用户名: 密码: 验证码:
四维地震在AAA油田油藏描述及剩余油分布预测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四维地震是对在产油气田进行监测及推动深入开发的重要工具。四维地震使平面上大范围地监测油藏参数的变化,并将观测到的结果与从开发井中获得的实际数据进行对比成为可能。未衰竭/未水淹的含油区、压力隔夹层、注水超出范围等这些开发中发生的现象都可以通过对四维地震数据体的解释揭示出来。从四维地震上获得的这些信息对于进行油藏模型的更新、部署新的井位,最终提高油田的采收率都具有极其重要的价值。
     本文重点对四维地震在油藏描述及剩余油分布预测的实际应用方法进行研究。为了清楚地解释所做的研究,本文试图回答与此相关的5个问题:(1)什么是四维地震技术,它的发展历史及发展趋势是什么样的?(2)哪些类型的油藏适合采用四维地震技术?(3)四维地震在油藏描述及剩余油分布预测中应用的岩石地球物理的理论基础有哪些?(4)四维地震在油藏描述及剩余油分布预测上有哪些理论及经验方法?(5)在实际应用过程中,如何使用这些方法?
     本文分四个方面对第一个问题进行解答。首先,本文给出了四维地震技术的定义,并总结了该技术以下四个方面的价值:
     ●提高油藏地质模型的合理性
     ·监测油藏开发过程中的动态变化
     ·对开发计划进行调整
     ●HSSE监测
     本文对四维地震的发展历史进行的简要总结。其发展历程可以归纳为以下三个阶段:
     ·阶段一,1983~1990年,这一阶段为四维地震技术的萌芽和起步阶段
     ·阶段二,1990~2000年,这一阶段为四维地震技术的快速成长与发展阶段
     ·阶段三,2000年~现今,这一阶段为四维地震技术的广泛应用与发展成熟阶段本文对主要的四维地震采集、处理技术进行了介绍。介绍的采集技术包括:
     ·海上电缆采集
     ·海底永久节点采集
     ·海底电缆采集
     ·陆地采集
     本文从全球各大地球物理公司中选择了一些最具代表性的采集技术进行了介绍。同时对各种类型的采集技术进行了一个比较。
     对于四维地震处理技术,本文主要介绍了四维地震资料处理响一股原则m主要的处埋流程,及四维地震资料处理区别与常规三维地震资料处理的独特处理环节。本文展示了BGP与CGG两家公司的四维地震处理流程。其中CGG的Fast-track与Parallel两种处理流程也是本文研究的AAA油田四维地震资料处理所使用的处理流程。本文也特别介绍了四维地震处理以下四个独特环节:
     ·静校正及去条带噪音
     ·规则化
     ●4D面元划分
     ●一致性处理本文对四维地震技术的发展趋势进行了预测,并总结归纳为以下五点:
     ·维地震技术将会应用在更多类型的油田
     ·海上应用前景好于陆上应用前景
     ·四维地震采集将融合更多技术,从而获得更丰富的地下信息
     ●海底、井下的永久、固定性的检波器将是下一代四维地震发展的趋势
     ●使用四维地震对于油藏变化的预测将会更加准确和定量化
     第二个问题的实质是关于四维地震可行性的问题。可行性研究是四维地震技术的主要技术之一,也是油田开发生命周期过程中的地震采集部署设计的关键环:肖。四维地震可行性研究可以分为两个层次,第一个层次是以关键技术参数风险评估表为依据的评分筛选。这种评比打分方法的实质是利用地震响应最敏感的油藏参数进行定性评价的方法。本文列举了一些前人研究后总结的一些评价表格。另一种可行性研究的方法是使用地震正演模拟油藏参数变化进行定量评价的方法。使用正演的方法,我们可以得出四维地震的响应强度、可解释性,还可以帮助我们优化四维地震采集时间节点。正演模拟可以使用单井测井资料进行模拟,也可以使用油藏模型进行模拟。通过正演的可行性研究工作可以提高四维地震采集的效果,将技术原因造成的四维地震采集,失利风险降到最低,使我们清楚四维地震在目标油藏中是否有效,如何进行采集设计。本文以AAA油田为实例,使用模拟的方法进行了可行性的研究。通过AAA油田的可行性研究的实践,本文得出了以下儿点结论:
     ●本地区四维地震在近道产生的变化比远道产生的变化更加明显
     ●在理想情况下,本地区四维地震可以检测到的波阻抗变化最小值约为什1.5%
     ·不理想的情况下(如噪声干扰、处理较差),波阻抗变化大约要增加到2.5%左右才能被四维地震有效地检测到
     ·远道资料在理想情况下可以检测到2.5%的波阻抗变化(非理想条件下约为4%)
     有关第三个问题,本文对开发过程中四维地震检测到的油藏参数变化导致的岩石杠弹性变化的岩性物理学基础进行了阐述。四维地震响应的岩石物理学基础同样也是进行四维地震正演的理论基础。通常我们认为在油藏开发过程中,产生变化的主要有四个方面的参数,分别是流体饱和度、压力、压实性、温度。本文岩石物理学的角度出发解释了这儿项油藏参数变化所引起的四维地震响应。
     第四个问题包含了两个方面。第一个方面是四维地震在定性的油藏描述中的应用方法。本文介绍了一些利用四维地震属性解释油藏变化的方法,这些地震属性包括振幅、时差、阻抗、AVO、扩展弹性波阻抗。在四维地震定性解释方法的探索方面,结合AAA油田的实践,本研究提出了“色标指数”解释模版这样一种基于岩石物理及地区经验相结合的方法,可以非常有效地识别生产过程中油藏产生的不同的现象,这些现象包括:
     ·压实
     ·水驱油
     ·孔隙压力降低
     ●水驱油气
     ·油驱气
     ●孔隙压力增加
     ●注气
     ·溶解气分离
     ●气驱油
     本文在四维地震应用探索的另一个方面,是研究其在定量描述油藏动态参数变化中的应用。已经有一些研究者介绍过一些利用四维地震属性的方法估算孔隙压力及饱和度的方法,不同方法中使用了不同的地震属性。Tura和Lumley (1999)提出了利用纵、横波阻抗定量计算孔隙压力及流体饱和度的方法Landro(2001)提出了利用AV0属性变化求取压力及饱和度变化的方法;Rojas (2008)提出了在砂岩气藏中使用纵横、波速度比指示岩性、流体饱和度、压力变化的方法等。本文提出了利用扩展弹性波阻抗(EEI)来预测油藏中流体饱和度及压力变化的这样一种方法。扩展弹性波阻抗实际是由Whitcombe等人在2002年才提出的一种概念,最初扩展弹性波阻抗(EEI)主要用于替代弹性波阻抗(EI)进行储层预测及流体检测。扩展弹性波阻抗(EEI)除包含了大量与岩石、流体等相关的叠前信息外,还可以进行多角度分析,从而拟合出与研究的目标油藏参数相关性最好的理论入射角;此外,由于扩展弹性波阻抗(EEI)提高了弹性波阻抗(EI)的稳定性,从而有利于使用该属性在四维地震中的变化更准确地求取流体饱和度及压力的变化。从理论层面来讲,扩展弹性波阻抗(EEI)具有成为四维地震定量解释属性的天然优势。虽然扩展弹性波阻抗(EEI)已经被提出了10余年,但是主要还是应用在勘探阶段更多。前人利用时移扩展弹性波阻抗(EEI)进行油藏参数变化的定量解释的例子几乎还没有见到。本文通过在AAA油田的实际应用,利用井中的流体饱和度、压力资料与相关最好的EEI x曲线,在此基础上进行EEI反演,求取流体饱和度、压力在平面上的变化,取得了很好的效果。本文也总结出使用时移扩展弹性波阻抗(EEI)求取流体饱和度、压力变化的方法流程:
     步骤1:使用已有的测井资料求取EEI x曲线;
     步骤2:交汇分析,求取与Sw,Sg相关性最好的EEI理论入射角x;
     步骤3:对△Sw,△Sg,△P和△EEI x进行回归分析,求取回归方程;
     步骤4:进行反演,求取△EEI x数据体;
     步骤5:利用△Sw,△Sg,△P和△EEI x之间的回归方程,从反演△EEI x数据体计算△Sw,△Sg,△P值。
     关于第五个问题,本文以AAA油田实例,阐述了使用四维地震资料进行油藏描述及剩余油分布预测的具体流程。提出了迭代逼近法这样一种以油田生产历史及四维地震属性作为约束条件,不断修改完善油藏模型的,以达到最低历史拟合要求的方法。在此流程中,地质统计建模、网格粗化、数值模拟、网格细化等都融入到历史拟合的过程中。数值模拟的生产史与四维属性都与井上获得的实际数据进行进行对比,并求得最终版本的油藏模型。本文从实际应用上也归纳了四维地震在油藏建模如下方面的应用:
     ·构造模型优化(主要是确定断层位置,井点误差)
     ●流动分隔单元划分(通过断层的传导性,储层孔隙度、渗透率趋势划分)
     ·油气界面、气油界面及边界带的含油区
     ·地震结构单元及相组合(控制砂体的展布趋势,通过数值模拟的输出结果与四维地震属性异常体匹配迭代,以达到最好相似性)
     ·隔夹层的识别(通过井上及四维地震属性上反应的异常识别)
     ●砂体连通性(四维地震上的异常识别不同砂体的连通性)
Time-lapse seismic can be an important tool for monitoring and planning further development of a producing hydrocarbon field. Using of4D seismic make it possible to detect production changes over a relatively large area and match these changes with production data acquired from wells. Undepleted/unflooded patches, pressure barriers and injectors out of range can be revealed when interpreting a4D data set. This can be valuable information when updating reservoir models and planning new wells, and eventually will lead to an increased recovery from the field.
