用户名: 密码: 验证码:
光谱发射率在线测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发射率是描述物体热辐射性质的基本参数之一,它在航天航空、军事国防和工农业生产中都具有重要的作用。如卫星的热控、制导与隐身、太阳能利用、红外加热和辐射测温领域中都与材料发射率密不可分。国内外有很多学者从事材料发射率的研究,近年来取得了较大的进步,欧美、日本以及我国都建立了基于傅里叶变换光谱仪的光谱发射率测量装置,解决了实验室内光谱发射率测量问题。现代军事技术、材料科学及能源科学急需能够在线测量发射率的设备,而目前在此方面的研究还很少。
     本文针对多光谱测温和发射率新算法、基于多光谱测温仪的前置反射器的选型和优化设计进行了深入研究,在建立的实验平台基础上进行了实验研究,取得较好的实验结果,主要的研究工作如下:
     1.在多光谱在线测量发射率理论算法上,利用神经网络算法对亮度温度模型和参考温度模型进行仿真,对仿真结果进行了评价;提出了亮度温度转化为目标真实温度的二次辨识算法,与F.Righini博士提供的数据进行了对比,且吻合度良好。
     2.研制了基于前置反射器和光纤式多光谱仪的发射率在线测量装置、实验辅助设施和校准装置。设计并研制了前置反射器、光纤式多光谱仪、加热器及电控装置。测量装置可实现0.4~1.1μm的光谱范围和700~2000℃的非接触性的发射率测量,测量结果的误差小于0.03。
     3.用立体角分比例法构建了前置反射器的理论模型,计算出了前置反射器空腔有效发射率与试件表面发射率的函数关系。通过对光纤式多光谱仪与前置反射器的组合装置的建模,建立了适合此套装置的发射率计算方法。
     4.利用此发射率在线测量装置,进行了不锈钢氧化层和碳化硅的光谱发射率的测量实验。对测量结果进行了误差分析,表明此套发射率测量装置满足在线发射率测量的需要。
     本论文研究成果为进一步研制出实用化发射率在线测量装置奠定了基础。
Emissivity is one of the basic parameters which describe material thermal radiation characteristic. It plays an important role in aviation and aerospace, military and national defense, manufacture of industry and agriculture. The fields of satellite heat control, guiding and hiding, solar energy utilization, infrared heating and thermal radiation thermometry are related to material emissivity. Many scholars from home and abroad have been researching material emissivity and have made a good progress in recent years. Spectral emissivty measurement apparatus based on FT-IR have been constructed in Europe, America, Japan and China. The problem of spectral emissivity measurement in the laboratory has been solved by now. However, it is limited to study on-line emissivity measurement apparatus, which is eager to be obtained in modern military technology, material science and energy science.
     In this dissertation, multi-spectral thermometry and emissivity new algorithm, the development of multi-spectral thermometer, choice of front reflector apparatus and optimization design have been researched thoroughly. The experiment on the basis of experimental platform has been made. Expected experimental results have been abtained, the main research contributions of this dissertation are as follows:
     1. On the aspect of the algorithm of multi-spectral on-line emissivity measurement theory, the brightness temperature model and reference temperature model utilizing neural network algorithm have been simulated, and the results coincide with the data provided by Dr. F.Righini.
     2. Emissivity on-line measurement apparatus based on front reflector apparatus and optical fiber multi-spectral apparatus, experimental auxiliary and calibration apparatus have been developed. Reflector, multi-wavelength based on optical fiber, heater and control apparatus have been designed. The spectral scope of 0.4~1.1μm and non-contact emissivity measurement in the temperature scope of 700~2000℃have been achieved, the error of experimental results is less than 0.03.
     3. Reflector’s theory model with the method of solid angle proportion divided has been constructed, the relation between cavity effective emissivity of reflector and material surface emissivity has been calculated, through the constructing model for combination apparatus of multi-wavelength based on optical fiber and reflector, the calculation method that fits this combination apparatus has been obtained.
