO monocrystallinenanoarchitectures with controlled dimensionality and morphology. CrystalGrowth&Design,2006,6(7):1690–1696
    [332] Liu J R, Huang X T, Sulieman K M, et al. Solution-based growth and opticalproperties of self-assembled monocrystalline ZnO ellipsoids. Journal ofPhysical Chemistry B,2006,110(22):10612–10618
    [333] Manna L, Milliron D J, Meisel A, et al. Controlled growth of tetrapod-branched inorganic nanocrystals. Nature Materials,2003,2(6):382–385
    [334] Zhang Z, Sun H, Shao X, et al. Three-dimensionally oriented aggregation of afew hundred nanoparticles into monocrystalline architectures. AdvancedMaterials,2005,17(1):42–47
    [335] Yu S H, Chen S F. Recent advances in polymer directed crystal growth andmediated self-assembly of nanoparticles. Current Nanoscience,2006,2(2):81–92
    [336] Xing J, Fang W Q, Li Z, et al. TiO2-coated ultrathin SnO2nanosheets used asphotoanodes for dye-sensitized solar cells with high efficiency. Industrial&engineering chemistry research,2012,51(11):4247–4253
    [337] Shen G Z, Bando Y, Golberg D. Self-assembled hierarchical single-crystallineβ-SiC nanoarchitectures, Crystal Growth&Design,2007,7(1):35–38
    [338] Wu C Y, Yu S H, Antonietti M. Complex concaved cuboctahedrons of coppersulfide crystals with highly geometrical symmetry created by a solutionprocess. Chemistry of Materials,2006,18(16):3599–3601
    [339] Cao Y C, Wang J H. One-pot synthesis of high-quality zinc-blende CdSnanocrystals. Journal of American Chemical Society,2004,126(44):14336–14337
    [340] Liu K, You H P, Jia G, et al. Hierarchically nanostructured coordinationpolymer: facile and rapid fabrication and tunable morphologies. CrystalGrowth&Design,2010,10(2):790–797
    [341] Li P W, Wang N, Wang R M. Flower-like nickel nanocrystals: facile synthesis,shape evolution, and their magnetic properties, European Journal of InorganicChemistry,2010,2010(15):2261–2265
    [342] Ma M G, Zhu J F. Solvothermal synthesis and characterization ofhierarchically nanostructured hydroxyapatite hollow spheres, EuropeanJournal of Inorganic Chemistry,2009,2009(36):5522–5526
    [343] Hu J S, Zhong L S, Song W G, et al. Synthesis of hierarchically structuredmetal oxides and their application in heavy metal ion removal, AdvancedMaterials,2008,20(15):2977–2982
    [344] Lu F, Cai W P, Zhang Y G. ZnO hierarchical micro/nanoarchitectures:solvothermal synthesis and structurally enhanced photocatalytic performance,Advanced Functional Materials,2008,18(7):1047–1056
    [345] Liu J, Yang X F, Wen Y P, et al. Hierarchical durian-shaped dodecahedralrutile microparticles. European Journal of Inorganic Chemistry,2011,2011(28):4429–4433
    [346] Dong Q, Su H L, Song F, et al. Hierarchical metal oxides assembled bynanocrystallites via a simple bio-inspired route. Journal of the AmericanCeramic Society,2007,90(28):376–380
    [347] Wang Q Q, Xu G, Han G R. Synthesis and characterization of large-scalehierarchical dendrites of single-crystal CdS. Crystal Growth&Design,2006,6(8):1776–1780
    [348] Cao S W, Zhu Y J. Hierarchically nanostructured r-Fe2O3hollow spheres:preparation, growth mechanism, photocatalytic property, and application inwater treatment. Journal of Physical Chemistry C,2008,112(12):6253–6257
    [349] Wang X F, Zhang J, Shi H Z, et al. Fabrication and temperature dependence ofthe resistance of single-crystalline Bi nanowires. Journal Applied Physics,2001,89(7):3847–3851