     This thesis focuses on the methodologies of4D application in reservoir characterization and residual oil distribution prediction. To get explicit explanation of the methodologies this study work on, this thesis try to answer five questions as follows:(1)What is4D technology, its history and its future holds?(2)Which types of reservoirs are suitable for4D implementation?(3)What is the rock physical basis of4D seismic application in reservoir characterization and residual oil distribution prediction?(4)What are the theoretical and empirical methodologies of4D application in reservoir characterization and residual oil distribution prediction?(5)How to use and what is the workflow of these methodologies in practical case?
     The answer for the first question is comprised of four parts. The first part gives a definition for4D seismic technology and its value which includes:
     ●Improve geological model of reservoir
     ●Monitor dynamic changes of producing reservoir
     ●Adjustment to the development plan
     ●HSSE monitoring
     The second part is a summarization of the brief history of4D technology which includes three stages:
     ●Stage1is between1983-1990, which is the emerging of4D seismic technology.
     ●Stage2is between1990-2000, which is the fast growing and developing phase.●Stage3is between2000-present, which is the widely implementation and maturing of4D seismic technology. The third part introduces some4D acquisition and processing techniques. Those acquisition techniques include:
     ●Marine Streamer Acquisition
     ●Ocean Bottom Nodes
     ●Ocean Bottom Cable
     ●Onshore acquisition
     Most representative4D acquisition tools from different Geophysical companies are introduced. This thesis also gives a comparison between different4D acquisition techniques. The introduction of processing technique is comprised of general principals of processing, workflow of4D seismic processing and the unique elements of4D seismic processing different from conventional3D seismic processing. The processing workflows of BGP and CGG are illustrated in the thesis. The fast-track and parallel processing workflows of CCG used in AAA oil field are also introduced in this thesis. Four unique4D seismic processing elements are introduced in this thesis which include:
     ●Statics&De-striping
     ●Regularization
     ●4D Binning
     ●Matching
     The fourth part predicts the future of4D technology. This thesis predicts five possible directions related to the future development of4D technology, which are:
     ●More widely used in various oil fields.
     ●Offshore application seeing a brighter future than onshore.
     ●Integrated with other technology to get more information from subsurface.
     ●Permanent, fixed, downhole and seabed survey will be next generation's tendency.
     ●Precisely and quantitatively measurement of reservoir changes.
     The second question is about the feasibility of4D seismic. Feasibility studies are key elements of4D seismic and field life-cycle planning. Feasibility study of4D seismic can be further subdivided into two levels, the first level is screening with4D-technical-risk spreadsheet. The essence of the4D-technical-risk spreadsheet is qualitative assessment of the reservoir with key elements which4D seismic has the most sensitive response to them. This thesis illustrates several most recognized4D-technical-risk spreadsheets in4D screening. Alternatively, sophisticated simulation-to-seismic modeling can help us to assess the magnitude and interpretability of the4D seismic response and can help us to plan the optimal timing of repeat surveys. The modeling can be done with well logs or a3D reservoir model. For the most part, industry has used these tools effectively to high-grade the application of4D technology and, in so doing, to minimize the number of technical failures. We generally know whether4D will work in our reservoirs and when to acquire repeat surveys. This thesis also uses AAA oil field as a modeling example of feasibility study. Through the practice of AAA oil field, this thesis gets four conclusions:
     ●4D changes will probably be more obvious on the near offsets than on the far offsets.
     ●We should be able to detect4D signal as small as1.5%AI change.
