用户名: 密码: 验证码:
可见—近红外微型空间调制光谱仪关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着市场需求的导向和微细加工技术的发展,光谱仪呈现出微型化趋势。本论文研究了一种工作于可见-近红外波段的新型空间调制微型傅里叶变换光谱仪,其分光干涉系统采用基本的迈克尔逊干涉仪结构,但将两臂的平面反射镜用两个多级微反射镜代替。两个多级微反射镜的不同反射面间存在不同的光程差,此结构免除了动镜扫描系统,使光谱仪的调制方式由时间调制改为空间调制。该光谱仪中无可动部件,使系统具备结构紧凑、稳定性好、实时性高等优点。
     本论文在原结构设计的基础上,采用ASAP、Matlab等专业模拟软件进行了工作过程模拟,并据此优化了系统结构。模拟分析了衍射效应对复原光谱的影响,并据此优化了分束器的尺寸和系统的装调结构。采用Matlab等模拟软件模拟分析了多级微反射镜反射面粗糙度对复原光谱的影响,据此确定了多级微反射镜表面粗糙度的最大容忍值,为多级微反射镜的研究制作提供了参考数据。研究了多级微反射镜的衍射效应对干涉图光强分布的影响,分析了多级微反射镜边界突变引起的噪声,提出了消除边界突变噪声的方法并通过模拟证明了该方法的可靠性。根据结构设计提出了两种多级微反射镜的制作方法:硅的各向异性腐蚀方法和定位生长多层膜方法,针对各种方法设计了实验方案并进行了试验,分别选用硅的各向异性腐蚀方法和定位生长多层膜方法制作出多级微反射镜。
The spectrometer present a trend of microminiaturization in recent years along with the improve of the demand of the market and the development of microfabrication technology. In this paper, a new micro-Fourier transform spectrometer(FTS) working in the visible-near-infrared band is studied, which is based on space modulation. A conventional Michelson-interferometer with the reflect mirrors replaced by micro-multi-step mirrors is used as beam splitting and interference system. Different optical path differences (OPD) are produced by different mirror facets, which eliminates the moving mirror scanning system and changes the modulation mode from time modulation to space modulation. Without moving parts,this spectrometer has advantages such as compact structure, good stability and high real-time.
     On the foundation work of design of the structure of the micro FTS, we simulated the work of the micro FTS with ASAP and Matlab software, and optimazed the structure of the micro FTS after the analysis of the simulation. We modulated the effect of difraction and adjusted the size of beam splitter. We modulated and analysed the effect of the surface roughness of the micro-multi-step mirrors, and hereby decided the biggest roughness that can be tolerated by the system,which provided the standard surface roughness of the micro-multi-step mirrors. We study the effect of the of the diffraction on the intensity distribution in the interferogram, and analysed noise introduced by the interrupt of the continuum of the differection effect on the edge of the interferogram. We advanced the method to eliminate the noise and modulated some examples to prove it. Three methods to fabricate the micro-multi-step mirrors are put forward based on the design of the structure:anisotropic wet-etching of silicon and the deposition of multilayers in fixed areas. Expriments of each methods are designed and carried out and results are analysed. The method of anisotropic
     wet-etching of silicon and deposition of multilayers in fixed areas are chosen after thoughtful considerations. Many experiments are carried out to determine the condition of the experiment, and micro-multi-step mirrors is at last fabricated.
引文
[1]Bambery K R, A Fourier transform infrared microspectroscopic imaging investigation into an animal model exhibiting glioblastoma multiforme [J].Biochemica et Biophysica Acta,2006,1758(1):900-907.
    [2]Nuria F, Anna V, Fourier transform infrared spectroscopy applied to ink characterization of one-penny postage stamps printed 1841-1880[J]. Analytica Chimica Acta,2006,555(3):161-166.
    [3]陆婉珍.近红外光谱仪[J].石油仪器,2001,15(4):30-32.
    [4]吴航行,华建文,王模昌.新型红外空间遥感用傅里叶变换光谱仪[J].红外与激光工程,2004,33(4):397-401.
