用户名: 密码: 验证码:
沉管隧道地基砂流法加固的足尺试验及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着社会经济的快速发展,江、河、海峡(湾)两岸城市的发展与交通运输的矛盾日益凸显,建设水下隧道已成为国内外跨河(海)交通载体的一个趋势。沉管隧道以其优越性而成为水下隧道建设的主要型式。砂流法是目前先进的沉管隧道的地基处理方法,应用广泛。前人针对工程实践进行了系列砂流法试验研究并获得了一定的成果,但存在较多模糊甚至是空白之处:缺乏管节上抬、不同施工边界、管节底面粗糙度等对砂流法影响的研究。此外,至今没获得基槽流场分布以及砂盘的扩展过程,无法对砂盘的扩展尺寸、充满度、密实度、水压力等参数给出合理解释,从而制约了砂流法的设计、施工取值。
     针对上述沉管隧道地基砂流法加固技术研究中存在的问题,本文在前人研究的基础上通过大型砂流法足尺模型试验获得了详实的试验数据;探讨了管节上抬、砂盘施工顺序、阻淤措施、管节底面粗糙度等因素对砂盘扩展的影响;分析了砂盘各特征参数与施工参数的关联;结合模型试验所获得的砂盘结构形态,采用数值计算和理论分析解释了砂盘形成、扩展的机理。最后对应给出工程实践建议。本文主要的研究成果和结论为:
     (1)提出了沉管隧道地基加固的砂流法足尺模型试验原则。建造了大型砂流法足尺试验模型系统用以模拟一个砂盘范围内的管节施工;试验模型、试验设备、试验材料、试验条件均能足尺模拟实际工程并指导工程实践选型。研制开发了砂盘探测器并用于试验砂盘的实时探测;改进了原位灌砂法并用于砂盘密实度测试。
     (2)管节抬升过程总体符合指数函数型的上抬位移模式,可分为三个阶段,具有快-慢-快的特点。砂流法致使管节上抬的瞬时跳动幅度不大且基本保持水平抬升状态。管节上抬过程对砂盘扩展的均衡性没有影响,但明显降低了砂盘半径扩展速率,影响充满度。工程实践中需采取压重等有效措施确保管节上抬发生在砂盘扩展至设计半径之后;可通过管节上抬的水压力判别式预测管节上抬临界点,通过管节的上抬量、上抬速率综合判断管节所处的阶段;在设计标高允许的情况下适当利用抬升Ⅰ阶段可减小流缝、流槽的厚度,适当增大了砂盘密实度。
     (3)边界处的砂盘仍能充满基槽。封堵边界使得砂盘各向扩展速度不均,但对该方向的砂盘扩展及砂盘总体扩展趋势没有明显影响。管节短边处的边界封堵可改善砂盘“外突”问题,有利于增大砂盘充满度。边界封堵对压砂系统水压力及模型板底水压力峰值均没有影响,但明显影响封堵侧水压力的波动特征;在一定程度上降低砂盘上层密实度,且使得各层砂盘的密实度在平面分布上的离散性增大;对封堵侧的砂盘密实度没有特别的影响。工程中适当的边界封堵可“迫使”砂盘形成近似矩形砂堆,提高砂盘充满度,节省施工时间;过多的边界则对砂盘不利。
     (4)不同管节底面粗糙度条件下的砂盘尺寸及充满度均较大。粗糙度小的管节底面使得砂盘扩展速度较快,均衡性更佳。工程中应采取充分措施保证管节底面的平整度和光滑度;砂盘尺寸可达850cm以上,设计中可适当增大砂盘半径。
     (5)砂流法过程先后经历了砂盘的“形成”和“扩展”阶段两个主要阶段。“形成”阶段导致砂颗粒的明显分选,“扩展”阶段形成砂盘斜层状纹理结构但分选减弱。砂流法在基槽间隙中形成砂盘、冲积坑、流缝、流槽、斜层状纹理等结构。砂颗粒主要通过“冲积坑—流缝—流槽”进行长距离输送并在砂盘外围形成斜层状纹理,这是砂盘扩展的根本原因。
     (6)流缝、流槽的时空分布决定砂盘各向的输砂量,是影响砂盘扩展均衡性的因素之一。砂盘各向扩展速度随砂盘半径的增大而逐渐出现差异(不均衡扩展),砂盘半径平均扩展趋势随时间呈二次曲线关系。
     (7)砂泵出口水压力不受施工条件及时间影响,仅与砂泵特性有关;管节底各处水压力随砂盘的扩展而上升、波动。管节底中心区域的水压力趋势为在波动中线性增大,峰值出现在试验结束前,也是管节底最大水压力值。
Along with the rapid development of social and economic, rivers, Strait on both sides of theBay urban development and transportation have become increasingly outstanding, theconstruction of underwater tunnel has become a trend at home and abroad across the river (sea)transport carrier. Immersed tube tunnel its superiority and the main types of underwater tunnelconstruction. Sand flow method is advanced immersed tube tunnel foundation treatmentmethod, widely used.Series of sand flow experimental investigation of the previousengineering practice and get some results, but there are even more vague gaps: the lack ofpipe section elevation, different construction boundary, the bottom surface roughness of thepipe section on the sand flow method research.