     4. Ultilizing this emissivity on-line measurement apparatus, stainless metal and silicon carbide’s spectral emissivity have been measured. The measurement error has been analyzed and the results indicate that the emissivity measurement apparatus satisfys the demand of on-line emissivity measurement.
     The achievement of this dissertation has established foundation for the research of pratical on-line emissivity measurement in the future.
引文
1戎志国,张玉香等.利用南海水面开展我国静止气象卫星红外通道在轨辐射定标.红外与毫米波学报.2007,26(2):97~101
    2 Y. Shuai, S. K. Dong, H. P. Tan. Simulation of the Infrared Radiation Characteristics of High-Temperature Exhaust Plume Including Particles Using the Backward Monte Carlo Method. J. of Quantitative Spectroscopy and Radiative Transfer. 2005, 95(2): 231~240
    3夏新林,艾青,任德鹏.飞机蒙皮红外辐射的瞬态温度场分析.红外与毫米波学报,2007,26(3):174~177
    4 Leire del Campo, et al. New experimental device for infrared spectral directional emissivity measurements in a controlled environment. Review of Scientific Instruments 77, 2006. P1~8
    5黄勇,王浚.二维非线性梯度折射率介质的热辐射特性研究.红外与毫米波报.2009,28(1):38~41
    6奚同庚.固体热物理性质导论——理论和测量.中国计量出版社. 1987,98~110
    7胡古今,洪学鹍等.高反射率周期性铁电多层膜形成机理研究.红外与毫米波学报.2007,26(2):89~91
    8 M. Hori, T. Aoki, T. Tanikawa et al. In-situ Measured Spectral Directional Emissivity of Snow and Ice in the 8-14um Atmospheric Window. Remote Sensing of Environment. 2006, 100: 486~502
    9 Spurr.Robert. A New Approach to the Retrieval of Surface Properties from Earthshine Measurements. J.Of Quantitative Spectroscopy and Radiative Transfer. 2004, 83 (1):15~26
    10张建奇,方小平,红外物理.西安电子科技大学出版社. 2004: 206~209
    11 C. Monte·B. Gutschwager·S. P. Morozova. Radiation Thermometry and Emissivity Measurements Under Vacuum at the PTB. Int J Thermophys. 2008,2~12
    12帅永,董士奎,刘林华.高温含粒子自由流红外辐射特性的反向蒙特卡罗法模拟.2005,24(2):100~104
    13 Howl.An apparatus for the determination of total hemispherical emissivities of metals. British Journal of Applied Physics, 1962,352~360
    14 Cezairliyan, J Laylor. Thermophysical Measurements on 90ti-6al-4v Alloyabove 1450 K Using a Transient (Subsecond) Technique. Journal of Research of the National Bureau of Standards, Section A, Physics and Chemistry. 1977, 81(2-3): 251~256
    15 John P. Kerekes, Kristin-Elke Strackerjan, Carl Salvaggio. Spectral re?ectance and emissivity of man-made surfaces contaminated with environmental effects. Optical Engineering. 2008,47(10):106201(1-10)
    16 Wolfgang Bauer, Alexander Moldenhauer, Hansj ochen Oertel . Thermal radiati on p r operties of differentmetals . I n: Pr oc .of SP IE, 2006; 6205: E 1~E 12
    17 Matsumoto T, Cezairliyan A. Combined Transient and Brief Steady-State Technique for Measuring Hemispherical Total Emissivity of Electrical Conductors at High Temperatures: Application to Tantalum. International Journal of Thermophysics. 1997, 18(6): 1539~1556
