用户名: 密码: 验证码:
提高小型光电编码器分辨力和精度的方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着机载、星载、便携式军用侦查、定位、指挥武器系统的飞速发展,对小型光电编码器的分辨力和精度提出了更高的要求。由于莫尔条纹光电信号质量制约了小型光电编码器的高分辨力细分,细分误差和长周期误差影响了光电编码器的精度,因此开展莫尔条纹信号误差校正、新的细分方法研究和长周期误差修正方法研究,对提高小型光电编码器的分辨力和精度、跟踪国际先进水平具有重要意义。
     在参考国内外文献的基础上,首先从莫尔条纹光电信号产生的原理出发,深入分析了莫尔条纹信号质量对光电编码器高分辨力细分的影响、细分误差产生的原因、长周期误差对光电编码器精度产生的影响,研究了提高小型光电编码器分辨力和精度的方法。
     提出了近似三角波莫尔条纹光电信号的误差校正方法。建立含有直流误差、幅值误差、波形畸变的莫尔条纹信号波形参数方程,通过傅里叶变换求解波形参数,利用多倍角公式将信号波形中的高次谐波分量转换为高阶分量,采用牛顿迭代法将莫尔条纹光电信号校正至标准正(余)弦信号;通过最小二乘法对信号间的相位误差进行校正处理,将两路信号校正至标准正交的正余弦信号,提高了小型光电编码器的细分精度。
     提出了基于CORDIC算法的小型光电编码器高分辨力细分方法。利用简单的移位和加法操作对码盘精码莫尔条纹光电信号细分求相位,避免了信号波形偏离理想值时传统“计算法细分”引入的细分误差。针对CORDIC算法存在运算速度和计算精度的矛盾,提出了旋转角度近似和旋转方向预测两项改进措施,提高了小型光电编码器的分辨力。
     建立了傅里叶神经网络长周期误差修正模型。以高精度基准编码器作为学习目标,以正交三角函数基作为神经网络中间隐层节点的激活函数,利用引入模拟退火策略的差分进化算法对网络进行训练,求解误差修正模型参数,实现对光电编码器长周期误差修正,有效提高了小型光电编码器的精度。
     运用本文研究的方法对长春光机所生产的某型号小型光电编码器进行处理,经实际测试编码器分辨力由16位提高到18位,均方根误差由60″减小到20″。实验结果表明:本文研究的方法可有效地提高小型光电编码器的分辨力和精度,对于研制小型化、高精度、高分辨力光电编码器具有重要意义。
With the rapid development of airborne and spaceborne applications, portablemilitary investigation, positioning, command weapon system, higher demands wererequired for the angular accuracy and resolution of small photoelectric encoders.Since the quality of Moiré fringe photoelectric signals constrains high-resolutioninterpolation of small photoelectric encoder, and the interpolation error and thelong-period error are main factors that affect the accuracy of photoelectric encoders,it is very important to carry out research on the Moiréfringe signals calibration, newinterpolation methods, and long-period error correction to improve the resolutionand accuracy of small photoelectric encoders and thus follow the internationaladvanced level.
     Based on large reference at home and abroad, starting from the principle ofMoiré fringe photoelectric signals generation, the factors which affected theaccuracy of photoelectric signals were analyzed thoroughly, including the Moiréfringe signal’s quality for high-resolution interpolation, reasons of interpolation errorgeneration, and long-period errors for the accuracy of photoelectric encoders. Mucheffort was paid on the methods of improving the resolution and accuracy of smallphotoelectric encoders.
     The error calibration method was proposed for Moiré fringe photoelectric signals in the form of approximate triangular waves. The parameter equation ofMoiréfringe photoelectric signal waveform was built firstly, which contained directcurrent errors, amplitude errors and waveform distortions, and then Foruiertransform was applied to solve the waveform parameters. The high spatial harmonicsin the signal waveform were transformed into higher order components using themultiple angle formula, and photoelectric signals were calibrated to standard sineand cosine ones using the Newton iteration method. After that, the phase errorsbetween signals were calibrated by the least squares fitting method. The calibrationfrom two channels sample signals to the standard orthogonal sine and cosine signalswas realized, which improved the interpolation accuracy of small photoelectricencoders.