     In addition, so far no foundation trench flow field distribution and the expansion process ofthe sand tray, sand tray cannot be extended size, full density, water pressure and otherparameters give a reasonable explanation, thereby constraining the sand flow method design,construction take value.
     Problems sand flow method for the foundations of the immersed tube tunnel reinforcementtechnology, this article on the basis of previous studies by large sand flow method scale test ofdetailed experimental data; explore the elevation of the pipe section, the constructionsequence of the sand tray resistance of silt measures, the bottom surface roughness of the pipesection and other factors affect the extension of the sand tray; analysis of the characteristicparameters and construction parameters of the sand tray association; the sand traymorphology obtained by the combination of model test, the use of numerical calculation andtheoretical analysis and interpretation the sand tray formation mechanism of expansionFinally, the corresponding recommendations were given for engineering practice. In thispaper, the findings and conclusions as follow:
     (1)Foundation reinforcement of the immersed tube tunnel by the sand flow method scale testof principle. The construction of large-scale the sand flow method full-scale test model systemto simulate the construction of a sand tray within the pipe section; test model, test equipment,test materials, test conditions can be enough feet to simulate the actual project and guide theselection of engineering practice. Developed a sand tray detectors and for the real-time detection of the test sand tray; improved situ sand replacement method and used for sand traydensity test
     (2)The pipe section uplift the overall process in line with the exponential rising displacementmode, can be divided into three phases, with a fast-slow-fast. The sand flow method toenable the pipe section elevation instantaneous beat modest and basic to maintain the level ofuplift. The elevation of the pipe section has no effect on the balance of sand tray extension,but significantly reduced the growth rate of the sand disk radius, affecting fullness.Engineering practice weights and effective measures to be taken to ensure that the pipesection elevation occurred in the sand tray is extended to the design radius; design elevationto allow the case to the appropriate use of uplift I stage can reduce the flow seam, thethickness of the chute, and increase the density of the sand tray.
     (3)At the boundary of the sand tray still full of foundation trench. Plugging the boundary thesand disk of the uneven pace of expansion, but no significant effect on the direction of thesand tray extension and sand tray overall expansion trend. Short pipe section at the edge ofthe boundary blocking can improve the sand tray "projecting", is conducive to increasing thesand tray full of degrees. The border closure the pressure sand system water pressure and themodel plate bottom water peak pressure has no effect, but significant effect on the blockingside water pressure fluctuation characteristics; reduce to some extent the upper density of thesand tray, and making layers of sand tray the increased density in the plane distribution ofdiscrete; sand rent density is not particularly affected on the closure side. Engineeringappropriate boundary closure can "force" the sand disk formed approximate rectangular Sand,improve the sand tray fullness, save construction time, too many boundaries adverse sandtray.
     (4)Different pipe section bottom surface roughness of sand tray size and fullness. Theroughness of the underside of the pipe section so that the sand tray extension faster, betterbalanced. The project should take adequate measures to ensure the flatness and smoothness ofthe underside of the pipe section; the sand tray size up to850cm, the design may beappropriate to increase the radius of the sand tray.
     (5)The sand flow method process has gone through two main phases of the sand tray "form"and "expansion" phase. The formed phase leads to a clear separation of the sand particles, "extended" phase formation sand tray oblique layered texture, but sorting weakened. Sandflow method in the base slot gap formed sand tray, alluvial pit flow seam, launder, obliquelayered texture structure.
     (6)Flow seam, the spatial and temporal distribution of the chute decided to lose the amountof sand of the sand tray, extended balance one of the factors affecting the sand tray. Sand eachdisk with the sand disk radius increases to the rate of expansion and the gradual emergence ofdifferences (uneven expansion), sand disc radius expansion trends over time showed aquadratic relationship.
     (7)Sand pump outlet water pressure from the construction conditions and the influence oftime, only sand pump characteristics; the pipe section throughout the bottom water pressureincrease with the expansion of the sand tray fluctuations. The pipe section at the end of thecentral area of water pressure trend of increase in the fluctuations in the linear peak before theend of the test, the pipe section at the end of the maximum water pressure.