    [5]刘宏欣,张军,梁静秋,卢锷,陈星旦,微型近红外傅里叶光谱仪[J].光谱学与光谱分析,2006,26(3):299-300.
    [6]鞠挥,吴一辉,微型光谱仪的发展现状[J].光学精密工程,2001,9(4):371-375.
    [7]史俊锋,惠梅,王东生,毛文炜,光谱仪的微型化及其应用[J].光学技术,2003,29(3):13-16.
    [8]Correia J H, Bartek M, High selectivity single-chip spectrometer in silicon for operation at visible part of the spectrum[J]. IEEE,2000,47(6):3-10.
    [9]Wilfried N, Pierre A C, Laurent D, et al. Applications of SOI-based optical MEMS, [J]. Proc. of IEEE,2002,201(8)1-8.
    [10]Rob M, Spectromenters move out of the lab [J]. Laser Focus World,2001,5(2):77-82.
    [11]Lee S S, Lin L Y, Wu M C, Surface micro-machined free space micro optical systems containing three dimensional micro gratings[J]. Appl. Phy. Lett.,1995,67(21), 2135-2137.
    [12]Morris Michael J, Walters Roy A, Miniature optical fiber-based spectrometer employing a compact tandem fiber probe[J]. Proc. of SPIE,1993, 1796(141):4135-4146.
    [13]杨桂荣,微型光谱仪的光谱信号采集与处理[D]:[硕士学位论文].重庆:重庆大学,2002.朱若波,微型光谱仪及其软件系统的研究[D],浙江大学,2006。
    [14]朱若波,微型光谱仪及其软件系统的研究[D]:[硕士学位论文].杭州:浙江大学,2006.
    [15]Yee G M, Hing P A, et al. Miniaturized spectrometer for biochemical analysis[J]. Sensor and Actuators A,1997,58(1):61-66.
    [16]鞠挥,用于生化分析的光谱仪微小型化的研究[D]:[硕士学位论文].长春:长春光学精密机械与物理研究所,2002.
    [17]Wang X L, Acousto tunable filters spectrally modulate light [J]. Laser Focus World, 1992,128:173.
    [18]Dietmar S, Self-focusing phase transmission grating for an integrated optical microspectrometer[J]. Sensors and Actuators A,2001,88(1):1-9.
    [19]Deverse R A, An improved Hadamard encoding mask for multiplexed Raman imaging using single channel detection[J]. Molecular Structure, 2000,521 (1):77-78.
    [20]Rainer R, Ulrich D, Hadamard Imaging Spectrometer with Micro Slit Matrix[J]. Proc. of SPIE,1999,3753(8):141-149.
    [21]Stephen M G, Christine M W, Joseph C W, et al. Staring 2-D Hadamard transform spectral imager[P]. USA. US006996292B1.2006-2-7.
    [22]李全臣,蒋月娟,光谱仪器原理[M].北京:北京理工大学出版社,1999.283-284.
    [23]Jeongsik S, Woo H L, Dan P, Assembled Fourier Transform Micro-spectrometer [J]. Proc. of SPIE,2006,6109(1):1-8.
    [24]Ulrike W, Christian S, Jurgen M, Miniaturized Fourier Transform Spectrometer for the near infrared wavelength regime incorporating an electromagnetic linear actuator[J]. Sensors and Actuators A,2005,123(8):459-467.
    [25]Manzardo, Micro-sized Fourier Spectrometers [D]:[Doctor's degree dissertation]. Switzerland:Univ. Neuchatel.2002.
    [26]王永清,马雯,王海舟等,基于微电子机械系统微型光谱仪的研究与进展[J].冶金分析,2006,26(8):40-46.
    [27]Knipp D, Stiebig H, Bhalotra S R, et al. Miller Thin Film Technology Based Micro-Fourier Spectrometer[J]. Proc. of SPIE,2003,4983(10):127-138.
    [28]张淳民,相里斌,赵葆常,刘良云,干涉成像光谱仪技术的新进展[J].光学技术,2000,26(3):232-234.
    [29]董瑛,相里斌,赵葆常,大孔径静态干涉成像光谱仪的干涉系统分析[J].光学学报,2001,21(3):330-334.