     ●In a worst case (i.e. noisy acquisition/poor processing) this might increase to2.5%AI change.
     ●On the far-offsets, we should be able to detect a2.5%change (4%in a worst case).
     To answer the third question, this thesis briefly introduces the fundamental of rock physics and geomechanics which are used to translate production induced changes in the subsurface elastic properties to the seismic responses. We also explain how this is implemented in our modeling. In general, there are four main parameters that may change in a producing hydrocarbon reservoir, they are fluid saturation, pressure, compaction, temperature. This thesis explicitly narrates the rock physical basis of those four fundamental reservoir changes' relationships with4D seismic responses.
     About the fourth question, there are two aspects included in it. The first part is4D seismic application in qualitative reservoir characterization. This thesis summarizes some theoretical approaches of using4D seismic attributes in interpretation of reservoir changes. Those attributes include amplitude, time-shift, impedance, AVO and EEI. For qualitative interpretation approach, this thesis also proposes a Colour Index (CI) template combined with geophysics theory and regional experiences to indentify different phenomena came out in the course of production. Those phenomena include:
     ●Compaction
     ●Replacing oil with water
     ●Reducing pore pressure
     ●Replacing HC with water
     ●Replacing gas with oil
     ●Increasing pore pressure
     ●Gas injection
     ●Gas come out of solution
     ●Replacing oil with gas
     ●Gas come out of solution
     Another part of the fourth question is about4D seismic application in prediction of the changes of dynamic reservoir parameters. Many researchers have studied different ways to estimate fluid saturation and pressure changes during production with different4D seismic attributes. Tura and Lumley (1999) present a method to map and quantify those changes utilizing P-and S-wave impedances. Rojas (2008) proposes to use the P-and S-wave velocities ratio as an indicator of lithologies, fluid saturation, and pressure changes in gas sandstones reservoirs. Landra (2001,1999) introduces an elegant, straightforward inversion scheme that solves for pressure and saturation changes from seismic amplitude-variation-with-offset, etc. This thesis proposes a new methodology which uses time-lapse extended elastic impedance (EEI) for estimation of fluid saturation and pressure changes. Extended elastic impedance is introduced by Whitcombe et al. in2002for the first time. It is used as a replacement of El (elastic impedance) in reservoir and hydrocarbon prediction at the exploration phase. Since it improves the stability of elastic impedance, it is good for a more accuracy quantitative estimation of fluid saturation and pressure changes. So from theoretical side, EEI has the natural advantage to become the right attribute adapt to quantitative4D interpretation. EEI has been used for almost ten years, but rare previous applications in4D monitoring cases were found. This thesis uses the regression equations and extended elastic impedance inversion to estimate the lateral changes of fluid saturation and reservoir pressure get a very good effect. This thesis also summarizes the workflow of using time-lapse EEI in estimation of fluid saturation and pressure changes as following steps:
     Step1:Compute EEIx logs with exist wireline logs.
     Step2:Cross-plot Sw, Sg with EEI at different theoretical angers and define the best correlation anger. After this work, we can get the best correlation theoretical anger X-
     Step3:Regressional analysis and get the quadratic equations between△Sw,△Sg,△P and△EEIX.
     Step4:Implement the EEI inversion and get AEEIx cube.
     Step5:Use the regression equation between△Sw, ASg,△P and△EEIχ t0compute the△Sw,△Sg,△P values with the inversion AEEIχ cube.
     About the fifth question, this thesis uses AAA oil field as a practical example, illustrates the workflow of using4D seismic data in reservoir characterization and residual oil prediction. This thesis proposes an iterative methodology based on advanced history matching solutions to constrain3D stochastic reservoir models to both production history and4D seismic attributes. In this approach, geostatistical modeling, upscaling, fluid flow simulation, downscaling and petro-elastic modeling are integrated into the same history matching workflow. Simulated production history and4D seismic attributes are compared to realizations, and finally decide the last version of geological model. This thesis not only explains the theoretical basis but also use AAA oil field as an example illustrates the4D seismic application in as follows:
     ●Structural model modification (localised fault, well positioning errors highlighted by4D).
     ●Compartmentalization (includes faults transmissibility and permeability porosity trend).
     ●OWC, GOC or addition portion of hydrocarbon to the edge of the grid.
     ●The seismic architectural elements and facies association (control the trend of sand distribution, specifically using the simulated output data to match with the4D anomalies with iterative process to get the best correlation).
     ●The addition of baffles or barriers (particularly those suggested by pressure transient analysis or the4D seismic).
     ●The addition of connectivity of different sandbody (particularly those suggested by the4D seismic).
引文
[1]Nur A. Seismic imaging in enhanced recovery. SPE/DOE,1982(10680):99-109.
    [2]Nur A, C Tosaya, D Vo-Thanh. Seismic monitoring of thermal enhanced oil recovery processes.54th Annual International Meeting, SEG, Expanded Abstracts,1984:337-340.
    [3]Nur A, Z Wang. In-situ seismic monitoring EOR, The petrophysical basis. SPE, 1987(16865).
    [4]Eberhart-Phillips D, D-H Han, M D Zoback. Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone. Geophysics,1989(54):82-89.
    [5]Greaves R J, T J Fulp. Three-dimensional seismic monitoring of an enhanced oil recovery process. Geophysics,1987(52):1175-1187.
    [6]Han D-H, Nur A, D Morgan. Effects of porosity and clay content on wave velocities in sandstones. Geophysics,1986(51):2093-2107.
    [7]Pullin N, L Matthews, K Hirsche. Techniques applied to obtain very high resolution 3-D seismic imaging at an Athabasca tar sands thermal pilot. The Leading Edge,1987(12): 10-15.
    [8]Smith G C, P M Gidlow. Weighted stacking for rock property estimation and detection of gas[J]. Geophysical Prospecting,1987(25):993-1014.
    [9]Nur A. Seismic rock properties for reservoir description and monitoring. Seismic Tomography,1987:203-273.
    [10]Batzle M L, Z J Wang. Seismic properties of pore fluids[J]. Geophysics,1992(57): 1396-1408.
    [11]Nur A. Theoretical physics basis for 4D seismic. CPS/SEG/EAGE匕京国际地球物理研讨会暨展览论文详细摘要,1998:1-1.
    [12]Jack I. Time-lapse seismic in reservoir management. SEG Distinguished Instructor Series, 1997:No.1.
    [13]Blonk B, R W Calvert, J K Koster, G V Zee. Assessing the feasibility of a 4D seismic reservoir monitoring project. SPE,1998(50666).
    [14]Lumley D E, R A Behrens, Z Wang. Assessing the technical risk of a 4-D seismic project[J]. The Leading Edge,1997(9):1287-1292.