引文
[1]沉管隧道协会专家组.沉管隧道防水效果[R].1993.
    [2]邓富甲.世界最早的沉管隧道底特津河(The Ditroit River)沉管隧道[J].交通工程科技.2002(3):15-27.
    [3]傅琼阁.沉管隧道的发展与展望[J].中国港湾建设.2004(5).
    [4]陈韶章,任孝思.广州珠江隧道工程简介[C].广州:1998.
    [5]陈韶章,黄国源,韩广禄.珠江沉管隧道的几何设计[J].世界隧道.1996,6:7-11.
    [6]李兴碧,王明洋,钱七虎.沉管隧道的发展与琼州海峡的沉管隧道方案[J].岩土工程界.2003(07):7-11.
    [7]郭建民,魏立新,杨文武.广州市洲头咀隧道工程设计简介[J].现代隧道技术.2008(S1):317-321.
    [8]陈越,沈可.广州市洲头咀隧道工程设计咨询的特点[J].现代隧道技术.2008(S1):322-327.
    [9]魏立新,郭建民,刘宇晨,等.广州市洲头咀隧道工程总体设计[J].城市道桥与防洪.2007(05):14-20.
    [10]宣泽贵,左西尧.广州市最大过江隧道——洲头咀隧道正式开建[J].广东交通.2008(05):26.
    [11]陈韶章,陈越,张弥.沉管隧道设计与施工[M].北京:科学出版社,2002:000000.
    [12]袁伟耀.变截面沉管隧道基础处理物理模拟试验研究[D].广州:华南理工大学,2009.
    [13]赵宏.沉管隧道的发展[J].隧道建设.1995,02:49-59.
    [14]齐藤尚武.沉管隧道基础施工技术综述[C].上海:北京,2003.
    [15]钟辉虹,李树光,刘学山,等.沉管隧道研究综述[J].市政技术.2007,25(6):490-496.
    [16] Rasmussen N. S. Concrete immersed tunnels-forty years experience[J]. Tunnelling and UndergroundSpace Technology.1997:33-45.
    [17] ITA WG. Immersed and floating tunnels[J]. Tunnelling and Underground Space Technology.1993,8(2):119-285.
    [18]铁道部第四设计院.高速铁路长江沉管隧道技术前期研究[R].武汉:铁道部第四设计院,1997.[Z].
    [19]铁道部第四设计院.高速铁路长江沉管隧道技术前期研究[R].武汉:铁道部第四设计院,1997.
    [20]管敏鑫.沉管隧道在越江工程中的地位以及有关的新认识[J].现代隧道技术.2004,41(1):1-3.
    [21] Thomas R. Kuesel. A Bridge—Tunnel Crossing for the Strait of Gibraltar[J]. COLOQUIO DEMADRIO.1995:505-516.
    [22]宋建,陈百玲.沉管隧道穿越江河海湾的优越性[J].现代隧道技术.2005,42(3):28-30,36.
    [23]贺维国,胡慧.广州市仑头-生物岛水底隧道工程方案论证[J].现代隧道技术.2005,42(4):9-19.
    [24]王英,王梦恕.直布罗陀海峡的桥隧通道方案[J].世界隧道.1997(5):36-41
    [25]陈智杰.波浪作用下沉管管段沉放运动的试验与数值研究[D].大连理工大学,2009.
    [26] Gursoy A. Immersed steel tube tunnels:an American Experience[J]. Tunneling and Underground SpaceTechnology.1995,10(4):439-454.
    [27] Grantz W. C. Steel-shell immersed tunnels-forty years of experience[J]. Tunneling and UndergroundSpace Technology.1997,1(12):23-31.
    [28] Richard J. Robbins. Twenty-five years on: the American approach[J]. Tunnels and Tunnelling.1994,26(5):29-32.
    [29] Glerm A. Developments in immersed tunneling in Holland[J]. Tunneling and Underground SpaceTechnology.1995,10(4):455-462.
    [30]程乐群,刘学山,顾冲时.国内外沉管隧道工程发展现状研究[J].水电能源科学.2008,2:112-116.
    [31]铁道部科学研究院西南分院译丛.厄勒海峡沉管隧道会议论文集[M].成都:1997.
    [32] Grantz W Rasmussen N. Chapter9:Catalog of immersed tunnels[J]. Tunnelling and Underground SpaceTechnology.1997,12(2):163-316.
    [33]薛勇.沉管隧道接头研究[J].特种结构.2003,20(3).