    [30]Boer G, Ruffieux P, Toralf S, et al. Compact liquid-crystal-polymer Fourier-transform spectrometer[J]. Appl. Opt.,2004,43(3):2201-2208.
    [31]Martin B, Morand A, Pierre B, et al. Design of a compact static Fourier transform spectrometer in integrated optics based on a leaky loop structure [J]. Opt. lett. 2009,34(2):583-586.
    [32]赵凯华,光学[M].北京:北京大学出版社,2005.238-240.
    [33]苏显渝,李继陶,信息光学[M].北京:科学出版社,2004.18-20.
    [34]程士宏,高等概率论[M].北京:北京大学出版社,1996.80-85.
    [35]韩昌元,信息光学基础理论及其应用[M].长春:长春出版社,1989.64-68.
    [36]母国光,干涉光谱仪[M].北京:科学技术出版社,1994.66-68.
    [37]Edward G, Apodization and phase Information in Fourier Transform Spectroscopy[J]. Applied Spectroscopy,1973,27(2):87-92.
    [38]Okamoto T, Kawata S, Minami S, Fourier Transform Spectrometer with a Self-Scanned Diode Array[J].Appl. Opt.,1984,23(2):269-273.
    [39]孔延梅,梁静秋,王波,梁中翥,徐大伟,张军。新型空间调制微型傅里叶变换光谱仪的设计与仿真[J].光谱与光谱学分析,2009,29(4):1-4.
    [40]张军,粮食分析中近红外光谱测试技术的应用研究[D]:[硕士学位论文].长春:中科院长春光学精密机械与物理研究所,2005.
    [41]陈文芗,多道光谱检测中CCD响应曲线的校正[J].分析仪器,2004,(4):62-63.
    [42]Thonnard S E, Osterman S N, McCOY R P, et al. Optical calibration of the special sensor ultraviolet limb imager (SSULI)[J]. Proc. of SPIE,1994,2282(1):98-107.
    [43]Muller K D, Wave-front-dividing array interferometers without moving parts for real-time spectroscopy from the IR to the UV[J]. Applied Optics,1995,34(9):1493-1501.
    [44]章小鸽,硅及其氧化物的电化学-表面反应、结构和微加工[M].北京:化学工业出版社.2004.219-238.
    [45]M. Elwenspoek, H. Jansen,姜岩峰译,硅微机械加工技术[M].北京:化学工业出版社.2007.75-83.
    [46]崔铮,微纳米加工技术及其应用[M].北京:高等教育出版社.2005.121-128.
    [47]Michael Quirk, Julian Serda,韩郑生等译.半导体制造技术[M].北京:电子工业出版社.2009.235-246.
    [48]Yanga C R, Chenb P Y, Yanga C H, et al. Effects of various ion-typed surfactants on silicon anisotropic etching properties in KOH and TMAH solutions[J]. Sensors and Actuators A,2005,119(1):271-281.
    [49]Yanga C R, Chenb P Y, Chiou Y C, et al. Effects of mechanical agitation and surfactant additive anisotropic etching in alkaline KOH solution on silicon[J]. Sensors and Actuators A,2005,119(1):263-270.