     A novel high-resolution interpolation method based on CORDIC algorithm wasproposed. Simple shifting and addition operations were used to resolve theinterpolation phases of Moiré fringe photoelectric signals, which could get rid ofconventional computed interpolation error cased by the deviation of samplesignals from the ideal ones. For the contradiction of calculation speed and accuracyexisting in CORDIC algorithm, two sorts of improvement were proposed includingapproximation of rotation angles and prediction of rotation direction. The resolutionof small photoelectric encoder was thus improved.
     The Fourier neural network model to correct long-period error of smallphotoelectric encoder was established. Output values of a high accuracy benchmarkencoder were set as the learning reference, and orthogonal trigonometric basisfunctions served as activation function of nodes in intermediate hidden layers. Thedifferential evaluation algorithm combined with simulated annealing strategy wasapplied for training to solve the error correction parameters. The correction of thelong-period error improved the accuracy of small photoelectric encoder effectively.
     The methods proposed above were applied to a small photoelectric encoderwhich was made by CIOMP (Changchun Institute of Optics, Fine Mechanics andPhysics, Chinese Academy of Sciences). After actual measurement, the resolution ofthe photoelectric encoder was improved from16-bit to18-bit and the root mean square error was reduced from60″to20″. The experiment result shows that, themethods could effectively improve the resolution and accuracy of smallphotoelectric encoders, and it is beneficial for development of miniaturized,high-resolution and high-accuracy small photoelectric encoders.
引文
[1]位置检测与数显技术[M].机械工业出版社,1993
    [2]刘丰文.高精度绝对式编码器的信号处理[J].光电工程,1999,26(2):63-67
    [3]史玉苓,徐成,韦春才,等.高精度小型化光电编码器[J].沈阳工业大学学学报,1995,17(1):1-5
    [4]汤天瑾,曹向群,林斌.光电轴角编码器发展现状分析及展望[J].光学仪器,2005,27(1):90-95
    [5]吴志刚.光电编码器的原理与应用[J].浙江冶金,2001,(1):50-52
    [6]李培华,林友德.光电编码器误差测量[J].光学仪器,1996,18(3):1-7.
    [7]Bonoli C, Mancini D, Bortoletto F, et al. TNG control system: computer architecture,interfacing, and synchronization[C].//SPIE,1995:160-168
    [8] Angle encoders RCN700absolute. www.heidenhain.de/English/produket/wms-g.hem,March2002
    [9]Leviton D B, Garza M S. Recent advances and applications of NASA's newultrahigh-sensitivity absolute optical pattern recognition encoders[C].//InternationalSymposium on Optical Science and Technology. International Society for Optics andPhotonics,2000:375-384
    [10]Leviton D B. Image processing for new optical pattern recognition encoders[C].//International Symposium on Optical Science and Technology. International Societyfor Optics and Photonics,2000:32-40
    [11]absolute position encoders using pattern recognition. April.2001.www.isa.org. ImTech.
    [12]Leviton D B. New ultrahigh-sensitivity absolute, linear, and rotary encoders[C].//SPIE's International Symposium on Optical Science, Engineering, andInstrumentation. International Society for Optics and Photonics,1998:100-111
    [13]Petriu E M. Absolute-type position transducers using a pseudorandom encoding [J].Instrumentation and Measurement, IEEE Transactions on,1987,1001(4):950-955.
