用户名: 密码: 验证码:
随机等效介质探地雷达探测技术和参数反演
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
探地雷达(GPR)作为一种重要的地球物理探测方法,广泛应用于工程地球物理、水文地质探测、冰川探测、极地考察、月球探测等工程与科学研究领域。它以介质的电性参数(主要包括介电常数、电导率和磁导率)差异为基础实现对目标界面和目标体形态、位置等表面特征探测。随着探地雷达以及其它地球物理勘探方法研究的不断深入,探测目标不仅需要获得介质的形态信息,还需要获得介质的内在组分、参数分布以及地质属性参数如含水量、孔隙度,渗透率等本征属性信息。在传统的理论研究中多以均匀介质电性参数为主,但在实际探测中,探测目标以及背景介质往往是随机非均匀分布的,建立描述复杂介质目标属性参数分布的随机介质模型,既能反映介质的微观变化,同时又能体现出宏观性质。在此基础上,将探测目标的物性参数与地质参数联系在一起,开展随机介质探地雷达探测技术和参数反演研究是实现探地雷达属性探测的关键问题。
     本文首先建立了基于混合型自相关函数并加入椭圆方程随机干扰的三维多尺度随机介质模型和基于Hanai–Bruggeman和Maxwell–Garnett耦合方程的多参数耦合随机介质模型;根据孔隙度数据推导得到对应耦关系的介电常数和电导率耦合介质模型。两种随机介质模型分别从介质的多尺度非均匀性和多参数耦合性刻画了实际探测目标介质的分布特征。
     在此基础上,推导并实现了适合于随机介质模型探地雷达数值模拟计算的高精度有限差分方法。根据随机介质参数的非均匀性和多尺度性,本文提出了以下两种差分计算方法:1)递归积分的复频移完美匹配层吸收边界条件(CFS-RIPML)的三维高阶有限差分方法。该方法对隐失波、晚时反射以及低频波等常规PML, UPML边界无法吸收电磁波有很好的吸收效果。递归积分技术无需场分裂,能有效改善复频移技术中间变量多、内存占用大等问题,提高了计算效率。采用高阶有限差分方法相比常规二阶中心差分有更高的计算精度;2)基于变换光学(Transform Optics)的非均匀网格有限差分方法。该方法的主要思想是基于物质结构参数变化而导致电磁场的传播不变性,在连续与平滑的任意坐标变换之下,Maxwell方程式的形式可以维持不变,而让介电常数与磁导率的表达式变得很复杂。通过这种方式可以虚拟地扩大目标体所占的网格节点数目,并且不增加模型空间的网格数量。这样的网格划分方式可以提高目标的模拟计算精度,同时也保证了计算效率。本文还对比了该方法与常规有限差分,粗细网格交错的亚网格有限差分,渐变非均匀网格有限差分各自的计算效果和适用条件。
     除了常规主动源探地雷达探测模式,本文将被动源干涉技术应用到探地雷达探测。该方法的主要思想是利用地下以及空气中的随机电磁噪声源信号进行长时间的记录,然后将得到的数据通过互相关(Cross-correlation)或多维反褶积(Multideconvolution)等方法分离提取目标信号。通过开展地下随机介质目标被动源探地雷达干涉数值模拟计算,实现了被动源目标成像和监测,取得了较好的应用效果。
     地球物理反演方法获得的结果只是反映目标属性的间接参数,如介电常数,电导率,波速等。在数据综合解释时,需要参考更多的水文地质资料,地球物理探测技术一直扮演着一种技术手段的角色。如何从探测结果获得更多反映介质本身属性的地质参数是地球物理探测方法研究的关键科学问题。为获得复杂随机介质准确的物性参数,本文开展了有限带宽阻抗反演和蒙特卡洛随机参数反演方法并分别应用于地面探地雷达和井中雷达随机介质模型和实测数据参数反演。对于随机介质,常规反演方法如最小二乘方法存在圆滑程度较高,分辨率低,无法分辨局部细节信息。相对而言,随机反演方法具有更高的目标分辨率,对随机介质目标的细节信息反映更为清晰,反演精度较高,反演误差小。根据耦合方程可以获得高精度的孔隙度,含水量等反映目标本征属性的地质参数。
     综上所述,本文在建立随机等效介质模型的基础上,开展高精度有限差分的探地雷达主动源和被动源探测的数值模拟计算,实现了随机介质探地雷达探测和参数反演。随机等效介质模型可以精确描述复杂目标属性,建立目标物性参数与水文地质参数耦合关系。采用CFS-RIPML吸收边界的三维高阶有限差分和变换光学的非均匀有限差分,为随机介质模型计算提供了高精度和高效率数值计算方法。被动源干涉探地雷达探测模式,丰富拓展了探地雷达探测方法技术。随机反演和阻抗反演方法为随机介质目标成像以及参数估计提供了高精度的方法技术。本文从随机介质模型,数值模拟计算,探测模式以及目标参数反演四个方面建立了完整的随机等效介质探地雷达探测研究方法技术。不仅能准确获取目标体的电性参数,还能反演目标的本征地质参数和分布规律,为实现从常规目标形态位置探测到复杂目标介质内在属性探测转变提供了完整的科学技术手段。本文的研究成果在其它科学领域,例如浅地表目标属性分析,深部矿产资源,地热源开发以及极地冰川探测,月球探测等方面都提供了重要的技术手段,具有重要的科学研究价值。
Ground penetrating radar (GPR), as an important geophysical explorationmethod, has been widely applied in the near-surface geophysics, hydrology, glaciers,polar exploration and the lunar probe. It is based on the difference of mediumelectrical parameters which includes dielectric constant and conductivity to detect thetarget’s shape, postion, distribution and other characteristic information. As thedevelopment of GPR and other geophysical method, more and more people focus ondetecting target medium composition, distribution characteristics and geologicalproperties parameters such as water content, porosity, permeability, etc. Thetraditional medium electrical parameters of the model are too simple to express therelationship between the electrical parameters and geological parameters. Building thestochastic media model which expresses the complex dielectric constant of complexmedia accurately can not only reflect the micro medium change but also can reflectthe nature of the macro, and is closely linked to the geological property. On this basis,study of GPR detection and parameter inversion based on the stochastic effectivemedia is the key research work to improving the interpretation precision of GPRmethod and expanding its application.