    [50]Sarro P M, Brida D, et al. Effect of surfactant on surface quality of silicon microstructures etched in saturated TMAHW solutions[J]. Sensors and Actuators A,2000,85(1):340-345
    [51]Sato K, Shikida M, Matsushima Y, et al. Characterization of orientation-dependent etching properties of single-crystal silicon:effects of KOH concentration[J]. Sensors and actuators A,1998,64(1):87-93
    [52]Cho W J, Chin W K, Kuo C T, Effects of alcoholic moderators on anisotropic etching of silicon in aqueous potassium hydroxide solutions[J]. Sensors and Actuators A,2004,116(2):357-368
    [53]Irena Z, Irena B, Silicon anisotropic etching in alkaline solutions I. The geometric description of figures developed under etching Si(100)in various solutions[J]. Sensors and Actuators A,1998,70(2):250-259
    [54]Irena Z, Silicon anisotropic etching in alkaline solutions Ⅱ On the influence of anisotropy on the smoothness of etched surfaces[J]. Sensors and Actuators A,1998,70(2):260-268
    [55]Irena Z, Silicon anisotropic etching in alkaline solutions III:On the possibility of spatial structures forming in the course of Si(100) anisotropic etching in KOH and KOH+IPA solutions[J]. Sensors and Actuators,2000,84(1): 116-125
    [56]Irena Z, Irena B, Kamilla Kotowska, et al. Silicon anisotropic etching in alkaline solutions IV The effect of rganic and inorganic agents on silicon anisotropic etching process[J]. Sensors and Actuators A,2001,87(3):163-171
    [57]Irena B, Irena Z, Silicon anisotropic etching in KOH-isopropanol etchant[J]. Sensors and Actuators A,1995,48(3):229-238
    [58]Irena Z, Malgorzata K, The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions[J]. Sensors and Actuators A,2001,93(2):138-147
    [59]Veenendaal E, Satob K, Shikidab M, et al. Micromorphology of single crystalline silicon surfaces during anisotropic wet chemical etching in KOH and TMAH[J]. Sensors and Actuators A,2001,93(3):219-231
    [60]Calabrese G S, Wrighton M S, Photoelectrochemical reduction of 2-t-butyl-9, 10-anthraquinone at illuminated p-type Si:An approach to the photochemical synthesis of hydrogen peroxide[J]. Electrochem. Soc.,1981,128(5):1014-1018.
    [61]Lee D B, Anisotropic etching of silicon[J]. Appl. Phys.,1969,40(11):4569-4578.
    [62]Bean K E, Anisotropic etching of silicon[J]. Proc. IEEE,1978,25(10):1185-1193.
    [63]Seidel H, Csepregi L, Heuberger A, etal. Anisotropic etching of crystalline silicon in alkaline solutions. I. Orientation dependence and behavior of passivation layer [J]. Electrochem. Soc.,1990,137(11):3612-3626.
    [64]Sato K, Shikita M, Yamashiro T, et al. Anisotropic etching rates of single-crystal silicon for TMAH water solution as a function of crystallographic orientation[J]. Sensors Actuators,1999,73(1):131-137.
    [65]Hesketh P J, Ju C, Gowda S, et al. Surface free energy model of silicon anisotropic etching of[J]. Electrochem. Soc.,1993,140(4):1080-1085.
    [66]W. K. Zwicker and S. K. Kurtz, Anisotropic etching of silicon using electrochemical displacement reactions, in Semiconductor Silicon [J]. Electrochem. Soc.,1973,120(3):315-326.
    [67]Weirauch D F, Correlation of the anisotropic etching of single-crystal silicon sphere and wafers [J]. Appl. Phys.,1975,46(4):1478-1483.
    [68]Tellier C R, Brahim-Bounab A, Anisotropic etching of silicon crystals in KOH solution-Part I. Experimental etched shapes and determination of the dissolution slowness surface [J]. Mater. Sci.,1994,29(2):5953-5971.
    [69]Tellier C R, Brahim-Bounab A, Anisotropic etching of silicon crystals in KOH solution-Part Ⅱ. Theoretical two-dimensional etched shapes:Discussion of the adequation of the dissolution slowness surface[J]. Mater. Sci.,1994, 29(3):6354-6368.
    [70]Kendall D L, Vertical etching of silicon at very high aspect ratios[J]. Mater. Sci.,1979,9 (3):373-403.
    [71]Dyer L D, Grant G J, Tipton C M, etal. A comparison of silicon wafer etching by KOH and acid solutions [J]. Electrochem. Soc.,1989,136(1):3016-3018.
    [72]Peterson K E, Silicon as a mechanical material[J]. Proc. IEEE,1982, 70(5):420-457.
    [73]Tabata 0, Asahi R, Funabashi H, et al. Anisotropic etching of silicon in TMAH solutions[J]. Sensors Actuators A,1992,34(1):51-57.