    [14]KOHSAKA F, IINO T, KAZAMI K, et al. Multiturn absolute encoder using spatialfilter[J]. JSME international journal. Ser.3, Vibration, control engineering,engineering for industry,1990,33(1):94-99
    [15]Ueda T, Kohsaka F, Iino T, et al. Optical absolute encoder using spatial filter[C].//31st Annual Technical Symposium. International Society for Optics and Photonics,1987:217-221
    [16]Matsuzoe Y, Nakayama T, Tsuji N, et al. High-performance absolute optical encoderusing M-code[C].//Intelligent Systems and Advanced Manufacturing. InternationalSociety for Optics and Photonics,2001:280-289
    [17]Matsuzoe Y, Tsuji N, Nakayama T, et al. High-performance absolute rotary encoderusing multitrack and M-code[J]. Optical Engineering,2003,42(1):124-131
    [18]Liu Y, Hao S, Hao M. A novel absolute magnetic encoder based on pseudorandomcode[C].//Information and Automation,2009. ICIA'09. International Conference on.IEEE,2009:385-390
    [19]Voirin G, Benner U, Clube F S M, et al. Performance of interferometric rotationencoders using diffraction gratings[C].//Lasers and Optics in Manufacturing III.International Society for Optics and Photonics,1997:166-175
    [20]Teimel A. Technology and applications of grating interferometers in high-precisionmeasurement[J]. Precision Engineering,1992,14(3):147-154
    [21]Voirin G, Sixt P, Parriaux O, et al. Digitized dual-frequency coupling grating forwaveguide displacement interferometry[C].//Lasers and Electro-Optics Europe,1994Conference on. IEEE,339-339
    [22]European patent application. EP96106843.4
    [23]Voirin G, Parriaux O M, Vuilliomenet H, et al. Using conventional photolithographicglass masks as high-efficiency phase gratings[J]. Optical Engineering,1995,34(9):2687-2690
    [24]Frank A. Laser encoder provides super resolution for high-precision applications[C].//PCIM.1990,2:26-32
    [25]Horwitz B. Diffractive techniques improve encoder performance[J]. Laser FocusWorld,1996,32(10):143.
    [26]Akedo J, Machida H, Kobayashi H, et al. Point source diffraction and its use in anencoder[J]. Applied optics,1988,27(22):4777-4781
    [27]Yeh W H, Bletscher W, Mansuripur M. High resolution optical shaft encoder formotor speed control based on an optical disk pick-up[J]. Review of scientificinstruments,1998,69(8):3068-3071
    [28]Tennant D M, Koch T L, Mulgrew P P, et al. Characterization of near‐fieldholography grating masks for optoelectronics fabricated by electron beamlithography[J]. Journal of Vacuum Science&Technology B: Microelectronics andNanometer Structures,1992,10(6):2530-2535
    [29]Wronkowski L. Diffraction model of an optoelectronic displacement measuringtransducer[J]. Optics&Laser Technology,1995,27(2):81-88
    [30]Hercher M, Wijntjes G J. Laser galvo-angle-encoder with zero added inertia[C].//Beam Deflection and Scanning Technologies. International Society for Optics andPhotonics,1991:230-234
    [31]Hane K, Uchida Y, Hattori S. Moirédisplacement measurement technique for a linearencoder[J]. Optics&Laser Technology,1985,17(2):89-95.