    [34] W. W. Yang Joseph Y. C. Lo. Development of Immersed Tube Techniques in Hong Kong[C].上海:2007.
    [35]管敏鑫,严金秀,唐英,等.沉管隧道技术在我国的应用[J].岩石力学与工程学报.1999:1000-1004.
    [36]梅甫良,曾德顺.沉管隧道的进展[J].地下工程与隧道.2002,4:10-15.
    [37]刘千伟,傅德明.采用沉管法施工的宁波常洪隧道[J].上海建设科技.2001,5:14-15.
    [38] Joseph Y. C. The state-of-the-art technology for immersed tube tunnel in Hong Kong and Korea[Z].香港:2008.
    [39]吴维.关于沉管法修建长江水下隧道若干问题的研究[J].现代隧道技术.2003,40(2):1-4.
    [40]周永川,张嘉兴,李顺敏,等.台湾海底隧道之接头与管段变化研析及对策[J].隧道建设.2007(S2):121-126.
    [41]杨红禹,周建民.论我国越江隧道的发展[J].地下空间.2000(03):209-213.
    [42]蒋义康,叶立光.甬江水底隧道沉管段的地基处理[J].地下工程与隧道.1996.
    [43]刘千伟.常洪沉管隧道接头施工技术[J].岩石力学与工程学报.2003,22(S1).
    [44]沈秀芳,乔宗昭,贺春宁.上海外环沉管隧道设计(一)——工程设计、研究综述[J].地下工程与隧道.2003(03):2-5.
    [45]李侃,杨国祥.上海外环线越江沉管隧道工程技术概览[J].世界隧道.2000(05):32-37.
    [46]上海城建集团.外环沉管隧道工程[M].上海:上海科学技术出版社,2005.
    [47]王光辉,李治国,程晓明,等.生物岛—大学城沉管隧道灌砂试验及结果分析[J].隧道建设.2009,29(2):176-181.
    [48]张志安.大型沉管隧道连接段主体结构关键施工技术[J].施工技术.2012(18):113-116.
    [49]王朝辉.内河沉管隧道浮运沉放施工技术[J].施工技术.2012(18):117-120.
    [50]孙钧.地下工程设计理论与实践[M].上海:上海科学技术出版社,1996.
    [51]晏浩.软土地基沉管隧道结构静动力分析及沉降预报研究[D].上海:同济大学,2000.
    [52]柳新华,刘良忠,侯鲜明.国内外跨海通道发展百年回顾与前瞻[J].科技导报.2006,24(11):78-89.
    [53]魏礼群,等.世界跨海通道比较研究[M].北京:社会科学文献出版社,2005:45-48.
    [54] Tan G. L. Holland’s Wijker Tunnel:asubsea solution to traffic congestion[J]. Tunneling and UndergroundSpace Technology.1994,9(1):47-52.
    [55]徐琮垣.东北亚整合交通网发展战略与对策研究[D].清华大学,2010.
    [56] Takashimatsuda Etal. A Study On Damage of Underground Subway Structures During the1995Hyogokennanbu Earthquake[J]. Geotechnical engineer.1995.
    [57]魏立新,郭建民.广州洲头咀隧道工程总体设计[J].第二届全国技术高峰论坛专辑.2007,5:14-19.
    [58]蓝国贤.渤海海峡高速公路水下潜伏隧道浅析[J].地下空间.2002:271-273.
    [59]钱七虎,金丰年,李兴碧.琼州海峡越海隧道可行性研究初步探讨[R].西安:中国人民解放军工程学院,1998.
    [60]谭忠盛,王梦恕,杨小林.海底隧道施工技术及琼州海峡隧道方案的可行性[J].[J].焦作工学院学报(自然科学版).2001:286-291.
    [61]麦继婷,关宝树.琼州海峡悬浮隧道的可行性研究[J].铁道工程学报.2003:93-96.
    [62]吴之明.英吉利海峡隧道与台湾海峡隧道[J].铁道知识.2005:42-44
    [63]陈宝春,刘织,林涵斌.世界海底隧道工程概况与台湾海峡通道构想[J].福州大学学报.2000:51-55
    [64]李梅.中国专家惊世梦想一海底隧道贯通渤海湾[J].中国水运报.2003.
    [65]谭忠盛,王梦恕,张弥.琼州海峡铁路隧道可行性研究探讨[J].岩土工程学报.2001:139一-143一.
    [66]台湾海峡道论证学术研讨会论文集编委会.台湾海峡隧道论证学术研讨会论文集[M].北京:清华大学出版社,2000.
    [67]项贻强,薛静平.悬浮隧道在国内外的研究[J].中外公路.2002:47-52.