     In this paper, firstly, we use the hybrid autocorrelation function to join the localrandom ellipse interference and Bruggeman-Hanai and Garnett-Maxwell equations tobuild the multiscale3D stochastic media and multiple parameter stochastic couplingmedia model, respectively. We can obtain the dielectric constant and conductivitymedia model according to the coupling relationship between dielectric constant,conductivity parameters and the hydrogeological parameters, such as moisture contentand porosity. We study the distribution features and describe the complex randomproperty of the random media from the perspective of multi-scale heterogeneity andmultiple parameters coupling relationship.
     Based on this, we have carried out stochastic media model numerical simulationwith high-accuracy finite difference time domain (FDTD) method. Two types ofFDTD methods are introduced.1) The first one is the3D high order FDTD withCFS-RIPML boundary. Compared with perfectly matched layer (PML) and UPMLboundary, the CFS-RIPML boundary can absorb the evanescent wave, night timereflection and low frequency wave effectively. Besides, the recursive integral (RI)technology does not need spilt electromagnetic component, and thus can effectivelyreduce the complex frequency shift (CFS) technology intermediate variable, save memory and improve the computational efficiency. In addition, the high order finitedifference (FD) grid has higher accuracy than the traditional two order FD.2) Thesecond method is the Transform Optics FDTD (TO-FDTD) method. The main idea ofthis method is to use the coordinate to transform the thoughts, and change theelectromagnetic field under rectangular coordinate system by grid distribution to anon-orthogonal grid pattern. In this way we can expand virtual target grid nodenumber of the body, and do not need to increase the number of grid of whole modeldomain. It can improve the simulation accuracy of the goal and ensure the calculationefficiency without increasing the overall number of grid. It can decrease the grid scaleand minimize numerical calculation error. At the same time, we also compared thismethod with the standard FDTD, non-uniform FDTD, adaptive mesh refinement(AMR) FDTD with different test model.
     The traditional GPR uses active source detection mode. Here, we apply thepassive interferometry source technology into GPR detection. The main idea of thismethod is to use the noise source in the air or subsurface for long-time signalacquisition, and then extract the observation data by cross-correlation (CC) ormultidimensional deconvolution (MDD) methods. In this paper, we mainly carry outpassive interferometry source GPR numerical simulation. It can obtain high resolutionimaging result in multi-scale random media model with the passive interferometryGPR method.
     The geophysics invesion can obtain only the target’s indirect parameters, such asthe dielectric constant and conductivity. During data interpretation, we pay moreattention to the hydrology and geology parameter. The geophysics method is only as atool to service the other work. How to evaluate and assess object's intrinsic physicalparameters is the purpose of geophysics inversion research work. In order to providesteady effective inversion parameters of underground random media, we presented theband-limited impedance inversion and stochastic inversion based on Monte Carlosampling algorithm and applied them in surface GPR and bore-hole radar parameterinversion with synthetic data and real measured data. For stochastic media, theconventional LSQR inversion method has high smooth degree, low resolution and it isunable to distinguish local details of target. The stochastic inversion method hashigher resolution and reflects the detailed information and the inversion error is alsolow. This method is more suitable for random media so as to improve the inversionaccuracy. We can also obtain the high accuracy prosity, water content and otherhydrology and geology parameters according to the Geophysics-hydrogeololgycoupling equations.
     In conclusion, in this paper, we have built the3D multi-scale random mediamodel and multi-parameter coupling stochastic media model according to the hybridautocorrelation function and Geophysics-hydrogeololgy coupling equations. Then,combining with the high accuracy numerical method, we carry out the active and passive GPR detection modes with different stochastic media models to analyze thedetection feasibility of GPR in complex random media. On this basis, we carry out therandom media inversion and parameter estimation with stochastic inversion method.This article mianly consists of four parts: build stochastic medium model, derive highaccuracy numerical simulation algorithm, study passive interferometry detectionmode and carry out stochastic paprameter inversion methods. The stochastic mediamodel can accurately describe the complex target attributes and establish the couplingrelationship between the target geophysical parameters and the hydrogeologicalparameters. High-accuracy FDTD method has provided accuracy and stablecalculation method for the stochastic media model simulation. Stochastic inversionand impedance inversion method has provided a great technical support for therandom media model parameter estimation and imaging. Through inversion method,we not only obtain the electrical parameters of the geologic body but also reflect theintrinsic geological parameters and distribution. The research results will be able topromote the development of GPR method, improve the detection and interpretationaccuracy of GPR, as well as other geophysical methods. Our research results providescientific methods for other research area, such as target property detection in nearsurface, the deep mine and geothermal exploration, plar region detection and lunarprobe.
引文
[1]曾昭发,刘四新,王者江,等.探地雷达方法原理与应用[M].北京:科学出版社,2006:50-95.
    [2] Sbarta Z M, Laurens S, Viriyametanont K, et al. Non-destructive evaluation of concretephysical condition using radar and artificial neural networks [J]. Construction and BuildingMaterials,2009,23(02):837-845.
    [3]吴丰收.混凝土探测中探地雷达方法技术应用研究[D].吉林大学博士学位论文,2009.