    [32]Chitnis V T, Uchida Y, Hane K, et al. Moiré signals in reflection[J]. Opticscommunications,1985,54(4):207-211
    [33]Cheng Y S, Leith E N. Successive Fourier transformation with an achromaticinterferometer[J]. Applied optics,1984,23(22):4029-4033
    [34]Kaijun H, Jahns J, Lohmann A W. Talbot interferometry with a vibrating phaseobject[J]. Optics Communications,1983,45(5):295-300
    [35]Smolińska B, Kalestyński A. Autoidolon of quasi-periodic optical objects[J]. Journalof Modern Optics,1978,25(3):257-263
    [36]Patorski K, Szwaykowski P. Optical differentiation of quasi-periodic patterns usingTalbot interferometry[J]. Journal of Modern Optics,1984,31(1):23-31
    [37]Avolio G. Principles of Rotary Optical Encoders[J]. SENSORS-PETERBOROUGH-,1993,10(4):10-18
    [38]林敏星,徐雄,鞠海.高速比特并行RS编码器[J].电子测量技术,2005,3:051
    [39]卢新然,李洪,冯长有.光电轴角编码器细分为误差的Matlab仿真评估方法[J].微计算机信息,2005,21(10):109-110
    [40]石立峰,扬清风.光学式编码器[J].国外传感技术,2004,14(3):82-84
    [41]朱灿焰.提高增量式光电编码器计量精度的新方法[J].仪表技术与传感器,1998(9):28-30
    [42]潘贵荣,桂峰,金艳艳.提高轴角编码器精度的措施[J].雷达与对抗,1992,3:010
    [43]安迪生,杨清风.光学式编码器的检测信号补偿电路[J].国外传感技术,2004,14(6):209-210
    [44]冉蜀阳.基于光电轴角编码器设计的绝对位移检测数显装置[J].机械与电子,1991,2:011
    [45]宋刚,秦月霞,张凯,等.基于普通编码器的高精度测速方法[J].上海交通大学学报,2002,36(8):1169-1172
    [46]邹自强.0.2秒圆刻机的基本原理[J].光学精密工程,1983,2:000
    [47]曹振夫.260M光电轴角编码器的结构及原理[J].光学精密工程,1995,3(5):126-130
    [48]邢瑞祥,邓文和.二十一位增量式光电轴角编码器[J].光电工程,1986,2:4-12
    [49]曹振夫.小型绝对式矩阵编码器[J].光学机械,1985,5:65-70
    [50]王作斌.23位绝对式光电轴角编码器[J].传感器技术,1992,5:19-22
    [51]王集交.圆光栅检验仪中轴晃对测量精度的影响及消除方法[J].光学工程,1986,5:35-39
    [52]周世红.一种莫尔条纹电细分400等分的电子学系统[J].光学精密工程,1983,2(8):002
    [53]王斧,程守澄.CCD精密测角系统[J].光电工程,1997,24(5):11-14
    [54]王建民,浦昭邦,张华玉,等.图象式绝对码位移测量系统的研究[J].光电工程,2000,27(4):25-29
    [55]艾述伦.大型精密光电经纬仪垂直轴系平面止扒轴承环的装配误差[J].光学工程,1985,4:51-58
    [56]刘晓初.有效过盈量对轴承径向工作游隙的影响[J].轴承,1996,11:11-12
    [57]喻洪麟.光电编码器的轴承结构及外连接问题[J].现代计量测试,1996,16-17
    [58]高福晖.大型经纬仪轴系晃动的傅里叶谐波分析方法[J].光电工程,1998,22(5):1-10
    [59]杨进堂.含有中周期误差的圆光栅刻划误差的评定[J].光学精密工程,1997,5(3):96-100
    [60]李桂霞.矩阵码盘及其矩阵狭缝的检测[J].应用光学,1997,18(1):37-40
    [61]龚亲文,吕文松,游素芳.圆光栅直径误差检测中信号的处理方法[J].光学工程,1989,5:44-48
    [62]王祖文.单片机高倍数光栅细分[J].光电工程,1989,16(5):51-58
    [63]李华,廖铭.光栅编码器输出脉冲抖动的去除[J].电子技术(上海),1995,22(12):8-9
    [64]陆明珠,刘军海.一种光电编码器的译码电路[J].电子与自动化,1995,24(3):39-40
    [65]熊经武,王永臣.莫尔条纹乘法倍频[J].仪器仪表学报,1984,5(2):179-179
    [66]李金泉.光栅莫尔条纹信号的零位跟踪细分[J].计量技术,1996,(1):4-6
    [67]叶军,刘显忠.光栅内插值细分及补偿[J].计量技术,1996,(8):10-12
    [68]杨进堂.异或门鉴相在计量光栅检测中的应用[J].计量技术,1996,9:11-13
    [69]高晓辉,蔡鹤皋.光电码盘细分计数及接口设计[J].传感器技术,1997,16(6):37-39
    [70]马仕才.光栅信号的谐波特性与单片机内插细分补偿[J].计量技术,1997,10:14-15