    [350] Yang F Y, Liu K, Chien C L, et al. Large magnetoresistance and finite-sizeeffects in electrodeposited single-crystal Bi thin films. Physical ReviewLetters,1999,82(16):3328–3331
    [351] Heremans J P, Thrush C M, Morelli D T, et al. Thermoelectric power ofbismuth nanocomposites. Physical Review Letters,2002,88(21):216801–4
    [352] Fang J Y, Stokes K L, Zhou W L, et al. Self-assembled bismuthnanocrystallines. Chemical Communications,2001,(18):1872–1873
    [353] Wu C Z, Xie Y. Controlling phase and morphology of inorganic nanostructuresoriginated from the internal crystal structure. Chemistry Communication,2009,(40):5943–5957
    [354] Ling T, Yu H M, Liu X H, et al. Five-fold twinned nanorods of FCC Fe:synthesis and characterization. Crystal Growth&Design,2008,8(12):4340–4342
    [355] Nadagouda M N, Varma R S. Microwave-assisted shape-controlled bulksynthesis of Ag and Fe nanorods in poly(ethylene glycol) solutions. CrystalGrowth&Design,2008,8(1):291–295
    [356] Wu J Y, He H K, Gao C. β-cyclodextrin-capped polyrotaxanes: one-pot facilesynthesis via click chemistry and use as templates for platinum nanowires.Macromolecules,2010,4(5):2252–2260
    [357] Goldberger J, He R R, Zhang Y F, et al. Single-crystal gallium nitridenanotubes. Nature,2003,422(6932):599–602
    [358] Richards V N, Shields S P, Buhro W E. Nucleation control in the aggregativegrowth of bismuth nanocrystals. Chemistry of Materials,2011,23(2):137–144
    [359] Kowalczyk P J, Belic D, Mahapatra O, et al. Grain boundaries betweenbismuth nanocrystals. Acta Materialia2012,60(2):674–681
    [360] Xin H L L, Zheng H M. In situ observation of oscillatory growth of bismuthnanoparticles. Nano Letters,2012,12(3):1470–1474
    [361] Boldt R, Kaiser M, K hler D, et al. High-yield synthesis and structure ofdouble-walled bismuth-nanotubes. Nano Letters,2010,10(1):208–210
    [362] Wang F D, Buhro W E. An easy shortcut synthesis of size-controlled bismuthnanoparticles and their use in the SLS growth of high-quality colloidalcadmium selenide quantum wires. small2010,6(4):573–581
    [363] Milliron D J, Hughes S M, Cui Y, et al. Colloidal nanocrystal heterostructureswith linear and branched topology. Nature,2004,430(6996):190–195
    [364] Sun Y, Xia Y. Large-scale synthesis of uniform silver nanowires through a soft,self-seeding, polyol process. Advanced Materials,2002,14(11):833–837
    [365] Sun Y, Yin Y, Mayers B T, et al. Uniform silver nanowires synthesis byreducing AgNO3with ethylene glycol in the presence of seeds and poly(vinylpyrrolidone). Chemistry of Materials,2002,14(11):4736–4745
    [366] Lee S M, Cho S N, Cheon J. Anisotropic shape control of colloidal inorganicnanocrystals. Advanced Materials,2003,15(5):441–444
    [367] Cho S, Jang J W, Jung S H, et al. Precursor effects of citric acid and citrateson ZnO crystal formation. Langmuir,2009,25(6):3825–3831
    [368] Wang X, Li Y D. Solution-based synthetic strategies for1-D nanostructures.Inorganic Chemistry,2006,45(19):7522–7534
    [369] Derrouiche S, Loebick C Z, Pfefferle L. Optimization of routes for thesynthesis of bismuth nanotubes: implications for nanostructure form andselectivity. Journal of Physical Chemistry C,2010,114(10):3431–3440
    [370] Fan L, Guo R. Growth of dendritic silver crystals in CTAB/SDBSmixed-surfactant solutions. Crystal Growth&Design,2008,8(7):2150–2156