    [68] Fujii T. Submersed floating tunnls project in Funka Bay design and execution[Z]. Sandnes,Norway:1996.
    [69] Larssen R. M. Estimation of structural parameters form response measurements on submerged floatingtunnels[D]. Trondheim: Norwegian University of Science and Technolog,1996.
    [70] Ahrens D. Submerged floating tunnels: a concept whose time has arrived[J]. Tunnelling andUnderground Space Technology.1997:317-336.
    [71] Aadnesen L. The case for submerged floating tunnels[J]. Tunnels and Tunnelling International.1999:32-34.
    [72] Remseth S Leira B. J. Okstad. Dynamic response and fluid/structure interaction of submerged floatingtunnel[J]. Computers and structures.1999:659-685.
    [73]麦继婷,关宝树.用Morison方程计算分析悬浮隧道所受波浪力初探[J].石家庄铁道学院学报.2003:1一-4
    [74]项贻强.水下悬浮隧道的空间分析与阶段模型试验[D].杭州:浙江大学,2003.
    [75]麦继婷,罗忠贤,关宝树.流作用下悬浮隧道张力腿的涡激动力响应[J].西南交通大学学报.2004:600-604.
    [76]秦银刚.洋流涡激作用下水中悬浮隧道稳定性的关键技术研究[D].西南交通大学,2009.
    [77]周瑜.大型沉管隧道管段水上施工问题研究[D].上海:2001.
    [78] Grantz W. C. Immersed tunnel settlements-Parts2:case histories[J]. Tunneling and Underground SpaceTechnology.2001:203-210.
    [79]陈贵红.沉管隧道抗震数值分析[D].成都:西南交通大学,2002.
    [80]邵俊江.沉管隧道的沉降预测及其控制研究[D].上海:同济大学,2003.
    [81] Glerum A. Immersed steel tube tunnels:an American experience[J]. Tunnelling and Underground SpaceTechnology.1995:439-453.
    [82]俞国青,傅宗甫.欧美的沉管法隧道[J].水利水电科技进展.2000:11-14.
    [83]吴瑞大,欧政军.沉管隧道管节预制工艺比选[J].中国港湾建设.2012(04):20-24.
    [84]肖晓春.大型沉管隧道管节工厂化预制关键技术[J].隧道建设.2011(06):701-705.
    [85]王吉云.港珠澳大桥岛隧工程沉管隧道施工新技术介绍[J].地下工程与隧道.2011(01):22-26.
    [86]钟伟春.过江隧道混凝土沉管预制新技术[J].施工技术.2012(07):81-84.
    [87] ASTM C. Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride IonPenetration, PA:West Conshohocken,1999
    [88] Metha P. K. Concrete Technology at the Crossroads-Problem and Opportunities-past, Present and Future,Kumar: ACI SP144-1,1994
    [89] Mane S. A. Desai T. K. Kingsbury. Modeling of Restrained Shrinkage Cracking in Concrete Materials,ACI Special Publications, SP206-14,2002
    [90]管敏鑫.沉管隧道接头的研究与设计[J].现代隧道技术.:9-16.
    [91] O Kiyomiya. Earthquake-resistant Design Features of Immersed Tunnels in Japan. Tunnelling andUnderground Space Technology,199510(4):463-475
    [92] Aoki, Yoshinori, Maruyama, Hiroshi.1972. Spectra for earthquake-resistive design of trench type tunnel
    [93] Earthquake Engineering Committee of the Japan Society of Civil Engineers.1988. Earthquake ResistantDesign for Civil Engineering Structures in Japan.189-260.Tokyo:JSCE.
    [94] Hamada, Masanori.1984. Earthquake observation on two submerged tunnels and numerical analysis.Proceedings of8th World Conference on Earthquake Engineering, July1984,Vol.3,673-680.
    [95] Kiyomiya, Osamu, tanabe, Gengo.1994. Dynamic response analysis of immersed tunnel considering ofnon-linearity of flexible joint. Paper presented at the twenty-eight Meeting of the Japan Soil Mechanics andFoundation, July1994
    [96] Kiyomiya, Osamu, et al.1992. Mechanical properites of flexible joint between submerged tunnel elements.Technical Note of the PHRI, No.728(June1992)
    [97] Kiyomiya, Osamu, Noguchi, Takatoshi, Nagasako, Mikihiko.1991. Seismic response of submerged tunnelby a quasi-three-dimensional ground model. Technical Note of the PHRI, No696(March1991,38p
    [98] Kiyomiya, Osamu,Nishizawa, et al.1983. Field Observation and Response Analysis at Kawasaki KohSubmerged Tunnel. Report of the PHRI22:3(Sept.1983),253-299
    [99] Mononobe, N.1924. Considerations on the vertical earthquake motion and some vibration problems.Journal of the Japan Society of Civil Engineering15:5
    [100]韩大建,唐增洪.珠江水下沉管隧道的抗震分析与设计(Ⅱ)──行波法.华南理工大学学报(自然科学版)
    [101]韩大建,周阿兴,黄炎生.珠江水下沉管隧道的抗震分析与设计(Ⅰ)─时程响应法.华南理工大学学报(自然科学版).