    [71]董莉莉,熊经武,万秋华.乘法倍频后的莫尔条纹信号质量的分析[J].计量技术,2000,4:10-13
    [72]林鹏,陈小强.粗光栅位移测量系统细分误差的来源与消除分析[J].现代计量测试,1996,4(1):42-50
    [73]陈移风,邢安娜.光电增量式轴角编码器的数字信号处理[J].小型微型计算机系统,1996,(8):72-81
    [74]万秋华.光电准直经纬仪角度信息的电子学处理系统[J].光学精密工程,1995,3(2):75-78
    [75]万秋华,熊经武.260M编码器的精粗校正方法[J].光学精密工程,1995,3(5):131-134
    [76]喻洪麟.光电编码器温度漂移与补偿方法[J].光子学报,1996,25(1):15-18
    [77]熊经武,万秋华.23位绝对式光电轴角编码器[J].光学机械,1990,2:52-60
    [78]熊文卓,吴江洪,孔智勇,等.细光栅自成像光电轴角编码器[J].光电工程,2004,31(1):46-48
    [79]张淑华.绝对式光电轴角编码器的装配与调整[J].光电工程,1989,2:49-54
    [80]佘琳,冯长有,丁林辉.两步法测量编码器测角误差[J].光学精密工程,2004,12(1):66-70
    [81]罗世魁,王国强,王继新.伪随机码在绝对式光电轴角编码器中的应用[J].光学精密工程,2003,11(6):596-601
    [82]代冬军,周翠花,余光清,等.新型金属编码器的三个关键问题[J].光电工程,2004,31(B12):101-103
    [83]孔智勇,赵红颖,熊文卓,等.采用衍射干涉技术提高光电轴角编码器的测角精度和分辨率[J].光学精密工程,2001,3.
    [84]万秋华,孙莹,王树洁,等.双读数系统的航天级绝对式光电编码器设计[J].光学精密工程,2009,17(1):52-57
    [85]齐荔荔,万秋华.高分辨力面阵图像式光电编码器的测角技术[J].仪器仪表学报,2013,34(1):234-240
    [86]王媛媛,万秋华,梁立辉,等.小型绝对式金属光电编码盘[J].仪表技术与传感器,2013(6)
    [87] Warner M, Krabbendam V, Schumacher G. Adaptive periodic error correction forHeidenhain tape encoders[C].//Astronomical Telescopes and Instrumentation:Synergies Between Ground and Space. International Society for Optics and Photonics,2008:70123N-70123N-8
    [88]闫晓军.光电编码器的信号误差补偿和故障诊断研究[D].哈尔滨工业大学,2011
    [89]吕孟军,郭琪,吕印晓.莫尔条纹信号相位误差补偿[J].光学精密工程,2009,7:1694-1700
    [90]Tan K K, Tang K Z. Adaptive online correction and interpolation of quadratureencoder signals using radial basis functions[J]. Control Systems Technology, IEEETransactions on,2005,13(3):370-377
    [91]Tan K K, Zhou H X, Lee T H. New interpolation method for quadrature encodersignals[J]. Instrumentation and Measurement, IEEE Transactions on,2002,51(5):1073-1079
    [92]孙莹.小型航天级光电编码器细分误差补偿方法研究[D].中国科学院研究生院,2010
    [93]Lu X D, Trumper D L. Self-calibration of on-axis rotary encoders[J]. CIRPAnnals-Manufacturing Technology,2007,56(1):499-504
    [94]Watanabe T, Fujimoto H, Nakayama K, et al. Automatic high-precision calibrationsystem for angle encoder[C].//Lasers in Metrology and Art Conservation.International Society for Optics and Photonics,2001:267-274
    [95]杨进堂.“角度基准”中系统误差的修正[J].光学精密工程,1997,5(1):142-146
    [96]朱帆,吴易明,刘长春.四读头法消除码盘偏心和振动对叠栅条纹相位测量的影响[J].光学学报,2011,31(4):0412008
    [97]冯英翘,万秋华,孙莹,等.小型光电编码器的高分辨力细分技术[J].红外与激光工程(EI),2013,41(7):1825-1829
    [98]张善钟.计量光栅技术[M].机械工业出版社,1985,184-232
    [99]高精度光电轴角编码器细分误差实时修正方法研究[D].中国科学院研究生院,2009
    [100] Mancini D, Auricchio A, Brescia M, et al. Encoder system design: strategies forerror compensation[C]//Astronomical Telescopes&Instrumentation. InternationalSociety for Optics and Photonics,1998:380-386.