    [371] Creighton J A, Eadon D G. Ultraviolet-visible absorption spectra of thecolloidal metallic elements. Journal of the Chemical Society, FaradayTransactions,1991,87(24):3881–3891
    [372] Wang Y, Zhao J Z, Wang Z C. A simple low-temperature fabrication of obliqueprism-like bismuth oxide via a one-step aqueous process. Colloids andSurfaces A: Physicochem. Eng. Aspects,2011,377(1-3):409–413
    [373] Von Oettingen W F, Ishikawa Y. On the composition of a series of bismuthsodium tartrates. Journal of American Pharmacists Association,1928,17(2):124–134
    [374] Campbell C T, Parker S C, Starr D E. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science,2002,298(5591):811–814
    [375] Wang Y W, Hong B H, Lee J Y, et al. Antimony nanowires self-assembledfrom Sb nanoparticles. Journal of Physical Chemistry B,2004,108(43):16723–16726
    [376] Park S J, Kim S, Lee S, et al. Synthesis and magnetic studies of uniform ironnanorods and nanospheres. Journal of American Chemical Society,2000,122(35):8581–8582
    [377] Azarian A, Iraji zad A, Dolati A. An optical study of cobalt nanowiresdispersed in liquid phase. Optics Communication,2007,274(2):471–476
    [378] Liu H J, Guo J H, Yin Y D, et al. Electronic structure of cobalt nanocrystalssuspended in liquid. Nano Letters,2007,7(7):1919–1922
    [379] Aneta J. M, Romaneh J, Gamini U S, et al. The synthesis and fabrication ofone-dimensional nanoscale heterojunctions. small,2007,3(5):722–756
    [380] Wang X, Fu H B, Peng A B, et al. One-pot solution synthesis of cubic cobaltnanoskeletons. Advanced Materials,2009,21(16):1636–1640
    [381] Zhang Y, Xu F G, Sun Y J, et al. Seed-mediated synthesis of Au nanocages andtheir electrocatalytic activity towards glucose oxidation. Chemistry-AEuropean Journal,2010,16(30):9248–9256
    [382] Tapan K S, Andrey L R. Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Advanced Materials,2010,22(16):1781–1804
    [383] Lim B, Jiang M J, Tao J, et al. Shape-controlled synthesis of Pd nanocrystalsin aqueous solutions. Advanced Functional Materials,2009,19(2):189–200
    [384] Millstone J E, Hurst S J, Métraux G S, et al. Colloidal gold and silvertriangular nanoprisms. Small,2009,5(6):646–664
    [385] Sau T K, Rogach A L, J ckel F, et al. Properties and applications of colloidalnonspherical noble metal nanoparticles. Advanced Materials,2010,22(16):1805–1825
    [386] Zhang G X, Sun S H, Li R Y, et al. New insight into the conventionalreplacement reaction for the large-scale synthesis of various metalnanostructures and their formation mechanism. Chemistry-A European Journal,2010,16(35):10630–10634
    [387] Zhang J H, Li Y F, Zhang X M, et al. Colloidal self-assembly meetsnanofabrication: from two-dimensional colloidal crystals to nanostructurearrays. Advanced Materials,2010,22(38):4249–4269
    [388] Sun Y G, Wiederrecht G P. Surfactantless synthesis of silver nanoplates andtheir application in SERS. Small,2007,3(11):1964–1975
    [389] Costi R, Saunders A E, Banin U. Colloidal hybrid nanostructures: a new typeof functional materials. Angewandte Chemie International Edition,2010,49(29):4878–4897
    [390] Smith G E, Baraff G A, Rowell J M. Effective g factor of electrons and holesin bismuth. Physical Review Letters,1964,135(4A): A1118–A1124
    [391] Murakami S. Quantum spin hall effect and enhanced magnetic response byspin-orbit coupling. Physical Review Letters,2006,97(23):236805–4