    [102]严松宏,高峰,李德武,等.沉管隧道地震响应分析若干问题的研究[J].岩石力学与工程学报.2004(05):846-850.
    [103]严松宏.地下结构随机地震响应分析及其动力可靠度研究[D].西南交通大学,2003.
    [104]诸岧,徐炜家,张鹏,等.上海市外环沉管隧道基础处理技术研究[J].城市道桥与防洪.2008,11(105-107).
    [105]潘永仁,彭俊.上海外环沉管隧道管段基础压砂法施工技术[J].现代隧道技术.2004,41(1):41-45.
    [106]程骁,白云,吉永年.沉管隧道基础灌浆材料性能试验研究[J].试验研究:17
    [107]王毅才.隧道工程(下册)[M].北京:人民交通出版社,1993.
    [108]李志坚.沉管法隧道基础采用灌砂回填技术的探讨[J].西部探矿工程.2002(增):176-177.
    [109]徐维钧.桩基施工手册[M].北京:人民交通出版社,2007.
    [110]张庆贺,高卫平.水域沉管隧道基础处理方法的对比分析[J].岩土力学.2003,24(增):349-352.
    [111] C Paulson Boyd. Tokyo’s Dainikoro under water tubetunnel[J]. Journal of the Construction Division,1980,106(4):489~497
    [112]徐干成,李永盛,孙钧,等.沉管隧道的基础处理、基槽淤积和基础沉降问题[J].世界隧道.1995(3):2-18.
    [113] Bickel, kuesel J. O., T R. Tunnel engineering handbook[M]. Van: Nostrand Reinhold Comp.Inc.,1982.
    [114]管敏鑫,吴鸣权.沉管隧道的压砂基础[J].隧道及地下工程.1994(9).
    [115] Bickel,&kuesel J O. T R. Tunnel Engineering Handbook[M]. Van: Nostrand Reinhold Comp.Inc.,1982.
    [116]朱家祥,白云.沉管隧道基础处理技术[C].北京:2003.
    [117]余暄平,王吉云.宁波常洪隧道桩基础施工技术[J].上海建设科技.2006(4):53-55.
    [118]隗建波,宁茂权,莫阳春,等.港珠澳大桥沉管隧道基础处理方案沉降分析[J].铁道勘测与设计.2011(06):9-12.
    [119]王吉云.港珠澳大桥岛隧工程沉管隧道施工新技术介绍[J].地下工程与隧道.2011(01):22-26.
    [120]陈彬,张冠军,王棋.上海外环隧道基础处理技术研究及应用[Z].上海:北京,2003456-468.
    [121] Ir. H. van Tongeren. The foundation of immersed tunnels[C]//Delta Tunnelling Symposium. Amsterdam:
    [s.n.],1978:48–57.
    [122] Rasumussen. Submerged structure supported on sand pumped underneath structure[C]. Alesund,Norway:1994.
    [123] Gursoy A. immersed Tube Tunnels.Tunnel Engineering Handbook[M]. Culverwell D R.Comparativemerits of steel and concrete forms of tunnel,1997.
    [124] Culverwell D R.Comparative merits of steel and concrete forms of tunnel,1997
    [125] Volbeda J H, Schtieck G L M. Trench Siltation: Origin, Consequences and How to Cope with It[C].Manchester:1989
    [126]陈韶章,任孝思,陈越.珠江沉管隧道基础处理技术[J].现代隧道技术.1996:34-39.
    [127]黎志均,谭洋铭,黎海涛.珠江隧道工程基础灌砂模型试验报告[R].广州:四航工程研究院有限公司,1992.
    [128]诸岧,徐炜家,张鹏,等.上海市外环沉管隧道基础处理技术研究[J].城市道桥与防洪.2008(11).
    [129]潘永仁,彭俊,Saito Naotake.上海外环沉管隧道管段基础压砂法施工技术[J].现代隧道技术.2004(01).
    [130] Rmhild C J Rasmussen N S, Submerged structure supported on sand pumped underneathstructure[C].//Proceedings of the third Symposium on Strait Crossings, Alesund: Norway:1994695~702.