    18 Matsumoto T, Cezairliyan A, Basak D. Hemispherical Total Emissivity of Niobium, Molybdenum, and Tungsten at High Temperatures Using a Combined Transient and Brief Steady-State Technique. International Journal of Thermophysics. 1999, 20(3): 943~952
    19 H. Masuda, S. Sasaki, M. Higano et al. Method for the simultianeous measurement of total hemispherical emissivity and specific heat of metals by the transient calorimetric technique. Experimental Heat Transfer. 1991, 4(2): 218~225
    20 Saunders P, Trotter A et al. In-Situ Measurement of Catalyst Tube Emissivity by Means of a Portable Solid Integrating Sphere Reflectometer. Meas. Sci. Technol. 2001, 12: 622~626
    21 Bharadwaj S P,Modest1M F, Riazzi R J . Medium resoluti on transmissi on measurements ofwater vapor at high temperature . Transacti ons of the AS ME, 2006; 128 (4) : 374~381
    22 Fan Yi, Sun Xiao Gang. A Multi-Wavelength Reflectometric Technique for Normal Spectral Emissivity Measurements by a Pulse-Heating Method. International Journal of Thermophysics. 2003, 24(3): 849~857
    23 J. Ishii, A. Ono. Uncertainty Estimation for Emissivity Measurements Near Room Temperature with a Fourier Transforms Spectrometer. Meas. Sci. and Tech. 2001, 12: 2103~2112
    24褚载祥,孙毓星,陈守仁.材料发射率测量技术.红外研究. 1986, 5A: 231~239
    25 Iuchi, Tohru. Method for Simultianoes Measurement of Both Temperature and Emissivity, and its Applications to Steel Processes. Tetsu-To-Haganel Journalof the Iron and Steel Institute of Japan.v65, n1, Japan, 1979, 97-106.
    26 Tohru Iuchi, Tohru Furukawa. Some considerations for a method that simultianeously measures the temperature and emissivity of a metal in a high temperature furnace. Review of Scientific Instruments. 2004,15(12):5326-5332
    27 T. Furukawa and T. Iuchi. Experimental apparatus for radiometric emissivity measurements of metals. REVIEW OF SCIENTIFIC INSTRUMENTS. 2000, 71(7):2843~2847
    28戴景民.辐射测温的发展现状与展望.自动化技术与应用. 2004, 23(3): 2~6
    29 D. R. Lyzenga,“Comparison of WindSat brightness temperatures with two-scale model predictions,”IEEE Trans. Geosci. Remote Sens., 2006,(3):549–559.
    30何小瓦,戴景民,辛春锁等.基于傅里叶光谱仪在高温环境下材料光谱发射率测试技术.宇航材料工艺.2007,(5):13~17
    31 Dai J ingmin, Wang Xinbei, Yuan Guibin . Fourier transfor m s pectrometer for spectral emissivity measurement in the temperature range bet ween 60 and 1500℃. Journal of Physics :Conference Series, 2005,13: 63~66
    32 G. Neuer, G. Jaroma Weiland. Spectral and Total Emissivity of High Temperature Materials. International Journal of Thermophysics. 1998, 19(3): 917~929
    33戴景民.多光谱辐射测温技术研究.哈尔滨工业大学博士论文. 1995: 1~60
    34 CHENG Xiao-fang , FU Tai-ran , FAN Xue-liang. Science in China , Ser . G( Physics , Mechanics & Ast ronomy) , 2005 , 48 (2) : 142.