    [392] Lu M, Zieve R J, van Hulst A, et al. Low-temperature electrical-transportproperties of single-crystal bismuth films under pressure. Physical Review B,1996,53(3):1609–1615
    [393] Zhen L, Oezguel K, Nan F, et al. Controlled synthesis of CdSe nanowires bysolution-liquid-solid method. Advanced Functional Materials,2009,19(22):3650–3661
    [394] Lu X M, Fanfair D D, Johnston K P, et al. High yield solution-liquid-solidsynthesis of germanium nanowires. Journal of American Chemical Society,2005,127(45):15718–15719
    [395] Dong A G, Tang R, Buhro W E. Solution-based growth and structuralcharacterization of homo-and heterobranched semiconductor nanowires.Journal of American Chemical Society,2007,129(40):12254–12262
    [396] Chockla A M, Harris J T, Korgel B A. Colloidal synthesis of germaniumnanorods. Chemistry of Materials,2011,23(7):1964–1970
    [397] Li L S, Sun N J, Huang Y Y, et al. Topotactic transformation ofsingle–crystalline precursor discs into disc-like Bi2S3nanorod networks.Advanced Functional Materials,2008,18(8):1194–1201
    [398] Cademartiri L, Malakooti R, O’Brien P G, et al. Large-scale synthesis ofultrathin Bi2S3necklace nanowires. Angewandte Chemie,2008,120(20):3874–3877
    [399] Zhang J J, Zhang W X, Yang Z H. A chemical lithography route to Bi2S3nanotubes. Applied Surfaces Science,2011,257(14):6239–6242
    [400] Yu H, Gibbonsb P C, Buhro W E. Bismuth, tellurium, and bismuth telluridenanowires. Journal of Materials Chemistry,2004,14(4):595–602
    [401] Liang Y J, Wang W Z, Zeng B Q, et al. Influence of NaOH on the formationand morphology of Bi2Te3nanostructures in a solvothermal process: fromhexagonal nanoplates to nanorings, Materials Chemistry and Physics,2011,129(1–2):90–98
    [402] Sun Z L, Liufu S C, Chen X H, et al. Tellurization: an alternative strategy toconstruct thermoelectric Bi2Te3films, Journal of Physical Chemistry C,2011,115(32):16167–16171
    [403] Schmidt O G, Eberl K. Nanotechnology: thin solid films roll up into nanotubes.Nature,2001,410(6825):168
    [404] Li X L, Li Y D. Formation of MoS2inorganic fullerenes (IFs) by the reactionof MoO3nanobelts and S, Chemistry-A European Journal,2003,9(12):2726–2731
    [405] Davies C K L, Nash P, Steven R N. The effect of volume fraction ofprecipitate on Ostwald ripening. Acta Metallurgica,1980,28(2):179–189
    [406] Marder M. Correlations and Ostwald ripening. Physical Review A,1987,36(2):858–874
    [407] Enomoto Y, Tokuyama M, Kawasaki K. Finite volume fraction effects onostwald ripening. Acta Metallurgica,1986,34(11):2119–2128
    [408] Liu B, Zeng H C. Symmetric and asymmetric Ostwald ripening in thefabrication of homogeneous core-shell semiconductors. Small,2005,1(5):566–571
    [409] Van der Zande B M I, B hmer M R, Fokkink L G J, et al. Colloidal dispersionsof gold rods: synthesis and optical properties. Langmuir,2000,16(2):451–458
    [410] Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of high aspectratio cylindrical gold nanorods. Journal of Physical Chemistry B,2001,105(19):4065–4067
    [411] Seney C S, Gutzman B M, Goddard R H. Correlation of size and surface-enhanced raman scattering activity of optical and spectroscopic properties for silver nanoparticles. Journal of Physical Chemistry C,2009,113(1):74–80
    [412] Long J, Chamoreau L M, Mathoniere C, et al. Photoswitchable heterotrimetallic chain based on octacyanomolybdate copper, and nickel: synthesis, characterization, and photomagnetic properties. Inorganic Chemistry,2009,48(1):22–24