    [15]Huang X, L Meister, R Workman. Reservoir characterization by integration of time-lapse seismic and production data. SPE,1997(38695).
    [16]Tura A, D E Lumley. Estimating pressure and saturation changes from timelapse AVO data[M].69th Annual International Meeting, SEG, Expanded Abstracts,1999:1655-1658.
    [17]Huang X, L Meister, R Workman. Improvement on the quantitative seismic history matching[M].68th Annual International Meeting, SEG, Expanded Abstracts,1998:36-39.
    [18]Johnston D H, R S McKenny, J Verbeek, J Almond, Seismic time-lapse analysis of Fulmar field[J]. The Leading Edge,1998(10):1420-1428.
    [19]Nickel M, L Sonneland. Non-rigid matching of migrated time-lapse seismic[M].69th Annual International Meeting. SEG, Expanded Abstracts,1999:872-875.
    [20]Satter A, J E Varnon, M T Hoang. Integrated reservoir management[J]. Journal of Petroleum Technology,1994(46):1057-1064.
    [21]MacBeth C, Y Al-Maskeri. Extraction of permeability from time-lapse seismic data. Geophysical Prospecting,2006(54):333-349.
    [22]MacBeth C, M Floricich, J Soldo. Going quantitative with 4D seismic analysis[J]. Geophysical Prospecting,2005(54):303-317.
    [23]Alsos T, B Osdal, A H(?)ias. The many faces of pressure changes in 4D seismic at the Svale field and its implication on reservoir management[M].71st Conference and Exhibition, EAGE, Extended Abstracts,2009(Y004).
    [24]Tura A, D E Lumley. Estimating pressure and saturation changes from timelapse avo data[M]. 69th international Exposition and Annual Meeting, SEG Expanded Abstracts,1999: 1655-1658.
    [25]Rojas E. Vp-Vs sensitivity to pressure, fluid, and lithology changes in tight gas sandstones [J]. First Break,2008(26):83-86.
    [26]Landr(?) M. Discrimination between pressure and fluid saturation changes from time lapse seismic data[J]. Geophysics,2001(66):836-844.
    [27]Landr(?) M. Discrimination between pressure and fluid saturation changes from timelapse seismic data[M].69th SEG International Exposition and Annual Meeting, Expanded Abstract, 1999:1651-1654.
    [28]Meadows, A Tura. Pressure and saturation inversion of 4D seismic data by rock physics forward modeling:72nd Annual International Meeting, SEG, Expanded Abstracts,2002, 2475-2478.
    [29]Whitcombe et al. Extended Elastic Impedance for fluid and lithology prediction. Geophysics, 2002(67):63-67.
    [30]Lumley D. Business and technology challenges for 4D seismic reservoir monitoring[J]. The Leading Edge,2004(23):1166-1168.
    [31]Williamson P R, Cherrett A J, Sexton P A. A New Approach to Warping for Quantitative Time-Lapse Characterisation[M].69th EAGE Conference and Exhibition and SPE, 2007:064.
    [32]Hemant K D, Akhil P, R Rathore. Time-Lapse Seismic-Concept, Technology & Interpretation. GEOHORIZONS,2012:66-72
    [33]陈小宏,牟永光.四维地震油藏监测技术及其应用,石油地球物理勘探,1998(33):707-715.
    [34]甘利灯,邹才能,姚逢吕等.实用四维地震监测技术.北京:石油工业出版社,2010.
    [35]易维启,李明,云美厚,陈小宏.时移地震方法概论.北京:石油工业出版社,2002.
    [36]林蓉辉,老油田石油采收率的地震监测.石油地球物理勘探,1994(29):252-257.
    [37]杨勤勇,钟炜.油气田开发中的四维地震技术.石油物探,1999(38):50-57.
    [38]云美厚.油田注水开采地震监测理论研究.石油物探,2005,(3):40-45.
    [39]Fayemendy C, P I Espedal, M Andersen et al. Time-lapse seismic surveying multi-disciplinary tool for reservoir management on Snorre[J]. First Break,2012(30):49-55.
    [40]Guderian K, Kleemeyer M, Kjeldstaad A et al. Draugen field:Successful reservoir management using 4D seismic[M].65th EAGE Conference & Exhibition,2003:2-5.
    [41]Koster K, P Gabriels, M Hartung, J Verbeek, G Deinum et al. Timelapse seismic surveys in the North Sea and their business impact [J]. The Leading Edge,2000(19):286-293.
    [42]Lefeuvre F, Kerdraon Y, Peliganga J et al. Improved reservoir understanding through rapid and effective 4D:Girassol field, Angola, West Africa.73rd Meeting Society of Exploration Geophysicists, Expanded Abstract,2003:1338-1341.
    [43]Marsh J M, D N Whitcombe, S A Raikes, R S Parr et al. BP's increasing systematic use of time-lapse seismic technology. Petroleum Geoscience,2003(9):7-13.
    [44]Mitchell P, R Paez, D Johnston et al.4D seismic in deep water at the Dikanza field, offshore Angola, West Africa.79th SEG Annual Interna tional Meeting, Expanded Abstracts, 2009:3924-3928.
    [45]Gonzalez-Carballo A, P Y Guyonnet, B Levallois et al.4D monitoring in Angola and its impact on reservoir understanding and economics. The Leading Edge,2006(25):1150-1159.
    [46]孙建国.时延地震的现状及发展方向:石油物探译丛,1999(2):1-9.
    [47]蔺景龙,吉寿松,云美厚.油田开发应用地球物理.北京:石油工业出版社,1996.305-370.
    [48]云美厚,易维启,陈卫军,张国富.薄互层油藏注水地震监测理论研究.石油地球物理勘探,1999(34):723-732.
    [49]云美厚,丁伟,王新红.陆相薄互层油藏4D地震监测存在的问题与对策.中国石油学会东部地区第12次物探技术研讨会论文集,2005:152-154.
    [50]Jenkins S D, M W Waite, M F Bee. Time-lapse monitoring of the Duri steamflood-A pilot and case study:The Leading Edge,1997(16):1267-1274.
    [51]张翠兰.用于油藏监测的地震属性,应用正演模拟的可行性研究.石油物探译丛,1997(6):16-26.
    [52]云美厚等.地震注水监测理论研究[M].CPS/SEG/EAGE北京国际地球物理研讨会暨展览论文详细摘要,1998:343-345.
    [53]Estes C A, G Mavko, H Yin, T Cadoret. Measurements of velocity, porosity, and permeability on unconsolidated granular materials[R]. Stanford Rock Physics and Borehole Geophysics Project,1994(55):1-9.