    [4] Turesson A. Water content and porosity estimated from ground-penetrating radar and resistivity[J]. Journal of Applied Geophysics,2006,58(02):99-111.
    [5] Daniels D J, Ground Penetrating Radar [M]. London, Institution of Electrical Engineers,2004.
    [6] Lagarkov A N, Sarychev A K. Electromagnetic properties of composites containing elongatedconducting inclusions [J]. Phys. Review B.,1996,53(09):6318-6336.
    [7] David C, Gueguen Y, Pampoukis G. Effective medium theoryand network theory applied to thetransport properties of rock [J]. Journal of Geophysical Research,1990,95(5):6993-7005.
    [8] Zhu P A., Fung K, Wong. Effective propagation constants in dense random media under effectivemedium approximation [J]. Radio Sci.,1987,22(2):234-255.
    [9] Michael Zhdanov. Generalized effective-medium theory of induced polarization [J]. Geophysics,2008,73(05):197-211.
    [10] Brovelli A, Cassiani G. Effective permittivity of porous media: a critical analysis of thecomplex refractive index model [J]. Geophysical Prospecting,2008,56(5):715-727.
    [11] Binley A, Slater L, Fukes M, et al. The relationship between spectral induced polarization andhydraulic properties of saturate and unsaturates sandstone [J]. Water resources research,2005,41,W12417.
    [12] http://www~esd.lbl.gov/iTOUGH2/.
    [13] Hou Z, Rubin Y, Hoversten G, et al. Reservoir-parameter identification using minimum relativeentropy-based Bayesian inversion of seismic AVA and Marine CSEM data [J]. Geophysics,2006,71(6):71-88.
    [14] Hou Z. Hydraulic conductivity estimation using tomographic Ground Penetrating Radar datawithin a sampling-based Bayesian inversion approach [C]. SAGEEP,2008,21:477-489.
    [15] Zhdanov M S, Lee S K, Ken Yoshioka. Integral equation method for3-D modeling ofelectromagnetic fields in complex structures with inhomogeneous background conductivity [J].Geophysics,2006,71(06):333-345.
    [16] Zhdanov M S. Generalized effective medium theory of the complex resistivity of multi-phaseheterogeneous rocks [J]. Proc. Ann. Mtg. Consortium for Electromagnetic Modeling andInversion.2006,1-24.
    [17]康健.随机介质固热耦合数学模型与岩石热破裂数值试验[D].辽宁工程技术大学,博士学位论文,2004.
    [18]马红孺.二元复合介质有效介电常数的谱表示和计算[J].液态物理进展,2001,180-204.
    [19]李向亭.复合介质的宏观性质—基于Bergman谱理论的计算[M].上海交通大学出版社,2010.
    [20]金亚秋,刘鹏,叶红霞.随机粗糙面与目标复合散射数值模拟理论与方法[M].北京:科学出版社,2008.
    [21]丁锐,金亚秋,小仓久直.二维随机介质中柱面波传播及其局域性的随机泛函分析[J].物理学报,2010,6:3674-3685.
    [22]曾昭发,刘四新,王者江,等.探地雷达原理与应用[M].电子工业出版社,2010.
    [23]李想堂,五端宜,张肖宁.探地雷达技术的回顾与展望[J].无损检测,28(9):479-484.
    [24] Deutsch C V, Wang Li King. Hierarchical object based stochastic modeling of fluvial reservoir[J]. Mathematical Geology,1996,28(7):857-880.
    [25] Varadan V. Scattering and attenuation of elastic waves in random media [J]. Pageoph,1989,131(4):577-603.
    [26] Korn M. Seismic wave in random media [J]. Journal of Applied Geophysics,1993,29:247-269.
    [27] IkelIe L T, Yung S K, Daube F.2D random media with ellipsoidal autocorrelation functions [J].Geophysics,1993,58(9),1359-1372.
    [28]奚先,姚姚.随机介质模型的模拟与混合型随机介质[J].地球科学—中国地质大学学报,2002,27(1):67-71.
    [29]姚姚,奚先.区域多尺度随机介质模型及其波场分析[J].石油物探,2004,43(1):1-7.
    [30]奚先,姚姚.二维横向各向同性弹性随机介质中的波场特征[J].地球物理学进展,2004,19(4):924-932.
    [31]朱生旺,魏修成,曲寿利,等.用随机介质模型方法描述孔洞型油气储层[J].地质学报,2008,82(3):420-427.
    [32]陈可洋.三维随机建模方法及其波场模拟分析[J].勘探地球物理进展,2009,32(5):315-320.
    [33]王金山,陈可洋,吴清岭,等.随机介质模型的一种构造方法[J].物探与化探,2010,34(2):191-194.
    [34]殷学鑫,刘洋.二维随机介质模型正演模拟及其波场分析[J].石油地球物理勘探,2011,46(6):862-872.
    [35]马灵伟,顾汉明,赵迎月,等.应用随机介质正演模拟刻画深水区台缘礁碳酸盐岩储层[J].石油地球物理勘探,2013,48(4):583-590.
    [36]宋桂桥,马灵伟,李宗杰.基于随机介质正演模拟的塔中顺南地区风化壳储层地震响应特征分析[J].石油物探,2013,52(3):307-312.
    [37] Jiang Z M, Zeng Z F, Li J, et al. Simulation and analysis of GPR signal based on stochasticmedia model with an ellipsoidal autocorrelation function [J]. Journal of Applied Geophysics,2013,99:91-97.
    [38]戴前伟,王洪华.基于随机介质模型的GPR无单元法正演模拟[J].中国有色金属学报,2013,23(9):2436-2443.