    [413] Kumar B, Raj C R. Seedless, surfactantless room temperature synthesis ofsingle crystalline fluorescent gold nanoflowers with pronounced SERS andelectrocatalytic activity. Chemistry of Materials,2008,20(11):3546–3548
    [414] Bi Y P, Lu G X. Facile synthesis of platinum nanofiber/nanotube junctionstructures at room temperature. Chemistry of Materials,2008,20(4):1224–1226
    [415] Han Y C, Cha H G, Kim C W, et al. Synthesis of highly magnetized ironnanoparticels by a solventless thermal decomposition method. Journal ofPhysical Chemistry C,2007,111(17):6275–6280
    [416] Dumestre F, Chaudret B, Amiens C, et al. Superlattices of iron nanocubessynthesized from Fe[N(SiMe3)2]2. Science,2004,303(5659):821-823
    [417] Jakab A, Rosman C, Khalavka Y, et al. Highly sensitive plasmonic silvernanorods. ACS Nano,2011,5(9):6880–6885
    [418] Chen H M, Liu R S, Tsai D P. A versatile route to the controlled synthesis ofgold nanostructures. Crystal Growth&Design,2009,9(5):2079–2087
    [419] Wu C W, Mosher B P, Zeng T F. Rapid synthesis of gold and platinumnanoparticles using metal displacement reduction with sonomechanicalassistance. Chemistry of Materials,2006,18(13):2925–2928
    [420] Zhang W J, Chen P, Gao Q S, et al. High-concentration preparation of silvernanowires: restraining in situ nitric acidic etching by steel-assisted polyolmethod. Chemistry of Materials,2008,20(5):1699–1704
    [421] Zhou Z H, Liu G J, Han D H. Coating and structural locking of dipolar chainsof cobalt nanoparticles. ACS Nano,2009,3(1):165–172
    [422] O’Shea V P, Piscina P R, Homs N, et al. Development of hexagonalclosed-packed cobalt nanoparticles stable at high temperature. Chemistry ofMaterials,2009,21(23):5637–5643
    [423] Zhou Y, Yu S H, Wang C Y, et al. A novel ultraviolet irradiationphoto-reduction technique for preparation of single crystal Ag nanorods andAg dendrites. Advanced Materials,1999,11(10):850–852
    [424] Liaffa D, Dragos T. Electrochemical preparation of standard-quality copperpowders. Revista de Chimie,2000,51(8):600–606
    [425] Li Z H, Liu Z M, Zhang J L, et al. Synthesis of single-crystal gold nanosheetsof large size in ionic liquids. Journal of Physical Chemistry B,2005,109(30):14445–14448
    [426] Liang H Y, Yang H X, Wang W Z, et al. High-yield uniform synthesis andmicrostructure-determination of rice-shaped silver nanocrystals. Journal ofAmerican Chemical Society,2009,131(17):6068–6069
    [427] Xie Q, Qain Y T, Zhang S Y, et al. A hydrothermal reduction route tosingle-crystalline hexagonal cobalt nanowires. European Journal of InorganicChemistry,2006,2006(12):2454–2459
    [428] Hou Y, Kondoh H, Ohta T. Self-assembly of Co nanoplates into spheres:synthesis and characterization. Chemistry of Materials,2005,17(15):3994–3996
    [429] Liu Z P, Li S, Yang Y, et al. Complex-surfactant-assisted hydrothermal routeto ferromagnetic nickel nanobelts. Advanced Materials,2003,15(22):1946–1948
    [430] Wang Z L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. Journal of Physical Chemistry B,2000,104(6):1153–1175
    [431] Harfenist S A, Wang Z L, Alvarez M M, et al. Highly oriented molecular Ag nanocrystal arrays. Journal of Physical Chemistry,1996,100(33):13904–13910
    [432] Wang H W, Shieh C F, Chen H Y, et al. Standing [111] gold nanotube tonanorod arrays via template growth. Nanotechnology,2006,17(10):2689–2694