    [54]Blonk B, R W Calvert, J K Koster et al. Assessing the feasibility of a 4D seismic reservoir monitoring project. SPE,1998(50666).
    [55]Lumley D E, R A Behrens, Z Wang. Assessing the technical risk of a 4-D seismic project. The Leading Edge,1997(16):1287-1292.
    [56]Wang Zhijing. Assessing the technical risk of a 4-D seismic project. The Leading Edge, 1997(16):1287-1292.
    [57]Wang Zhijing. Feasibility of time-lapse seismic reservoir monitoring, The Physical Basis. The Leading Edge,1997(16):1327-1329.
    [58]Gelot J L. Presentation of CGG 4D Marine Technology. Angola,2012.
    [59]Calvert R. Insights and methods for 4D reservoir monitoring and characterization. SEG Distinguished Instructor Short Course,2005:85-109
    [60]Campbell S, Ricketts T, Davie D et al. Improved 4D seismic repeatability - a west of shetlands towed streamer acquisition case history[M]. SEG Technical Program Expanded Abstracts,2005:2394-2397.
    [61]Ebaid H, A Tura, M Nasser et al. First dual-vessel high-repeat GoM 4D survey shows development options at Holstein field[J]. The Leading Edge,2008(27):1622-1625.
    [62]Eiken O, G U Haugen, M Schonewille et al. A proven method for acquiring highly repeatable towed streamer seismic data[J]. Geophysics,2003(68):1303-1309.
    [63]Pevzner R, V Shulakova, A Kepic et al. Repeatability analysis of land time-lapse seismic data:CO2 pilot project case study. Geophysical Prospecting,2011(59):66-77.
    [64]Smit F, J Brain, K Watt. Repeatability monitoring during marine 4D streamer acquisition. 67th Conference and Exhibition, EAGE, Extended Abstracts,2005:C015.
    [65]Kragh E, P Christie. Seismic repeatability, normalized RMS, and predictability:The Leading Edge,2002(21):640-647.
    [66]BGP Pioneer. Presentation for Total 4D Project Summary.2012
    [67]Larsen L. Q-Marine seismic acquisition results:report from WesternGeco. first break 2002(20):778-781.
    [68]PGS.4D GeoStreamer:The New Standard.PGS, TechLink,2010:1-4
    [69]CGG Veritas. BroadSeis-What Have We Learned. SEG,2013
    [70]Buizard S, Bertrand A, Nielsen K M. Ekofisk Life of Field Seismic:4D Processing[M].75th EAGE Conference & Exhibition incorporating,SPE,2013.
    [71]Reasnor M, G Beaudoin, M Pfister, I Ahmed et al. Atlantis time-lapse ocean bottom node survey:A project team's journey from acquisition through processing[M].80th Annual International Meeting, SEG, Expanded Abstracts,2010:4155-4158.
    [72]Stopin A, P J Hatchell, C Corcoran et al. First OBS to OBS time lapse results in the Mars Basin[M].81st Annual International Meeting, SEG,Expanded Abstracts,2011:4114-4118.
    [73]Zerpa N A, T L Davis. Integrated time-lapse monitoring of a Morrow reservoir using multi-component seismic and flow simulation, Postle field, Oklahoma[J]. First Break, 2012(30):77-83.
    [74]Meunier J, F Huguet, P Meynier. Reservoir monitoring using permanent sources and vertical receiver antennae[M].70th Annual International Meeting, SEG, Expanded Abstracts, 2000:1619-1622.
    [75]Meunier J, Huguet P. and Meynier P. Reservoir monitoring using permanent sources and vertical receiver antennae. The Cerela-Ronde case study[J]:The Leading Edge,2001(20): 622-629.
    [76]Ronen S, Waard R, Keggin J. Repeatability of sea bed multi-component data.69th SEG Annual International Meeting, Expanded Abstracts,1999:1330-1333.
    [77]Bakulin A, J Lopez, I S Herhold et al. Onshore monitoring with virtual source seismic in horizontal wells:Challenges and solutions[M].77th Annual International Meeting, SEG, Expanded Abstracts,2007:2893-2897.
    [78]CGG Veritas. SeisMovie Continuous High-Resolution Reservoir Monitoring. CGG Website, Industry Articles.
    [79]Bakulin A J, R Calvert. Virtual source:New method for imaging and 4D below complex overburden[M].74th Annual International Meeting, SEG, Expanded Abstracts, 2004:2477-2480.
    [80]Bertrand A, C Ribeiro, C MacBeth. Uncertainties in the 4D seismic signature due to seawater velocity variations[M].66th Conference and Exhibition, EAGE, Extended Abstracts, 2004:W7.
    [81]Musser J, Burnham M. Streamer positioning and spread stabilization for 4D seismic [M]. SEG Technical Program Expanded Abstracts,2006:6-9.
    [82]陈小宏.四维地震数据归一化方法及实例处理[J].石油学报,1999(20):22-26.
    [83]庄东海.四维地震资料处理及其关键[J].地球物理学进展,2001(14):2.
    [84]Troll West. Time-lapse processing and analysis[M]. SEG Technical Program Expanded Abstracts,2000:1433-1436.
    [85]Hoeber H et al. Improved 4D Seismic Processing:Foinaven Case Study[M].75th SEG annual meeting, Expanded Abstract,2005:2414-2418.
    [86]Lumley D, D Adams, M Meadows, S Cole et al.4D seismic data processing issues and examples[M].73rd Annual International Meeting, SEG, Expanded Abstracts, 2003:1394-1397.
    [87]Ross C P, G B Cunningham, D P. Weberlnside the crossequalization black box[J]. The Leading Edge,1996(15):1233-1240.
    [88]Rickett J E, D E Lumley. A cross-equalization processing flow for off-the-shelf 4-D seismic data[M].68th Annual International Meeting, SEG, Expanded Abstracts,1998:16-19.
    [89]MacKay S, Fried J, Carvill C. The impact of water-velocity variations on deepwater seismic data[J]. The leading Edge,2003(22):344-350.
    [90]Zabihi Naeini E, Hoeber H, Poole G et al. Simultaneous multi-vintage time-shift estimation[J]. Geophysics,2009(74(5)):109-121.
    [91]Poole G, Lecerf D. Effect of regularization in the migration of time-lapse data[J]. First Break, 2006(24):25-31.
    [92]Xu S, Y Zhang, D Pham et al. Antileakage Fourier transform for seismic data regularization[J]. Geophysics,2005(70):V87-V95.
    [93]Xu S, Zhang Y, Lambare G. Antileakage Fourier transform for seismic data regularization in higher dimensions[J]. GEOPHYSICS,2009(75):113-120.