    [39] Grote K, Hubbard S S, Rubin Y. Field-scale estimation of volumetric water content using GPRground wave techniques [J]. Water Resource Research,2003,39(11): DOI:10.1029/20036wr002045.
    [40] Gloaguen E, Michel C, Denis M, et al. Estimation of hydraulic conductivity of an unconfinedaquifer using cokriging of GPR and hydrostratigraphic data [J]. Journal of applied Geophysics,2001,47:135-152.
    [41] Ulaby, Dubois P C, Van Z J. Radar mapping of surface soil moisture [J]. J Hydrol,1996,184:57-84.
    [42] www.see.ed.ac.uk/~agianno/GprMax/.
    [43]李静,曾昭发,黄玲,等.三维探地雷达数值模拟中UPML边界研究[J].物化探计算技术,2010,32(1):6-12.
    [44]李静,曾昭发,吴丰收,等.探地雷达三维高阶时域有限差分法模拟[J].地球物理学报.2010,53(4):974-981.
    [45]冯德山,陈承申,戴前伟.基于UPML边界条件的交替方向隐式有限差分法GPR全波场数值模拟[J].地球物理学报,2010,53(10):2484-2496.
    [46] Feng D S, Chen C S, Dai Q W. GPR numerical simulation of full wave field based on PUMLboundary condition of ADI-FDTD [J]. Chinese J. Geophysics,2010,53(10):2484-2496
    [47]毛立峰.超宽带电磁法正演模拟及反演成像[D].成都理工大学博士论文,2008.
    [48] Di Q Y, Zhang M G, Wang M Y. Time-domain inversion of GPR data containing attenuationresulting from conductive losses [J]. Geophysics,2006,71(5):103-109.
    [49] Jose M Carcione. Radiation patterns for2-D GPR forward modeling [J]. Geophysics,1998,63(2):424-430.
    [50] Lan Kang, Liu Yaowu, Lin Weigan. A Higher order (2,4) scheme for reducing dispersion inFDTD algorithm [J]. IEEE. Trans on EMC,1999,41:160-165.
    [51] Fang J. Time domain finite difference computation for Maxwell’s equations [J]. PhD. thesis,University of California at Berkeley. CA,1989
    [52] Moczo P. Finite difference technique for SH wave in2D media, using irregular grids: applicationto the seismic response problem [J]. Geophys. J. Int,1989,99:321-329.
    [53]朱生旺,曲寿利,魏修成,等.变网格有限差分弹性波动方程数值模拟方法[J].石油地球物理勘探,2007,42(6):634-639.
    [54]赵海波,王秀明.一种优化的交错变网格有限差分法及其在井间声波中的应用[J].科学通报,2007,52(12):1387-1395.
    [55]黄超,董良国.可变网格与局部时间步长的高阶差分地震波数值模拟[J].地球物理学报,2009,5291):176-186.
    [56]孙林洁,印兴耀.基于PML边界条件的高倍可变网格有限差分数值模拟方法[J].地球物理学报,2011,54(6):1614-1623.
    [57]孟凡顺,李洋森,王璐,等.基于可变交错网格的地震波数值模拟[J].地球物理学进展,2013,28(6):2936-2943.
    [58] Diamanti N, Giannopoulos A. Implementation of ADI-FDTD subgrids in ground penetratingradar FDTD models [J]. Journal of Applied Geophysics,2009,67:309-317.
    [59] Chew W C, Weedon W H. A3D perfectly matched medium from modified Maxwell’s equationswith stretched coordinates[J]. Microwave and Optical Technology Letters,1994,7(13):599-604.
    [60] Roden J, Gedney S D. Convolution PML (CPML): an efficient FDTD implementation of theCFS-PML for arbitrary media [J]. Microw. Opt. Technol. Lett,2000,27:334-339.
    [61] Kuzuoglu M, Mittra R. Frequency dependence of the constitutive parameters of causal perfectlymatched anisotropic absorbers [J]. IEEE Microwave and Guided Wave Letters,1996,6(12):447-449.
    [62] Wang L N, Liang C H. A new implementation of CFS-PML for ADI-FDTD method [J].Microwave and optical technology letters,2006,48(10):1924-1928.
    [63] Drossaert F H,Giannopoulos A. A nonsplit complex frequency-shifted PML based on recursiveintegration for FDTD modeling of elastic waves [J]. Geophysics,2007,72(2):9-17.
    [64] Dimitri Komatitsch,Roland Martin. An unsplit convolutional perfectly matched layer improvedat grazing incidence for the seismic wave equation [J]. Geophysics,2007,72(5):255-167.
    [65] Zhang W, Shen Y. Unsplit complex frequency-shifted PML implementation using auxiliarydifferential equations for seismic wave modeling [J]. Geophysics,2010,75(4):141-154
    [66]张显文,韩立国,黄玲,等.基于递归积分的复频移犘犕犔弹性波方程交错网格高阶差分法[J].地球物理学报,2009,52(7):1800-1807.
    [67]张鲁新,符力耘,裴正林.不分裂卷积完全匹配层与旋转交错网格有限差分在孔隙弹性介质模拟中的应用[J].地球物理学报,2010,53(10):2470-2483.
    [68] Giannopoulos A. An Improved New Implementation of Complex Frequency Shifted PML for theFDTD Method [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,2008,56(9):2995-3000.
    [69] Gedney S D, Zhao B. An auxiliary differential equation formulation for the complex-frequencyshifted PML [J]. IEEE Transactions on Antennas and Propagation,2010,58(3):838-847.
    [70] Claerbert. J.F. Synthesis of a layered medium from its acoustic transmission response [J].Geophysics,1968,(33):264-269.
    [71] Baskir C, C Wells. Source less reflection seismic exploration [J].Geophysics,1975,40,158.