    35 Tairan Fu , Xiaofang Cheng , et al . Measurement Science & Technology , 2006, 17 : 379.
    36 Sun Xiao Gang, Dai Jing Min. Development of a Special Multiwavelength Pyrometer for Temperature Distribution Measurements in Rocket Engines. International Journal of Thermophysic. 2002, 23(5): 1293~1301
    37 Cong Dacheng, Dai Jingmin, Sun Xiaogang et al. Design of Mid-infrared Multi-Wavelength Radiation Thermometer.红外与毫米波学报. 2000, 19(6): 407~412
    38祝善友,朱迅.温度与发射率分离模型的改进及其敏感性分析.红外与毫米波学报.2006,25(1)71~76
    39 Cezairliyan A. Six-Wavelength Millisecond Resolution Pyrometer. Temp, its Measur. and Contr. in Sci. and Ind.. 1993, 6: 757~762
    40 Ruffino G, Chu Z, Kang S et al. Multi-Wavelength Pyrometer with Photodiode Array. Temp., its Measur. and Contr. in Sci. and Ind.. 1993, 6(2): 807~810
    41 Coppa P, Dai J M, Ruffino G. The Transient Regime of a Multiwavelength Pyrometer. International Journal of Thermophysic. 1993, 14(3): 599~608
    42 Mazikowski, K. Chrzanowski. Non-contact multiband method for emissivity measurement. Infrared Physics&Technology. 2003,(44): 91~99
    43丛大成,戴景民,孙晓刚,褚载祥. RBF网络在多光谱测温中的应用研究.红外与毫米波学报. 2001, 20(2): 97~101
    44 Leonard Hanssen,Sergey Mekhontsev, and Vladimir Khromchenko Infrared Spectral Emissivity Characterization Facility at NIST. Proc. of SPIE Vol. 5405. (2004)1~12
    45 WU Wen-ming, CHENG Lai-fei, ZHANG Li-tong et al. Investigation on Thermal Radition Properties of C/SiC Composites[J]. Journal of Solid Rocket Technology (武文明,成来飞,张立同等. C/SiC复合材料热辐射性能研究.固体火箭技术), 2005, 28(4): 03-307
    46 Y. S. Hong . Acceleration of the convergence speed of evolutionary algorithms using multi-layer neural networks.Engineering Optimization. 2003, 35(1): 91~102
    47 A. Seifter,,K. Boboridis,,and A. W. Obst. Emissivity Measurements on Metallic Surfaces with Various Degrees of Roughness: A Comparison of Laser Polarimetry and Integrating Sphere Reflectometry. International Journal of Thermophysics, 2004,25(2):547~559
    48 Wu Q, Thomson MJ, Chanda A. Tunable diode laser measurements of CO, H2O and temperature near 1.56 mm for steelmaking furnace pollution control and energy efficiency. Metall Mater Trans B 2005.36:53~7.
    49 T. H. Kim, F. J. Maldonado, M. T. Manry. Finding Optimal Neural Network Basis Function Subsets Using the Schmidt Procedure. Proceedings of the International Joint Conference on Neural Networks. 2003, 1: 444~449
    50 Pozzi M, Maiolo J, Memoli F. EAF process optimisation with Techint Technologies. Steel Times Int 2005,29:20~2
    51 B. M Jozien, et al. Burst firing improves the detection of weak signal in spike trains. Neurocomputing. 2003, (52~54): 103~108
    52杨春玲.光谱发射率建模及测量技术研究.哈尔滨工业大学学位论文. 2004, 9
    53 Luca Palchetti,Giovanni Bianchini,Marco Pellegrini. Radiometricperformances of Fourior transform spectrometer for the Radiation Explorer in the Far Infrared(REFIR) space mission.Sensors,Systems,and Next-Generation Satellites VIII, SPIE, 2004,5570:433~444
    54 Sang Heon Han, Seung Wook Baek, Man Young Kim. Transient Raditive Heating Characteristics of Slabs in a Walking Beam Type Reheating Furnace[J]. Int. Journal of heat and mass transfer, 2009, 52: 1005-1011.
    55 BHARADWAJ S P ,MODEST M F. Medium res olution transmission measurements of water vapor at high temperature. ASME J Heat Transfer ,2006 ,108 :374 - 381.
    56林亚萍,金继红.人工神经网络研究进展及其在光谱分析中的应用.化学分析计量. 2004, 13(3): 52~55
    57 Y. Kaneko, Y. Shimizu, J. Ishii. Numerical Estimation of Effective Emissivities of Low-Temperature Blackbody Cavities with Apertgures. Sice Annual Conference in Sapporo. 2004: 1764~1767
    58张锦宗,朱瑜馨. MATLAB神经网络工具箱在森林资源预测中的应用.电脑知识与技术. 2004, 17: 33~35
    59 Shripad P. Mahulikar, Hemant R. Sonawane, G. Arvind Rao. Infrared signature studies of aerospace vechicles[J]. Progress in Aerospace Sciences, 2007, 43: 218-245.