    [94]Zabihi Naeini E, Hoeber H, King B, Rumyantsev D et al. Simultaneous Multi-Vintage 4D Binning[M].71st EAGE Conference & Exhibition,2009.
    [95]Meunier J, Herculin S. Evaluation and handling of positioning differences in 4D seismic[M]. 73rd SEG annual meeting, Expanded Abstract,2003:75-78.
    [96]Zabihi Naeini E, Hoeber H. Improved time delay estimation[M].70th EAGE Conference & Exhibition, Expanded Abstracts,2008:68.
    [97]Zabihi Naeini E, Hoeber H, PooleG. Simultaneous Multi-Vintage Multi-Parameter Time-lapse Matching[M].72nd EAGE Conference & Exhibition incorporating SPE,2010.
    [98]Hoeber H, Campbell S, Dyce M et al. Using complex trace analysis for 4D matching and 4D noise reduction[J]. First Break,2008(26(5)):79-83.
    [99]Toinet S.4D feasibility and calibration using 3D seismic modeling of reservoir models. SPE, 2004(88783).
    [100]MacBeth C, K D Stephen, A McInally. The 4D seismic signature of oil-water contact movement due to natural production in a stacked turbidite reservoir. Geophysical Prospecting, 2005(53):183-203.
    [101]MacBeth C, M Floricich, J Soldo. Going quantitative with 4D seismic analysis. Geophysical Prospecting,2006(54):303-317.
    [102]云美厚.油藏注水强化开采地震监测技术的研究于应用:[中国地质大学博十学位论文].北京:中国地质大学.2001.
    [103]Batzle M et al. Reservoir recovery processes and geophysics. TheLeading Edge,1998(17): 1444-1447.
    [104]王瑞平,郭元岭.胜坨油田水淹层解释方程统一性研究[J].石油学报,2002(23):78-82.
    [105]王志章等.开发中后期油藏参数变化规律及变化机理.中国典型油气藏描述及预测丛书:石油工业出版社,1999.
    [106]Bhattacharjya D, Mukerji T. Using influence diagrams to analyze decisions in 4D seismic reservoir monitoring [J]. The Leading Edge,2006(25):1236-1239.
    [107]Das A, M Batzle. Modeling studies of heavy oil--In between solid and fluid properties [J]. The Leading Edge,2008(27):1116-1123.
    [108]Shahin A, P L Stofa, R H Tatham et al. Accuracy required in seismic modeling to detect production-induced time-lapse signatures[M].81st Annual International Meeting, SEG, Expanded Abstracts,2011:2860-2864.
    [109]Thore P. Accuracy and limitations in seismic modeling of reservoir[M].76th Annual International Meeting, SEG, Expanded Abstracts,2006:1674-1676.
    [110]Castagna J P, Batzle M L, Kan T K. The link between rock properties and AVO response in John P[J]. Rock Physics,1993(8):135-171.
    [111]HajNasser Y, C MacBeth. The effect of intra-reservoir and non-reservoir shales on 4D seismic signatures,81st Annual International Meeting, SEG, Expanded Abstracts, 2011:4128-4133.
    [112]Thore P. Accuracy and limitations in seismic modeling of reservoir.76th Annual International Meeting, SEG, Expanded Abstracts,2006:1674-1676,
    [113]Thore P, C Hubans, R Bruland.4D inversion constrained by geological and dynamical information.81st Annual International Meeting, SEG, Expanded Abstracts,2011:4144-4147,
    [114]Mavko G, T Mukerji, J Dvorkin, The rock physics handbook, Tools for seismic analysis in porous media:[Cambridge University Doctor's Thesis].1998.
    [115]Vanorio T, Mavko G, Vialle S. The rock physics basis for 4D seismic monitoring of CO2 fate:Are we there yet. The Leading Edge,2010(29):156-162.
    [116]Biot M A. Theory of propagation of elastic waves in a fluid saturated porous solid:I. Low-frequency range; II. Higher-frequency range. Journal of the Acoustical Society of America,1956(28):168-191.
    [117]Landr(?) M.4D seismic. In Petroleum Geoscience:From Sedimentary Enviroments to Rock Physics. Springer-Verlag Berlin Heidelberg,2011.
    [118]Vasco D W. Seismic imaging of reservoir flow properties:Time-lapse pressure changes[J]. Geophysics,2004(69):511.
    [119]Ciz R, S A Shapiro. Generalization of Gassmann equations for porous media saturated with a solid material [J]. Geophysics,2007(72):A75-A79.
    [120]Spetzler, J. and Kvam,(?),2006, Discrimination between phase and amplitude attributes in time-lapse seismic streamer data:GEOPHYSICS, Vol.71, No.4:pp. O9-O19.
    [121]Fredy A V., Vladimir Alvarado. Sensitivity analysis of Gassmann's fluid substitution equations:Some implications in feasibility studies of time-lapse seismic reservoir monitoring. Journal of Applied Geophysics,2006(59):47-62.
    [122]Gassmann F. Elastic waves through a packing of spheres. Geophysics,1951 (16):673-685.
    [123]Zou Y, Bentley L. Time-lapse well log analysis, fluid substitution, and AVO. The Leading Edge,2003(22):550-566.
    [124]Mavko G, A Nur. Melt squirt in the asthenosphere. Journal of Geophysical Research,1975 (80):1444-1448.
    [125]Brown R J S, J Korringa. On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid. Geophysics,1975(40)608-616.
    [126]Wood A W. A textbook of sound:MacMillan,1955.
    [127]Cadoret T, D Marion, B Zinszner Influence of frequency and fluid distribution on elastic wave velocities in partially saturated limestones. Journal of Geophysical Research, 1995(100):9789-9803.
    [128]Brie A, F Pampuri, A F Marsala. Shear sonic interpretation in gasbearing sands. SPE,1995 (30595).
    [129]Nur A, C Tosaya, D Vo-Thanh. Seismic monitoring of thermal enhanced oil recovery processes. SEG Technical Program Expanded Abstracts,1984:337-340.
    [130]Avseth P A, A J Wijngaarden, H Flesche et al. AVO depth trends for lithology and pore fluid classification[M].64th Conference and Exhibition, EAGE, Extended Abstracts, 2002(G019).
    [131]Mindlin R D. Compliance of elastic bodies in contact. J. Appl. Mech.1949 (16).,259-268.
    [132]Avseth P, T Mukerji, G Mavko. Quantitative Seismic Interpretation-Applying Rock Physics Tools to Reduce Interpretation Risk. Cambridge, UK:Cambridge University Press,2005.