    [72] Zhang L. Reflectivity estimation from passive seismic data[R]. Stanford Exploration-ProjectAnnual Report,1989,60:85-96.
    [73] Rickett, J. Claerbert, J. Passive seismic imaging applied to synthetic data[R]. StanfordExploration Project,1996,92:83-90.
    [74] Schuster G, Rickett J. Daylight imaging in Vmedia, Utah Tomography and Modeling-Migration
    [R]. Project Midyear Report and Stanford Exploration Project Midyear Reports,2000,55-66.
    [75] Sheng J. Migrating multiples and primaries in CDP data by cross-correlation migration [C].71stAnn. Internat. Mtg., SEG Expanded Abstracts,2001,297-300.
    [76] Snieder R, Gret A, Douma H, et al. Coda wave interferometry for estimating nonlinear behaviorin seismic velocity [J]. Science,2002,295:2253-2255.
    [77] Wapenaar K, Draganov D, Thorbecke J, et al. Theory of acoustic daylight imaging revisited [C].72nd Ann. Internat. Mtg., SEG Expanded Abstracts,2002,2269-2272.
    [78] Wapenaar K, van der Neut, Ruigrok E. Passive seismic interferometry by multidimensionaldeconvolution [J]. Geophysics,2008,73: A51-A56.
    [79] Wapenaar K, Slob E, Snieder R. Seismic and electromagnetic controlled-source interferometryin dissipative media [J]. Geophysical Prospecting,2008,56:419-434.
    [80] Snieder R, Hubbard S, Haney M, et al. Advanced noninvasive geophysical monitoringtechniques: Annu [J]. Rev.Earth Planet. Sci.2007,35:653-683.
    [81] http://www.findaphd.com/search/ProjectDetails.aspx?PJID=40476.
    [82] Schuster G T. Sesmic interferomery [M]. Cambridge Press,2010.
    [83]汪承灏,魏炜.改进的时间反转法用于有界面时超生目标探测的鉴别[J].声学学报.2002,27(3):193-197.
    [84]齐诚,陈棋福,陈颙.利用背景噪声进行地震成像的新方法[J].地球物理学进展,2007,22(3):771-777.
    [85]陶毅,符力耘,孙伟家,等.地震波干涉法研究进展综述[J].地球物理学进展,2010,25(5):1775-1784.
    [86]朱恒.地震干涉技术被动源成像技术研究[D].吉林大学硕士学位论文,2012.
    [87]王德利,程浩,朱恒,等.基于反褶积算法的地震干涉技术被动源成像[J].吉林大学学报(地球科学版),2012,42(6):1920-1926.
    [88] Deyan Draganov. Seismic and Electromagnetic Interferometry Retrieval of the Earth’sReflection Response Using Crosscorrelation [D]. The PhD thesis, Technische University Delft,2007.
    [89] Slob E. Interferometry by deconvolution of multi-component multioffset GPR data [J]. IEEETrans. Geosci. Remote Sens.,2009,47:828-838.
    [90] Slob E, Draganov D, Wapenaar K. Interferometric electromagnetic Green’s functionsrepresentations using propagation invariants [J]. Geoph. J. Int.,2007,169(1):60-80.
    [91] Slob E, Wapenaar K. Practical representations of electromagnetic interferometry for GPRapplications: A tutorial [J]. Near Surface Geophysics,2008,6:391-402.
    [92]刘澜波,赵建国.用于地下裂隙系统探测的全极化孔中雷达干涉成像技术[J].地质学报(增刊),2013,87.
    [93] Hansen, T B, Johansen P M. Inversion Scheme for Ground Penetrating Radar that Takes intoAccount the Planar air-soil Interface [J]. IEEE Trans. On Geoscience and Remote Sensing,2000,38(1):496-506.
    [94] Meincke P. Linear GPR Inversion for Lossy Soil and a Planar Air-Soil Interface [J]. IEEE Trans.on Geoscience and Remote Sensing,2001,39(12):2702-2712.
    [95] Cui T J, Qin Y, Wang G L. Low-Frequency Detection of Two-Dimensional Buried Objects UsingHigh-Order Extended Born Approximations [J]. Inverse Problems,2004,(20):41-62.
    [96] Romanov V G. An Inverse Problem for Maxwell's equation [J]. Phys. Lett. A.1989,138:459-462.
    [97] Eldad Haber, Stefan Heldmann. An multi-grid method for quasi-static Maxwell’s equations withhighly discontinuous coefficients [J]. Journal of Computational Physics,2007.223(2):783-796.
    [98]王兆磊,周辉,李国发.用地质雷达数据资料反演二维地下介质的方法[J].地球物理学报,2007,50(3):897-904.
    [99] Zhou H, Sato M, Liu H. Migration velocity analysis and prestack migration of commontransmitter GPR data [J]. IEEE Transactions on Geoscience and Remote Sensing,2005,43(1):86-91
    [100]李壮,韩波.求解二维GPR问题的同伦自适应反演算法[J].中国海洋大学学报,2008,38(4):685-688.
    [101] Kao C P, Li J, Wang Y Q, et al. Measurement of layer thickness and permittivity using a newmultilayer model from GPR data [J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45(8):2463-2470.
    [102]张蓓.路面结构层材料介电特性及其厚度反演分析的系统识别方法:路面雷达关键技术研究[D].重庆:重庆大学,博士学位论文,2003.
    [103] Minet J,Patriarca C,Slob E,et al. Characterization of layered media using full-waveforminversion of proximal GPR data [C].2010URSL. International Symposium on ElectromagneticTheory. Berlin: IEEE,2010:1004-1007.
    [104] Minet J,Lambot S, Delaide G, et al. A generalized frequency domain reflectometry modelingtechnique for soil electrical properties determination [J]. Vadose Zone Journal,2010,9(4):1063-1072.