    60 J. Ilonen, J. K. Kamarainen, J. Lampinen. Differential evolution training algorithm for feed-forward neural networks. Neural Processing Letters. 2003, 17(1): 93~105
    61 T. H. Kim, F. J. Maldonado, M. T. Manry. Finding Optimal Neural Network Basis Function Subsets Using the Schmidt Procedure.Proceedings of the International Joint Conference on Neural Networks. 2003, 1: 444~449
    62 H. H. Namarvar, T. W. BerGer. An efficient training algorithm for dynamic synapse neural networks using trust region methods. Neural Networks. 2003, 16(5, 6): 585~591
    63 T. Paulmier, M. Balat-Pichelin, D. Le Que′au, Structural modifications of carbon/carbon composites under high temperature and ion irradiation, Appl. Surf. Sci. 243 (2005) 376~393
    64 M. H. Umari, D. K. Ghodgaonkar, V. V. Varadan, V. K. Varadan,“A free-space calibration technique for the measurement coefficient of planar samples”, IEEE Trans.Geosci. Remote Sens., 2005,43(1):50-58.
    65 LI B.X, YU XJ, LIU LH. Backward Monte Carlo Simulation for Apparent Directional Emissivity of Non-isothermal Semitransparent Slab[J]. JQSRT, 2005, 91: 173-179.
    66李界家,付萍,马斌.模糊神经网络控制在电加热炉温度控制中的应用.电气自动化. 2004, 26(4): 15~17
    67 V. Prokhorov, L. M. Hanssen. Effective Emissivity of a Cylindrical Cavity with an Inclined Bottom: I. Isothermal Cavity. Metrologia. 2004, 41: 421~431
    68路义萍,李炳熙,姜宝成等.等温圆筒型空腔表面辐射传递方向分布特性.哈尔滨工业大学学报. 2004, 36(6): 714~717
    69贾辉,李福田.铝漫反射板200~300nm相对双向反射分布函数的实验研究.光学学报. 2004, 24(2): 230~234
    70张百顺,刘文清,魏庆农等.基于双向反射分布函数实验测量的目标散射特性的分析.光学技术. 2006, 32(2): 180~182
    71赵忠义,齐超,戴景民.多光谱BRDF测量系统转角装置研制.光电工程. 2006, 33(11): 61~64
    72 Zhongyi Zhao, Chao Qi, Jingmin Dai. Design of a multi-spectrum BRDF measurement system. Chinese Optics Letters. 2007, 5(3): 168~171
    73 DU Sheng-Hua, XIA Xin-Lin. Apparent thermal emission of High Temperature Ceramics Submitted to Aerodynamic Heating[J]. J of Engineering Tnermophsics, (杜胜华,夏新林.气动加热下高温陶瓷材料的表观辐射特性.工程热物理学报), 2008, 29(8): 1383-1385
    74段宇宁,原遵东,吴继彧.温度均匀黑体空腔有效发射率近似计算方法(黑体辐射源研究之一),现代计量测试. 2000, 4: 3~8
    75 V. I. Saprisky, A. V. Prokhrov. Calculation of the Effective Emissivity of Specular-diffuse Cavities by the Monte Carlo Method. Metrologia. 1992,29: 9~14
    76田裕鹏.红外检测与诊断技术.化学工业传版社, 2006: 134~142
    77丛大成.红外多光谱测温关键技术的研究.哈尔滨工业大学博士论文. 2001: 1~83
    78 G. TORSELLO, M. LOMASCOLO,A. LICCIULLI. The origin of highly efficient selective emission in rare-earth oxides for thermophotovoltaic applications. Nature Materials. vol3, 2004.632-637
    79 B. M. Jozien. Burst Firing Improves the Detection of Weak Signal in Spike Trains. Neurocomputing. 2003, (52~54): 103~108
    80 R. R. Nigmatullin.Detection of Weak Signals Based on a New Class of Transformations of Random Series. Physica A. 2001, 289: 18~36