    [133]Younglove B A, J F Ely. Thermophysical properties of fluids:II:Methane, ethane, propane, isobutane, and normal butane. Journal of Physical and Chemical Reference Data,1987(16): 577-798.
    [134]Han D H, M Batzle. Velocity, density and modulus of hydrocarbon fluids-Data measurement.70th Annual International Meeting, SEG, Expanded Abstracts, 2000:1862-1866.
    [135]Landr(?) M, Digranes P, Str(?)nen L K. Mapping reservoir pressure and saturation changes using seismic methods-possibilities and limitations. First Break,2001(19):671-677.
    [136]Hall A, C MacBeth, J Stammeijer. Time-lapse seismic analysis of pressure depletion in the Southern Gas Basin. Geophysical Prospecting,2006(54):63-73.
    [137]Staples R, Ita J, Burrell R. Monitoring pressure depletion and improving geomechanical models of the Shearwater Field using 4D seismic. The Leading Edge,2007(26):636-642.
    [138]Hodgson N, C MacBeth, L Duranti. Inverting for reservoir pressure change using time-lapse time strain:Application to Genesis field, Gulf of Mexico. The Leading Edge, 2007(26):649-652.
    [139]Trani M, Arts R, Leeuwenburgh O. Estimation of changes in saturation and pressure from 4D seismic AVO and time-shift analysis. GEOPHYSICS,2011(76):C1-C17.
    [140]Hatchell P, S Bourne. Rocks under strain:Strain-induced time-lapse time shifts are observed for depleting reservoirs. The Leading Edge,2005(24):1222-1225.
    [141]Landra M, J Stammeijer. Quantitative estimation of compaction and velocity changes using 4D impedance and traveltime changes. Geophysics,2004(69):949-957.
    [142]Herwanger J V.R we there yet:70th Conference and Exhibition, EAGE, Extended Abstracts,2008:I029.
    [143]Landra M, Jansen R. Estimating compaction and velocity changes from time-lapse near and far offset stacks.64th Meeting, European association of geoscientists and Engineers Expanded Abstacts,2002:P036.
    [144]Guilbot J, B Smith.4D-constrained depth conversion for reservoir compaction estimation: Application to the Ekofisk field. The Leading Edge,2002(21):302-308.
    [145]Hatchell P J, O Jorgensen, L Gommesen. Monitoring reservoir compaction from subsidence and time-lapse timeshifts in the Dan field.77th Annual International Meeting, SEG, Expanded Abstracts,2007:2867-2871.
    [146]Aki K, Richards P, W H Freeman.4-D constrained depth conversion for reservoir compaction estimation Application to Ekofisk Field[J]. The Leading Edge, 2002(21):302-308.
    147] Barkved, O I, Kristiansen T. Seismic time-lapse effects and stress changes:Examples from a compacting reservoir. The Leading Edge,2005(24):1244-1248.
    148] Schutjens P, Burrell R, Fehmers G. On the stress change in overburden resulting from reservoir compaction:Observations from two computer models and implications for 4D seismic. The Leading Edge,2007(26):628-634.
    149] Scott T, Jr. The effects of stress paths on acoustic velocities and 4D seismic imaging. The Leading Edge,2007(26):602-608.
    150] Batzle M, R Hofmann, D H Han. Heavy oils-Seismic properties. The Leading Edge, 2006(25):750-756.
    151] Corzo M, MacBeth C, Barkved O. Estimation of pore-pressure change in a compacting reservoir from time-lapse seismic data. Geophysical Prospecting,2013 (61):1022-1034.
    152] Tura A, T Barker, P Cattermole, P Schutjens. Monitoring primary depletion reservoirs using amplitudes and time shifts from high repeat seismic surveys. The Leading Edge, 2005,(24):1214-1221.
    153] Johnston D, Laugier B. Resource assessment based on 4D seismic and inversion at Ringhorne Field, Norwegian North Sea. The Leading Edge,2012(31(9)):1042-1048.
    154] M C H Lam. Time-lapse seismic reservoir monitoring with a local waveform inversion technique. Journal of Applied Geophysics,2010(71):99-108
    155] Johnston D H, U Tiwari, B P Laugier. New opportunities from 4D Seismic and lithology prediction at Ringhorne field, Norwegian North Sea[M].72nd Conference and Exhibition, EAGE, Extended Abstracts,2010:M001.
    156] Yi, M.-J., Kim, J.-H., Chung, S.-H.,2003. Enhancing the resolving power of least-squares inversion with active constraint balancing[J]. Geophysics 68,931-941.
    157] Gardner G H F, L W Gardner, A R Gregory. Formation velocity and density-the diagnostic basics for stratigraphic traps[J]. Geophysics,1974 (39):770-780.
    158] Zoeppritz Karl. Erdbebenwellen Ⅶ. Ⅶb. Uber Reflexion und Durchgang seismischer Wellen durch Unstetigkeitsflachen. Nachrichten von der Koniglichen Gesellschaft der Wissenschaften zu Gottingen, Mathematisch-physikalische Klasse,1919:66-84.
    159] Ostrander W J. Plane wave reflection coefficients for gas sands at non normal angles of incidence. Geophysics,1984(49):1637-1648.
    160] Shuey R T. A simplification of the Zoeppritz equations. Geophysics,1985 (50):609-614.
    161] Smith G C, Gidlow P M. Weighted Stacking for Rock Property Estimation and Detection of Gas[J]. Geophysical Prospecting,1987(35):993-1014.
    162] 苑春方,彭苏萍,吕燚.Whitcombe 扩展弹性波阻抗公式的改进 [J].岩土力 学,2009(30):3710-3716.
    163] Arsalan S, Yadav A. Application of extended elastic impedance:A case study from Krishna-Godavari Basin, India[J]. The Leading Edge,2009:1204-1209.
    164] Conolly P. Elastic Impedance[J]. The Leading Edge,1999:438-452.
    [165]Sumit Verma, Samir Biswal. Estimation of Effective Porosity and Saturation Volume by Extended Elastic Impedance Approach:A Case Study[J]. AAPG,2011(41101).
    [166]Hilterman F J. Seismic Amplitude Interpretation. SEG digital Library,2001.
    [167]Young R A, LoPiccolo R D. A comprehensive AVO classification[J]. THE LEADING EDGE,2003(22):1030-1037.
    [168]Francis A, Hicks G J. Porosity and shale volume estimation for the Ardmore Field using extended elastic impedance[M].68th Geosciences Engeering,2006.
    [169]Hicks G J, Francis A M.Extended elastic impedance and its relation to AVO crossplotting and Vp/Vs[M]. EAGE 68th Conference & Exhibition,2006:56-61.