    [105] Patriarca C, Lambot S, Mahmoudzadeh M R, et al. Reconstruction of sub wavelength fracturesand physical properties of masonry media using full-waveform inversion of proximalpenetrating radar [J]. Journal of Applied Geophysics,2011,74(1):26-37.
    [106]俞燕浓,方广有.一种反演地下介质参数的新算法[J].电子与信息学报,2009,31(3):619-622.
    [107]秦瑶,陈洁,方广有,等.基于探地雷达频谱反演法的薄层识别技术研究[J].电子与信息学报,2011,32(11):2760-2763.
    [108]黄忠来,张建中.利用探地雷达频谱反演层状介质几何与电性参数[J].地球物理学报,2013,56(4):1381-1391.
    [109] Giroux B, Gloaguen E, Chouteau M. Bh_tomo-a matlab borehole georadar2d tomographypackage [J]. Computers&geosciences,2007,33(1):126-137.
    [110] Liu S X, Wu J J, Dong H, et al. The experimental results and analysis of a Borehole RadarPrototype [J]. Journal of Geophysics and Engineering,2012,9(2):201-209.
    [111]杨薇.基于弯曲射线的跨孔层析成像算法研究[D].吉林:吉林大学硕士学位论文,2008
    [112]李玉喜.钻孔雷达层析成像软件系统的研究与开发[D].吉林:吉林大学硕士学位论文,2010.
    [113]吴俊军.跨孔雷达全波形层析成像反演方法的研究[D].吉林:吉林大学博士学位论文,2012.
    [114] Cai W Y, Qin F H, Schuster G T. Electromagnetic velocity inversion using2D axwell’s equations[J]. Geophysics,1996,61(4):1007-1021.
    [115] Moghaddam M, Chew W C, Oristaglio M. Comparison of the Born iterative method andTarantola’s method for an Electromagnetic timedomain inverse problem [J]. Int. J. Imaging Syst.Technol.,1991,3(4):318-333.
    [116] Tarantola A. Inversion of seismic-reflection data in the acoustic approximation [J]. Geophysics,1984,49(8):1259-1266.
    [117] Kuroda S, Takeuchi M, Kim H J. Full waveform inversion algorithm for interpretingcross-borehole GPR data [J]. Proc. SEG Int. Expo.75th Annu. Meeting, Houston, TX,2005,1176-1179.
    [118] Meles G, Greenhalgh S, Kruk J, et al. Taming the non-linearity problem in GPR full-waveforminversion for high contrast media [J]. Journal of Applied Geophysics,2011,73(2):174-186.
    [119] Ernst J R, Maurer H, Green A G, et al. Full-waveform inversion of crosshole radar data based on2D Finite-Difference Time-Domain solutions of Maxwell’s equations [J]. IEEE Transactions onGeoscience and Remote Sensing,2007,45(9):2807-2828.
    [120] Meles G A, Kruk J V, Stewart A, et al. A new vector waveform inversion algorithm forsimultaneous updating of conductivity and permittivity parameters from combinationcrosshole/borehole-to-surface GPR data [J]. IEEE Transactions on Geoscience and RemoteSensing,2010,48(9):3391-3407.
    [121] Tarantola A. Inverse problem theory-methods for data fitting and model parameter estimation
    [M]. Elsevier Science Publ. Co., Inc,1987.
    [122] Hansen T M, Journel A G, Tarantola A, et al. Linear inverse Gaussian theory and geostatistics [J].Geophysics,2006,71(6):101–111.
    [123] Hansen T, Cordua K, Looms M, et al. SIPPI: A MATLAB toolbox for sampling the solution toinverse problems with complex prior information: Part1, Methodology [J]. Computers&Geosciences,2013,52:470-480.
    [124] Hansen T, Cordua K, Looms M, et al. SIPPI: A MATLAB toolbox for sampling the solution toinverse problems with complex prior information: Part2, Application to cross hole GPRtomography [J]. Computers&Geosciences,2013,52,481-492.
    [125] Cordua K, Hansen T, Mosegaard K. Monte Carlo full-waveform inversion of crosshole GPRdata using multiple-point geostatistical a priori information [J]. Geophysics,2012,77(2):H19-H31.
    [126] Moffatt D L. A subsurface electromagnetic pulse radar [J]. Geophysics.1976,43(3):506-518.
    [127] Bernhard Lampe, Klaus Holliger. Resistively loaded antennas for ground-Penetrating radar: Amodeling approach [J]. Geophysics.2005,70(3): K23-K32.
    [128] Alex Martinez, Alan P. Byrnes. Modeling dielectric-constant values of Geologic materials: anaid to Ground-Penetrating Radar data collection and interpretation, current research in earthsciences [R]. Bulletin247.2001, part1.
    [129] Harry M. Jol. Ground Penetrating Radar theory and applications [M]. UK Kidlington, OxfordOX5: The Boulevard, Langford Lane.2009.
    [130]朱少辉.探地雷达在高等级公路质量检测中的应用研究[D].长春:吉林大学,硕士学位论文,2006.
    [131] Geophysical Survey Systems, Inc.(GSSI), Home page [EB/OL],(2010-2-24). http://www.geophysical.com/antennas.htm.
    [132]3d-radar Cop[EB/OL].(2010-2-24).20093d-Radar AS, Klabuveien196B,7037Trondheim,Norway, http://www.3d-radar.com/antenna-arrays/antenna-array-overview.
    [133] Cook J C. Radar exploration through rock in advance of mining [J].Trans. Society MiningEngineers AIME,1973,254:140-146.
    [134] Annan A. P. Ground-penetration radar principles, Procedures&applications [M]. Canada:Sensors and Software Inc,2003.