    [131]郑爱元,谭忠盛,李治国.沉管隧道基础灌砂模拟试验[J].中国工程学.2009,11(7):80-84.
    [132]徐干成,李永盛,孙钧,等.沉管隧道的基础处理、基槽淤积和基础沉降问题[J].世界隧道.1995(3):2-18.
    [133]管敏鑫,万晓燕,唐英.沉管隧道的作用、作用组合与工况[J].世界隧道.1999,1.
    [134] Molenaar V. Special Issure Immersed and Floating Tunnels-Chapter3[J]. Construcion TechniquesTunneling and Underground Space Technology.1993,8(2):141-288
    [135]高峰,关宝树.列车荷载对长江沉管隧道的影响[J].铁道学报.2001,23(3)
    [136]傅继阳,吴玖荣,徐安.广州洲头咀沉管隧道地震响应研究[J].湖南大学学报(自然科学版).2008,35(9):23-27.
    [137]曹文宏,乔宗昭,金先龙,等.外环线沉管隧道地震响应的三维数值模拟[J].中国市政工程.2005(1):81-94
    [138]由广明,刘维宁.高速列车振动荷载作用下沉管地基整体稳定性研究[J].中国铁道科学.2004,25(1):81-85.
    [139]王秀英,张弥.地震作用下沉管地基砂土液化可能性研究[J].北方交通大学学报.2003,27(4):32-35.
    [140]王秀英,刘维宁.列车振动作用下沉管地基砂土液化可能性研究[J].铁道学报.2004,26(1):96-100.
    [141]岳湘安,液-固两相流基础[M].石油工业出版社,1996
    [142]吴磊,粗颗粒固液两相流管流的数值模拟[D].杭州电子科技大学硕士学位论文,2010.
    [143] Soo S L, Fluid dynamics of multiphase systems[M]. Waltham: Mass,1967
    [144] Spalding D B. Mathematical models of continuous combustion, emission from continuous combustionsystems[J]. Plenum press,1972.
    [145] M Bowen R, Continuum Physics[M]. Vol. II New York Academic Press,1971.
    [146] G Saffman P. On the boundary condition at the surface of a porous mediun[J]. Stud Appl Math,1971,(93).
    [147]彭光杰,李明安,孔德铭,王正伟.基于固液两相流数值模拟的混流式水轮机磨损预估[J].341~347.
    [148] M Bowen R, Continuum Physics[M]. Vol. II New York Academic Press,1971.
    [149] G Saffman P. On the boundary condition at the surface of a porous mediun[J]. Stud Appl Math,1971,(93).
    [150]潘应康.离心风机叶轮内气固两相流动的理论及数值解法[J].华东工业大学学报,1996,19(18):24-27.
    [151] Jiang, J.S., Law, A.W.K., Cheng, N.S. Two-phase analysis of vertical sediment-laden jets[J]. Eng. Mech.,2005,131(3):308~318
    [152] Virdung T., Rasmuson, A. Hydrodynamic properties of a turbulent confined solid-liquid jet evaluatedusing PIV and CFD[J]. Chem. Eng. Sci.,2007,62(21):5963~5979
    [153] Hall N., Elenany, M., Zhu, D.Z., Rajaratnam, N. Experimental study of sand and slurry jets in water[J].Hydraul. Eng.,2010,136(10):727~738.
    [154] Angst R., Harnack, E., Singh, M., Kraume, M.,"Grid and model dependency of the solid/liquid two phaseCFD simulations of stirred vessels,"11th European conf. on Mixing, Bamberg, Germany,2003, p.347~354.[J].
    [155] Angst R., Mier, P., Kranme, M. Simulation and experimental investigation of the two-phase flow field injet loop reactors[J]. Chem. Ing. Tech.,2001,7(6):659.
    [156] Amir Hossein Azimi S.M.ASCE, David Z. Zhu, M.ASCE, Nallamuthu Rajaratnam, F.ASCE. Effect ofParticle Size on the Characteristics of Sand jets in Water[J]. Journal of Engineering Mechanics,2011,137(12):822~834.
    [157] Soo S L, Fluid dynamics of multiphase systems[M]. Waltham: Mass,1967.
    [158] Hall N., Elenany, M., Zhu, D.Z., Rajaratnam, N. Experimental study of sand and slurry jets in water[J].Hydraul. Eng.,2010,136(10):727~738.