    [74]Palik E D, Faust J W, Greene R F, Study of the etch-stop mechanism in si li con [J]. Electrochem. Soc.,1982,129(9):2051-2059.
    [75]Zhang Q, Liu L, Li Z, A new approach to convex corner compensation for anisotropic etching[J]. Sensors Actuators A,1996,56(3):251-254.
    [76]Smith R L, Kloeck B, Kinetics of anodic passivation on<111> silicon in KOH[J]. Electrochem. Soc.,1988,135(8):2001-2008.
    [77]Kendall D, A new theory for the anisotropic etching of silicon and some underdeveloped chemical micromachining concepts[J]. Vac. Sci. Technol.,1990, 8(4):3598-3605.
    [78]Allongue P, Kieling V C, Gerischer H, Etching of silicon in KOH solutions. Ⅰ. in situ scanning tunneling microscopic investigation of n-Si (111)[J].Electrochem. Soc.,1993,140(4):1009-1018.
    [79]Smith R L, Kloeck B, DeRooij N, The potential dependence of silicon anisotropic etching in KOH at 60℃[J]. Electroanal. Chem.,1987,238(1):103-113.
    [80]Potzschke R T, Staikov G, Lorenz W J, Electrochemical nanostructuring of n-Si (111) single-crystal faces[J]. Electrochem. Soc.,1999,146(1):141-149.
    [81]Allongue P, Costa V, Gerischer H, Etching in KOH solutions [J]. Electrochem. Soc. 1993,140(4):1018-1026.
    [82]Morinaga H, Suyama M, Ohmi T, Mechanism of metallic particles growth and metal-induced pittings on Si wafer surface in wet chemical processing[J]. Electrochem. Soc.,1994,141 (10):2834-2841.
    [83]P. Jakob and Y. J. Chabal, Chemical etching of vicinal Si (111):Dependence of the surface structure and the hydrogen termination on the pH of the etching solutions, [J]. Chem. Phys.,1991,95(4):2897-2903.
    [84]Elwenspoek M, On the mechanism of anisotropic etching of silicon[J]. Electrochem. Soc.,1993,140(7):2075-2080.
    [85]Wang T, Surve S, Hesketh P J, Anisotropic etching of silicon in rubidium hydroxide[J]. Electrochem. Soc.,1994,141(9):2493-22497.
    [86]Barycka I, Zubel I, Silicon anisotropic etching in KOH-isopropanol etchant[J]. Sensors Actuators A,1995,48(3):229-238.
    [87]Ducso C, Vazsonyi E, Adam M, et al. Porous silicon bulk micromachining for thermally isolated membrane formation[J]. Sensors Actuators A,1997, 60(3):235-239.
    [88]Zavrocky P M, Earles T, Pokrovskiy N L, et al. Fabrication of vertical sidewalls by anisotropic etching of silicon (100) wafers[J]. Electrochem. Soc. 1994,141(11):3182-3188.
    [89]Mayer G K, Offereins H L, Sandamaier H, Fabrication of non-underetched convex corners inanisotropic etching of (100)-silicon in aqueous KOH with respect to novel micromechanical elements [J]. Electrochem. Soc.,1990,137(12):3947-3951.
    [90]Nikpour B, Landsberger L M, Hubbard T J, Concave corner compensation between vertical (010)-(001) planes anisotropically etched in Si (100)[J]. Sensors Actuators A,1998,66(1):299-307.
    [91]Offereins H L, Kuhl K, Methods for the fabrication of convex corners in anisotropic etching of (100) silicon in aqueous KOH[J]. Sensors Actuators A,1991, 29(1):25-27.
    [92]于映,公赵晨,罗仲梓,Al、Au溅射薄膜的剥离技术研究[J].真空科学与技术学报.2005, 25(1):112-114.
    [93]郭占社,吴一辉,孟永钢,AZ4903光刻胶在微电机定子绕组制作中的应用[J].清华大学学报(自然科学版).2005,45(8):1062-1065.
    [94]张晓玉,姚汉民,杜春雷,AZ9260光刻胶制作连续非球面微透镜阵列的研究[J].微细加工技术,2003,(4):22-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700