    [135] Li Jing, Zeng Zhaofa, Huang Ling, et al. GPR polarization simulation with3D HO-FDTD [C].PIERS Proceedings, March22-27, Xian, China,2010,999-1003.
    [136] Capizzi P, Cosentino P L. GPR multi-component data analysis [J]. Near Surface Geophysics,2008,87-95.
    [137] Balanis C A. Advanced Engineering Electromagnetics [M]. Wiley, New York,1989.
    [138] Rhoades J D, Raats P A, Prather R J. Effects of liquid-phase electrical conductivity, watercontent, and surface conductivity on bulk soil electrical conductivity [J]. Soil Science Society ofAmerica Journal,1976,40,651-655.
    [139] Topp G C, Davis J, Annan A P. Electromagnetic determination of soil water content:measurements in coaxial transmission lines[J]. Water Resources Research,1980,16(3),574-582.
    [140] Davis J L, Annan A P. Ground penetrating radar for high resolution mapping of soil and rockstratigraphy [J]. Geophysics Prospect,1989,37:531-551.
    [141] Lunt I A. Soil moisture content estimation using ground-penetrating radar reflection data [J].Journal of Hydrology,2005,307:254-269.
    [142] Huisman J A. Measuring soil water content with ground penetrating radar [J]. Vadose ZoneJournal,2003,2:476-491.
    [143] Todd D K. Groundwater hydrogeology [M]. New York: Wiley,1980.
    [144] Peplinski N R, Ulaby F T, Dobson M C. Dielectric properties of soils in the0.3-1.3GHz range[J]. IEEE Trans. Geosci. Remote Sens.,1995,33(3):803-807.
    [145] Bernard Giroux, Michel Chouteau. Quantitative analysis of water-content estimation errors usingground-penetrating radar data and a low-loss approximation [J]. Geophysics,2010,75(4):241-249.
    [146] Bristow K L. Thermal conductivity. In: J.H. Dane and G. C. Topp (eds.), Methods of SoilAnalysis. Part4. Physical Methods [M]. Soil Science Society of America Book Series#5,Madison, Wisconsin.2002. pp.1209-1226.
    [147] Bear J. Dynamics of fluids in porous media [M]. New York: Dover Publications, Inc.1988.
    [148] Van Genuchten. A closed-form equation for predicting the hydraulic conductivity of unsaturatedsoils [M]. Soil Sci Soc Am J,1980,44:892-898.
    [149] Pruess K, Oldenburg C, Moridis G. TOUGH2User’s Guide, Version2.0[R]. ReportLBNL-43134, Lawrence Berkeley National Laboratory, Berkeley, California,1999.
    [150] Chang P Y, Alumbaugh D, Brainard J, et al. Cross-borehole ground-penetrating radar formonitoring and imaging solute transport within the vadose zone [J]. Water Resources Research,2006,42, W10413.
    [151] Furman A, Ferre T P, Warrick A W. Optimization of ERT surveys for monitoring transienthydrological events using perturbation sensitivity and genetic algorithms[J]. Vadose ZoneJournal,2004,(3):1230-1239.
    [152] Le Ravalec M, Noetinger B, Hu L Y. The FFT moving average (FFT-MA) generator: an efficientnumerical method for generating and conditioning Gaussian simulations [J]. MathematicalGeology,2000,32(6):701-723.
    [153] Chile S, Delfiner P. Geostatistics: modeling spatial uncertainty [M]. Wiley, New York,1999, pp:695.
    [154] Revil A. Ionic diffusivity, electrical conductivity, membrane and thermoelectric potentials incolloids and granular porous media: a unified model [J]. Journal of Colloid and Interface Science,1999,212(2):503-522.
    [155] Tabbagh A. Panissod C, Cosenza, P. Numerical modeling of the role of water and clay in soilsand rocks bulk electrical conductivity [J]. Journal of Geophysical Research,2002,107(B11):2318-2326.
    [156] Pride S. Governing equations for the coupled electromagnetics and acoustic of porous media [J].Physical Review B,1994,50(21):15678-15696.
    [157] Carcione J M, Seriani G, Gei D. Acoustic and electromagnetic properties of soils saturated withsalt water and NAPL [J]. Journal of Applied Geophysics,2003,52:177-191.
    [158] Schon J H. Physical properties of rocks: fundamentals and principles of petrophysics [J].Handbook of Geophysical Exploration—Seismic Exploration,2004,18,583.
    [159] Press W H, Teukolsky S A, Vetterling W T, et al. Numerical recipes in C: the art of scientificcomputing, second [M]. Cambridge University Press, Cambridge,1992,994.
    [160] Sihvola A. Mixing rules with complex dielectric coeffcients [J]. Subsurface SengingTechnologies and Application,2000,1(4):393-415.
    [161] Bayer P, Huggenberger P, Rendard P, et al. Three dimensional high resolution fluvioglacicalaquifer analog-Part1: Filed study [J]. Journal of Hydrology,2011,405:1-9.
    [162] Comunian A, Rendard P, Straubhaar J, et al. Three dimensional high resolution fluvioglacicalaquifer analog-Part2: Geostatistical modeling [J]. Journal of Hydrology,2011,405:10-23.
    [163] Marple S L. Digital spectral analysis with applications [M]. New Jersey: Prentice-Hall,1987.
    [164]李建雄.时域有限差分法中完全匹配层的实现算法研究[D].天津大学博士毕业论文,2007.
    [165] Alford R M, Kelly R M, Boore D M. Accuracy of finite difference modeling of the acousticwave equation [J]. Geophysics,1974,39(6):834-842.
    [166] Adonis Ajayi. Nonuiform and asaptive mesh refinement Finite-Difference Time-Domain Methodfor Ground Penetrating Radar simulation [D]. The master thesis of Delaware State University,2012.