    [159] QIAN ZhongDong HU XiaoQing, HUAI WenXIN, XUE WanYun. Numerical simulation of sedimenterosion by submerged jets using an Eulerian model[J]. SCIENCE CHINA Technological Sciences,2010,153(12):3324~3330
    [160]周大庆,米紫昊,茅媛婷.基于欧拉固液两相流模型的泵站进水侧流场三维模拟[J].农业机械学报,2013,44(1):48~52.
    [161]屈强,马鲁铭,王红武.辐流式二沉池固液两相流数值模拟[J].同济大学学报(自然科学版),2006,34(9):1212~1216.
    [162]王光谦,邵颂东,费祥俊.中国泥沙研究述评[J]. ADVANCES IN WATER SCIENCE,1999,10(3):337~343.
    [163] Du Boys P. Le Rhone et les rivieres a lit affouillable [J]. Annales des Ponts et Chaussees,1879, Series5(18):141~195.
    [164] Einstein H A, The bed load function for sediment transportation in open channels[M]. U.S. Department ofAgriculture,1950
    [165]周志德.20世纪的泥沙运动力学[J].水力学报,2002,(11):74~77..
    [166]钱宁,万兆惠,泥沙运动力学[M].北京:科学出版社,1983..
    [167]张瑞瑾,河流泥沙动力学[M].北京:中国水利水电出版社,1989..
    [168]唐存本.泥沙起动规律[J].水利学报,1963,(2)..
    [169]窦国仁.再论泥沙起动流速[J].泥沙研究,1999,(6):1~8..
    [170]窦国仁.紊流力学[M].北京:人民教育出版社,1981.
    [171]黎志均.珠江隧道工程基础灌砂试验研究[J].中国港湾建设.2001,1:18-20.
    [172] Milligen P. C. V., Gursoy A. Et. chapter1~chapter6[J]. Tunnelling and Underground Space Technology.1993,2.
    [173]工程地质手册编委会.工程地质手册[M].北京:中国建筑工业出版社.1992
    [174]孟高头.土体原位测试机理[M].北京:地质出版社.1984
    [175]杨熙章,土工试验与原理[M].上海:同济大学出版社,1993
    [176] Victor L. Streeter, E. Benjamin Wylie, Keith W. Bedford. Fluid Mechanics [M]. Ninth Edition.Boston:WCB/McGraw–Hill Companies,1998.
    [177]莫海鸿,黎伟,房营光,等.沉管隧道底板面材质对砂流法地基影响的模型试验研究[J].岩石力学与工程学报.2012(07):1452-1461.
    [178]杨小勇.沉管隧道施工初探[J].西部探矿工程,2006,(6):140–142.
    [179]房营光,黎伟,莫海鸿,等.沉管隧道地基砂流法处理的砂盘扩展规律试验与分析[J].岩石力学与工程学报.2012(01):206-216.
    [180] GRANTZ W C,TAN L,BURGER H,et al. Waterproofing and maintenance[J]. Tunnelling andUnderground Space Technology,1997,12(2):111–124.
    [181]马建,黄彦平,黄军.窄间隙矩形通道单相水纵向涡可视化实验研究[J].核动力工程,2011,32(1):85–88.
    [182]赵占广,黄骤屹.关于修建沉管隧道的若干技术问题[J].现代隧道技术.2007,44(4):5-8.
    [183] Saveur, Walter Grantz. Chapter3: Structural design of immersed tunnels.[J] Tunnelling and UndergroundSpace Technology,1997,12(2):93-109.
    [184]王艳宁,熊刚.沉管隧道技术的应用与现状分析[J].现代隧道技术,2007,44(04):1–4.
    [185] L. Gomes. Sydney Harbour tunnel-structure of the immersed tube section[J]. Tunnelling and UndergroundSpace Technology,1991,6(2).221-226
    [186] S S Odgaard,O P Jensen,T Kasper,et al. Design of long immersed tunnel for highway in offshoreconditions Busan-Geoje Fixed Link[J]. Tunnelling and Underground Space Technology,2006,21(3/4)
    [187] L. C. F. Ingerslev. Considerations and strategies behind the design and construction requirements o f theIstanbul Strait immersed tunnel [J]. Tunnelling and Underground Space Technology,2005,20(6):604-608.
    [188] Grantz W C. Immersed tunnel settlements-Parts1: nature of settlements[J]. Tunnelling and UndergroundSpace Technology,2001,16:195-201.
    [189] Saito Naotake, Morris Martin W., Schmidt B., et al. Settlement of immersed tunnels[J]. Journal of theGeotechnical Division,ASCE.1979,105(p):1031-1048.
    [190]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社,2010.
    [191]樊靖郁.横流环境中异重淹没冲击射流研究[D].上海:上海大学,2004.
    [192]董志勇.射流力学[M].北京:科学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700