    [101] Bromwich.Multiple angle formula.http://mathword.wolfram.com/Multiple-AngleFormulas.html
    [102]Volder J E. The CORDIC trigonometric computing technique[J]. ElectronicComputers, IRE Transactions on,1959(3):330-334.
    [103] Volder J E. The birth of CORDIC[J]. Journal of VLSI signal processing systems forsignal, image and video technology,2000,25(2):101-105.
    [104] Walther J S. A unified algorithm for elementary functions[C]//Proceedings of theMay18-20,1971, spring joint computer conference. ACM,1971:379-385.
    [105]人工神经网络原理及仿真实例[M].机械工业出版社,2003.
    [106]人工神经网络原理[M].北京航空航天大学出版社,1995.
    [107]人工神经网络技术及其应用[M].中国石化出版社,2002.
    [108]宋宜斌.多层感知器的一种快速网络训练法及其应用[J].控制与决策,2000,15(1):125-127.
    [109]罗成汉.基于MATLAB神经网络工具箱的BP网络实现[J].计算机仿真,2004,21(5):109-111.
    [110]潘昊,侯清兰.基于粒子群优化算法的BP网络学习研究[J].计算机工程与应用,2006,42(16):41-43.
    [111]印春生,沈阳,刘树深,等.线性神经网络应用于维生素B族4组分同时测定[J].高等学校化学学报,2000,21(1):49-52.
    [112]王上飞,周佩玲,吴耿峰,等.径向基神经网络在股市预测中的应用[J].预测,1998,17(6):44-46.
    [113]刘志杰,季令,叶玉玲,等.基于径向基神经网络的铁路货运量预测[J].铁道学报,2006,28(5):1-5.
    [114]王万良,吴启迪.基于Hopfield神经网络的作业车间生产调度方法[J].自动化学报,2002,28(5):838-844.
    [115]仲伟俊,徐南荣.两层决策的波尔兹曼机方法[J].系统工程学报,1995,10(1):7-13.
    [116]王俊松.基于Elman神经网络的网络流量建模及预测[J].计算机工程,2009,35(9):190-191.
    [117]刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729.
    [118]杨启文,蔡亮,薛云灿.差分进化算法综述[J].模式识别与人工智能,2008,21(4):506-513.
    [119]吴亮红.差分进化算法及应用研究[D].长沙:湖南大学,2007.
    [120]方强,陈德钊,俞欢军,等.基于优进策略的差分进化算法及其化工应用[J].化工学报,2004,55(4):598-602.
    [121]魏延,谢开贵.模拟退火算法[J].蒙自师范高等专科学校学报,1999,1(4):7-11.
    [122]张霖斌,姚振兴.快速模拟退火算法及应用[J].石油地球物理勘探,1997,32(5):654-660.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700