    [167] Zakharian A R, Brio M, Dineen C, et al. Second-order accurate FDTD space and time gridrefinement methodin three space dimensions [J]. IEEE Photonics Technol. Lett.,2006,18(11):1237-1239.
    [168] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields [J]. Science, June2006,312(5781):1780-1782.
    [169] H. Chen, C. Chan, P. Sheng, Transformation optics and metamaterials [J]. Nat. Mater.92010,387-396.
    [170] Liu J, Brio M, Moloney J V. An Overlapping Yee FDTD method for Material Interfaces betweenAnisotropic Dielectrics and General Dispersive or PEC Media [J]. International Journal ofNumerical Modelling: Electronic Networks, Devices and Fields,2014,27(1):22-33.
    [171] Liu J, Brio M, Moloney J V. Transformation optics based local mesh refinement for solvingMaxwell's equations [J]. Journal of computational Physics,2014,258:359-370.
    [172] Hill S J, Geophysics bright spots [J]. The Leading Edge,2006,25:1082-1092.
    [173] Ivanov A G. Effect of electrization of earth layers by elastic waves passing through them [J].Dokl. Akad. Nauk. SSSR,1939,24:42-45.
    [174] Pride S R. Governing equations for the coupled electromagnetics and acoustics of porous media[J]. Phys. Rev. B,1994,50:15678-15696.
    [175]郭自强,罗祥麟,钱书清,等.矿山爆破中的电磁辐射[J].地球物理学报,1999,42(6):834-840.
    [176]马钦忠,方国庆,李伟,等.芦山犕犛7.0地震前的电磁异常信号[J].地震学报,2013,35(5):717-730.
    [177]黄清华,林玉峰.地震电信号选择性数值模拟及可能影响因素[J].地球物理学报,2010,53(3):535-543.
    [178] Liu H, Kazunori Takahashi, Motoyuki Sato. Measurement of dielectric permittivity andthickness show and ice on a brackish lagoon using GPR [J]. IEEE Journal of Selected Topics inApplied Earth Observations and Remote Sensing, press,2014.
    [179]曾德铭.川西北地区中三叠统雷口坡组储层研究[D].西南石油大学硕士论文,2005.
    [180]张进铎.地震解释技术现状及发展趋势[J].地球物理学进展,2006,21(2):578-587.
    [181] Cooke D A, Schneider W A. Generalized linear inversion of reflection seismic data [J].Geophysics,1983,48(6):665-676.
    [182]周竹生,周熙襄.宽带约束反演方法[J].石油地球物理勘探,1993,28(5):523-536.
    [183]李宏兵.具有剔除噪音功能的多道广义线性反演[J].石油物探,1996,35(4):11-17.
    [184] Connolly P. Elastic impedance [J]. The Leading Edge,1999,18(4):438-452.
    [185]崔成军,龚姚进,申大媛.波阻抗反演在储层预测研究中的应用[J].地球物理学进展,2010,25(1):9-15.
    [186]苗广文,刘聪,王典,等.波阻抗反演在吉林探区煤层特征分析及储层预测中的应用[J].地球物理学进展,2011,26(5):1788-1795.
    [187]陈怀震,印兴耀,杜炳毅,等.裂缝型碳酸盐岩储层方位各向异性弹性阻抗反演[J].地球物理学进展,2013,28(6):3073-3079.
    [188] Leite E P, Vidal A C.3D porosity prediction from seismic inversion and neural networks[J].Computers&Geosciences,2011,37:1174-1180.
    [189] Schmelzbach C, Tronicke J, Dietrich P. High-resolution water content estimation fromsurface-based ground-penetrating radar reflection data by impedance inversion [J]. WaterResources research,2012,48, W08505, doi:10.1029/2012WR011955.
    [190] Annan A P. Ground-penetrating radar, in Near-Surface Geophysics [M]. Invest. Geophys., vol.13, edited by D. K. Butler, chap.11,2005,357–438, Soc. of Explor. Geophys., Tulsa, Okla.
    [191] Ferguson R J, Margrave G F. A simple algorithm for band-limited impedance inversion [R].CREWES Research Report-Volume8(1996).
    [192] Alumbaugh D, Chang P Y, Paprocki L, et al. Estimating moisture contents in the vadose zoneusing cross-borehole ground penetrating radar: A study of accuracy and repeatability [J]. WaterResources Research,2002.38:1309-1321.
    [193] Binley A, Winship P, Middleton R, et al. High-resolution characterization of vadose zonedynamics using cross-borehole radar [J]. Water Resources Research,2001,37:2639-2652.
    [194] Kowalsky M B, Finsterle S, Peterson J, et al. Estimation of field-scale soil hydraulic anddielectric parameters through joint inversion of GPR and hydrological data [J]. Water ResourcesResearch,2005,41(11): W11425, doi:10.1029/2005WR004237.
    [195] Dafflon B, Irving J, Holliger K. Use of high-resolution geophysical data to characterizeheterogeneous aquifers: Influence of data integration method on hydrological predictions [J].Water Resources Research,2009,45(9): W09407, doi:10.1029/2008WR007646.
    [196] Day-Lewis F D, Lane J W. Assessing the resolution-dependent utility of tomograms forgeostatistics [J]. Geophysical Research Letters,2004,31(7): L07503.
    [197] Gloaguen E, Giroux B, Marcotte D, et a. Pseudo-full-waveform inversion of borehole GPR datausing stochastic tomography [J]. Geophysics,2007,72(5): J43–J51.
    [198] Tarantola A. Inverse problem theory:Methods for Data fitting and Model parameter estimation[M]. Elsevier Science Publ Co Inc,1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700