    [433] Ota J, Srivastava S K. Tartaric acid assisted growth of Sb2S3nanorods by asimple wet chemical method. Crystal Growth&Design,2007,7(2):343–347
    [434] Wang X, Zhang Y G, Wu Z B. Magnetic and optical properties of multiferroicbismuth ferrite nanoparticles by tartaric acid-assisted sol-gel strategy.Materials Letters,64(2010)486–488
    [435] Luo M, Liu Y, Hu J C, et al. One-pot synthesis of CdS and Ni-doped CdShollow spheres with enhanced photocatalytic activity and durability. ACSApplied Materials Interfaces,2012,4(3):1813–1821
    [436] Chen L L, Zhang W X, Feng C, et al. Replacement/etching route to ZnSenanotube arrays and their enhanced photocatalytic activities. Industrial&engineering chemistry research,2012,51(11):42084214
    [437] Waller M R, Townsend T K, Zhao J, et al. Single-crystal tungsten oxidenanosheets: photochemical water oxidation in the quantum confinementregime. Chemistry of Materials,2012,24(4):698704
    [438] Gutmann E, Benke A, Gerth K, et al. Pyroelectrocatalytic disinfection usingthe pyroelectric effect of nano-and microcrystalline LiNbO3and LiTaO3particles. Journal of Physical Chemistry C,2012,116(9):53835393
    [439] Wang D E, Li R G, Zhu J, et al. Photocatalytic water oxidation on BiVO4withthe electrocatalyst as an oxidation cocatalyst: essential relations betweenelectrocatalyst and photocatalyst. Journal of Physical Chemistry C,2012,116(8):5082–5089
    [440] Zhang K, Liang J, Wang S, et al. BiOCl sub-microcrystals induced by citricacid and their high photocatalytic activities. Crystal Growth&Design,2012,12(2):793803
    [441] Barpuzary D, Khan Z, Vinothkumar N, et al. Hierarchically grown urchinlikeCdS@ZnO and CdS@Al2O3heteroarrays for efficient visible-light-drivenphotocatalytic hydrogen generation. Journal of Physical Chemistry C,2012,116(1):150–156
    [442]吴合进. TiO<,2>光催化剂固定及电场协助光催化:[中国科学院学士学位论文].大连:中国科学院大连化学物理研究所,2000
    [443] Watanabe T, Takizawa T, Honda K. Photocatalysis through excitation ofadsorbates.1. highly efficient N-deethylation of rhodamine B adsorbed tocadmium sulfide. Journal of Physical Chemistry,1977,81(19):1845–1851
    [444] Takizawa T, Watanabe T, Honda K. Photocatalysis through excitationofadsorbates.2. a comparative study of Rhodamine B and methylene blue oncadmium sulfide, Journal of Physical Chemistry,1978,82(12):1391–1396
    [445] Ma H Z, Zhuo Q F, Wang B. Electro-catalytic degradation of methylene bluewastewater assisted by Fe2O3-modified kaolin. Chemical Engineering Journal,2009,155(1–2):248–253
    [446] Rauf M A, Meetani M A, Khaleel A, et al. Photocatalytic degradation ofmethylene blue using a mixed catalyst and product analysis by LC/MS.Chemical Engineering Journal,2010,157(2-3):373–378
    [447] Kong J Z, Li A D, Zhai H F, et al. Preparation, characterization of theTa-doped ZnO nanoparticles and their photocatalytic activity undervisible-light illumination. Journal of Solid State Chemistry,2009,182(8):2061–2067
    [448] Cui H J, Huang H Z, Fu M L, et al. Facile synthesis and catalytic properties ofsingle crystalline β-MnO2nanorods. Catalysis Communications,2011,12(14):1339–1343
    [449] Hamnett A. Mechanism and electrocatalysis in the direct methanol fuel cell.Catalysis Today,1997,38(4):445–457
    [450] Rothenberger G, Moser J, Grstzel M, et al. Charge carrier trapping andrecombination dynamics in small semiconductor particles. Journal ofAmerican Chemical Society,1985,107(26):8054–8059

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700