    81何军.光纤高温测温系统.现代计量仪器与技术. 2003,10:50~56
    82孙福刚,基于PCI总线的多通道数据采集系统的设计与实现.哈尔滨工程大学硕士论文. 2007:5~11
    83戴逸松微弱信号检测方法及仪器.北京:国防工业出版社, 1997: 36~128
    84吴宗凡,柳美琳,张绍举等.红外与微光技术.国防工业出版社.1998, 6:6~8;17~18
    85 Leonard Hanssen, Sergey Mekhontsev, and Vladimir Khromchenko. Infrared Spectral Emissivity Characterization Facility at NIST. Proc. of SPIE. vol.5405,2004,p1~11
    86刘建科,张海宁,马毅.红外测温中检测强噪声下微弱信号的新途径.物理学报. 2000, 49(1): 106~109
    87 P. Bloembergen, Y. Yamada, B.B. Khlevnoy, P. Jimeno-Largo, in Proceedings of the 9th International Conference on New Developments and Applications in Optical Radiometry, Davos, Switzerland, ed. By J. Groebner (Weltstrahlungszentrum, Davos, Switzerkland, 2005). 283~284
    88 J. Holland, J. Seidel, R. Klein, G. Ulm, A.Migdal,M.Ware, in Experimental Methods in the Physical Sciences, vol. 41, Optical Radiometry, ed. by A.C. Parr, R.U. Datla (Elsevier Academic Press, 2005). 234~235
    89李全臣,蒋月娟.光谱仪器原理.北京理工大学传版社. 1999: 72~78
    90 J. P. Hiernaut, F. Sakuma. Determination of Melting Point and the Emissivity of Refractory Metals with a Six-wavelength Pyrometer. High Temp. -High Pressures.1989, 21: 139~148
    91田理达,毕纯辉,梁斌.红外光纤式辐射测温技术在发电设备中的应用.仪器仪器仪表学报. 2003, 22(2): 57~59
    92 C. M. Juan and J. A. Sobrino,“Feasibility of retrieving land surface temperature from ASTER TIR bands using two-channels algorithms: A case study of agriculture areas,”IEEE Geosci. Remote Sens. Lett., 2007,4(1):60~64
    93周鞠宁,漆新民,袁丽华,高益庆,朱小进.红外双色测温的修正方法.红外技术. 2002, 24(3): 49~54
    94 H. Tonooka, F. Palluconi, S. Hook, and T. Matsunaga,“Vicarious cali-bration of ASTER thermal infrared bands,”IEEE Trans. Geosci. Remote Sens., 2005,43(12):2733~2746.
    95韩新志,刘永.光学系统杂散辐射分析.红外与毫米波学报. 1994, 13 (6):455~460
    96卢小冬.固体火箭发动机羽焰温度场多目标多光谱测量技术研究.哈尔滨工业大学博士学位论文. 1999:52-59
    97林中范,世辐.光谱仪器学.机械工业传版社, 1989: 110-122
    98张宏,戴景民.面黑体辐射源温控系统设计与实现.电机与控制学报. 2006, 10(5): 526~530
    99张宏,戴景民.大口径热管面黑体炉的研制及性能评价.中国计量学院学报. 2006, 17(2): 95~98
    100赵旎,付春仙.一种基于设定值迁移的模糊温度控制系统.洛阳工业高等专科学校学报. 2004, 14(3): 15~16
    101 Gu S, Fu G, Zhang Q. 3500K high frequency induction-heated blackbody source. J. Thermophysics, 1989,3(1):83~85
    102朱文勇.国外红外理论建模内容和方法概述.目标与环境特性研究.1998, 2:49~53
    103 Tohru, Iuchi. Some considerations for a method that simultaneously measures the temperature and emissivity of a metal in a high temperature furnace. REVIEW OF SCIENTIFIC INSTRUMENTS. 2004, 75 (12): 5326~5332.
    104 Y.S. Touloukian, Thermophysical Properties of Matter, Vol. 7: Thermal Radiative Properties, IFI/Plenum, New York, 1970
    105丁振良.误差理论与数据处理.哈尔滨工业大学出版社. 2002: 93~98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700