    [170]唐湘蓉,贺振华.扩展弹性阻抗理论入射角与实际入射角的等效关系研究[J].石油物探,2008(47):559-563.
    [171]Castagria J P, Swan H W. Principles of AVO crossplotting. THE LEADING EDGE, 1997(16):337-342.
    [172]Castagna J P, Swan H W, Foster D J. Framework for AVO gradient and intercept interpretation [J]. GEOPHYSICS, Soc. of Expl. Geophys,1998(63):948-956.
    [173]Gill C E, A Miotto, M Floricich, R Rogers. The Nelson full field model:Using iterative quantitative improvements from the initial framework to the final history match [J]. First Break,2012(30):43-53.
    [174]Tolstukhin E, B Lyngnes, H H Sudan. Ekofisk 4D Seismic history matching workflow[J]. SPE,2012(154347).
    [175]Stephen K, C MacBeth. Seismic history matching in the UKCS Schiehallion field. First Break,2006(24):43-49.
    [176]Ponsot-Jacquin C, Roggero F, Enchery G. Calibration of Facies Proportions through a History-matching Process[J]. Society Geology France,2009(180)387-397.
    [177]Tillier E, Enchery G, Le Ravalec M. Local and continuous updating of facies proportions for history-matching[J]. Petroleum Science Engineering,2010(73):194-203.
    [178]Nivlet P, Tonellot T, Sexton P, Piazza J L. Building 4D Constraint for History Matching from Stratigraphic Pre-Stack inversion:Application to the Girassol Field[M]. EAGE 68th Conference & Exhibition,2006.
    [179]Mezghani M, Fornel A, Langlais V. History matching and quantitative use of 4D seismic data for an improved reservoir characterization[M]. SPE Annual Technical Conference and Exhibition,2004(90420).
    [180]Brito D U, L Caletti, R J. Moraes Incorporation of 4D seismic in the re-construction and history matching of Marlim Sul deep water field flow simulation model[J]. SPE, 2011(143048).
    [181]Hu L Y. Gradual deformation and iterative calibration of Gaussian-related stochastic models[J]. Math Geology,2000(32):87-108.
    [182]Hu L Y, Blanc G, Noetinger B. Gradual Deformation and Iterative Calibration of Sequential Stochastic Simulations, Math Geology,2001(33):475-489.
    [183]Castro S A, J Caers, C Otterlei. Incorporating 4D seismic data into reservoir models while honoring production and geologic data:A case study. The Leading Edge, 2009(28):1498-1506.
    [184]Gouveia W P, D H Johnston, A Solberg. Jotun 4D:Characterization of fluid contact movement from time-lapse seismic and production logging tool data. The Leading Edge, 2004(23):1187-1194.
    [185]Dons T, O Jergensen, L Gommesen. Observations and quantitative analyses of waterflood patterns in a chalk reservoir using seismic data, Halfdan field, Danish North Sea. SPE, 2007(108531).
    [186]Andersen T, K Sinke, L Wilcox.4D interpretation of the Terra Nova field, a structural and stratigraphical complex field with small 4D signals.73rd Conference and Exhibition, EAGE, Extended Abstracts,2011(G029).
    [187]Toinet S, S Maultzsch, V Souvannavong.4D pre-stack inversion workflow integrating reservoir model control and lithology supervised classification. First Break,2011(29):59-66.
    [188]Al-Maskeri Y, C MacBeth. Quantifying transmissible barriers using 4D seismic[M].75th Annual International Meeting,SEG, Expanded Abstracts,2005:2472-2476.
    [189]Lima K T P, V M Reis, S R Malagutti.4D reservoir monitoring and characterizing of Marimba field, offshore Brazil. SPE,2010(135007).
    [190]Amoyedo S, R M Slatt, K J Marfurt. Time-lapse (4D) effect and reservoir sand production pattern in a mature North Sea field. The Leading Edge,2011(30):1020-1025.
    [191]Behrens R, P Condon, W Haworth.4D seismic monitoring of water influx at Bay Marchand: The practical use of 4D in an imperfect world. SPE,2002(71329).
    [192]Floricich M, A Evans, D McCormick. Adding the temporal coherence dimension to 4D seismic data-assessing connectivity in the Schiehallion field.70th Annual Conference and Exhibition, EAGE, Extended Abstracts,2008:E017.
    [193]Osdal B, Husby O, Aronsen H. Mapping the fluid front and pressure buildup using 4D data on Nome Field. The Leading Edge,2006(25):1134-1141.
    [194]Roggero F, Ding D Y, Berthet P, Matching of Production History and 4D Seismic Data-Application to the Girassol Field, Offshore Angola. SPE 2007(109929).
    [195]Jourdan J M, Lefeuvre F, Dubucq D. Integration of 4D seismic into the dynamic model: Girassol, deep offshore Angola. First Break EAGE,2006 (24):51-58.
    [196]Nickel M, L Sonneland. Well performance analysis using 4D seismic.71st Conference and Exhibition, EAGE, Extended Abstracts,2009.
    [197]Skjervheim J A, Evensen G, Aanonsen S I. Incorporating 4D Seismic Data in Reservoir Simulation Models Using Ensemble Kalman Filter. SPE(2007):282-292.
    [198]Lygren M, Husby O, Osdal B. History Matching using 4D seismic and pressure data on the Nome field. EAGE 67th Conference and Exhibition,2005.
    [199]Huang Y, MacBeth C. Direct correlation of 4D seismic and well activity for dynamic reservoir interpretation. SEG Technical Program Expanded Abstracts 2009:3840-3844
    [200]Barkved O I, J P Van Gestel, L S Bergsvik. Seismic PLT - Linking seismic time-lapse responses to production and injection data.71st Conference and Exhibition, EAGE, Extended Abstracts,2009:R033.
    [201]Staples R, A Cook, J Braisby, B Hodgson. Integration of 4D seismic data and the dynamic reservoir model reveal new targets in Gannet C:The Leading Edge,2006(25):1126-1133.
    [202]Clifford P J, R Trythall, R S Parr. Integration of 4D seismic data into the management of oil reservoirs with horizontal wells between fluid contacts. SPE,2003(83956).
    [203]Byerley G, J Pedersen, K O Roervik, K Ranaweera. Reducing risk and monitoring water injection using time-lapse (4D) seismic at the Ekofisk field.76th Annual International Meeting, SEG, Expanded Abstracts,2006:3210-3214.
    [204]Bacciotti F, K D'Amore, J Seguin.4D seismic integrated to dynamic modeling revealed a late stage development opportunity in the West Brae field.73rd Conference and Exhibition, EAGE, Extended Abstracts,2011:G027.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700