用户名: 密码: 验证码:
游离粒子磨擦辅助电铸技术应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电铸技术是一种利用电沉积原理制造零件的精密特种加工方法,它具有加工时无切削应力变形、无热影响区、无工具损耗、成形精度高等优点,主要用于传统工艺难以加工的金属零件的制造,已在航空、航天、兵器、汽车等领域获得重要的应用。
     但是,传统的电铸技术在生产应用中仍然存在着一些难以解决的问题,例如,具有复杂型面的零件在电铸时,其外表面质量差,容易产生麻点、针孔和结瘤等问题;镍锰合金电铸时,除了有外表面质量的问题,还存在因元素成分分布不均而导致电铸层开裂的问题;电铸铬层中因内应力的存在,将会产生微裂纹。这些问题的存在一直制约着电铸技术的发展。
     为了解决传统电铸技术在实际生产应用中存在的技术问题,本文利用一种新型的电铸技术——游离粒子磨擦辅助电铸技术,分别对金属镍、镍锰合金和铬进行了电铸试验研究。其具体研究内容包括以下几个方面:
     1.提出了阴极平动式游离粒子磨擦辅助电铸技术,解决了复杂型面零件电铸成形问题,并进行了相关的试验研究。对游离粒子磨擦辅助电铸技术的作用机理进行了深入分析。试验结果和理论分析得出,在电沉积过程中,通过游离粒子的磨擦、挤压和碰撞阴极表面能够有效去除副反应所带来的针孔、麻点等缺陷,强化沉积层;在阴极周围作随机运动的游离粒子能够使阴极表面的电场分布呈现动态效果,起到脉冲电沉积的作用,可以细化晶粒,改善沉积层的性能。
     2.研制了精密电铸设备和平动机构,采用上下进给机构、旋转主轴和平动装置的复合设计方式,并根据实际需求,设计了平动量和平动频率均可在较大范围内调节的平动装置,使机床操作方便,并可用于不同形状和尺寸零件的精密电铸成形。
     3.获得了阴极平动式游离粒子磨擦辅助电铸技术在不同工艺参数下,对镍电铸层的表面形貌、组织结构和性能的影响规律。结果表明,使用阴极平动式游离粒子磨擦辅助电铸技术可以显著提高电铸层外表面质量,所制备镍电铸层的外表面光亮,表面粗糙度低于Ra0.056μm。与传统电铸技术所制备电铸层相比,磨擦辅助电铸技术所制备镍电铸层各晶面的衍射强度降低,择优程度发生改变,晶粒尺寸显著减小,在一定工艺参数范围内晶粒小于150 nm;显微硬度和抗拉强度都提高了将近一倍。并成功电铸成形了形状复杂、表面光亮、显微硬度在380HV-400HV之间的电解工具电极。
     4.针对火箭发动机推力室身部外壁镍锰合金电铸时存在的表面质量、沉积速度和沉积均匀性问题,开展了游离粒子磨擦辅助电铸试验。获得了工艺条件对电铸层的锰含量、微观组织结构及性能的影响规律。结果表明,在较低锰盐浓度和较高温度时,可以在较高电流密度时进行电铸,电铸层的锰含量在0.5wt%以内,在此条件下,可以相应的提高电铸速度;所得到的电铸层表面光亮,平整,无任何缺陷的电铸层,其表面粗糙度低于Ra0.05μm,晶粒得到了明显的细化。与传统电铸相比,其组织结构也发生了明显的改变,(200)面取代了(220)面成为主要择优取向面;显微硬度和抗拉强度都得到了明显提高,电铸层中锰含量分布均匀性得到了提高。并成功制备了表面光亮的火箭发动机推力室身部外壁,对其测试与分析表明,电铸层达到了较好的厚度及成分分布均匀性。
     5.针对飞机起落架“渗气”现象,开展了无裂纹电铸铬的基础试验研究。对电铸铬层中微裂纹产生的机理进行了深入的研究,利用游离粒子的扰动来提高析氢过电位,改变组织结构,减小内应力,从而达到根除裂纹的目的。研究了工艺参数对电铸层的耐蚀性、耐磨性、显微硬度和结合力的影响规律。结果表明:在一定工艺参数下能够得到无裂纹的电铸铬层,经336h盐雾试验后不出现任何腐蚀,显微硬度达到了600HV以上,表面粗糙度在Ra0.1μm以下,结合强度满足要求。
Electroforming is a nontRaditional machining technology in which a metallic part is produced by the electrodeposition of metal onto a cathode mandrel in an electrolytic bath. It has high fidelity of shape reproduction without heat affected zones, cutting force and tool wear, which is mainly used for the metallic parts that are difficult to manufacture for tRaditional machining. Now it has been successfully employed in the areas of aviation, aerospace, weapon, automobile and so on.
     However, there are still some disadvantages in applications of tRaditional electroforming that are difficult to be overcome. For example, poor surface with pinholes and nodules usually appears in the electroforming of complex parts with thin wall. In the process of Ni-Mn alloy electroforming, there is cRack problem due to the nonuniform distribution of element composition besides poor surface. Because of internal stress, micro cRacks will appear in the tRaditional chromium electroforming. As a result, the development of electroforming is seriously restricted.
     A novel electroforming technique named AbRasion-assisted Precision Electroforming (APEF) is utilized to resolve the problems of tRaditional electroforming in the area of applications. Electroforming of nickel, Ni-Mn alloy and chromium is respectively researched in the dissertation. The main works focused on the research and application of APEF as follows:
     1. In order to resolve existing electroforming problems of complex parts with thin wall, APEF with orbital movement cathode was put forward. The mechanism of APEF has been studied by experimental and theoretical analysis. The results showed that the polishing, extruding and impacting with free particles could effectively eliminate the pinholes, pits and nodules caused by hydrogen evolution. Simultaneously, free particles that touch tightly the cathode surface move in Random directions, which can effect the electric field distribution of cathode surface just like pulse electroforming. As a result, bright layers with finer gRains and better properties were obtained.
     2. A new precision electroforming machine and orbital movement device have been developed. Feeding mechanism, rotated main axis and orbital movement device were assembly designed to make the machine easily be opeRated. Particularly, orbital movement device with larger orbital moving amplitude and frequency was designed to expand the scope of electroforming objective.
     3. Nickel electroforming by APEF with orbital movement cathode has been researched. The morphology, microstructure and properties of nickel electroformed with various processing paRameters were studied. The results showed that the APEF can observably improve the surface quality, and produce a bright nickel deposit with surface roughness of less than Ra 0.056μm. The degree of preferential orientation notably decreased and each preferential orientation changed, the gRain size obviously decreased less than 150nm. Both micro hardness and tensile strength of the deposits could be increased by double in contRast with the sample produced by tRaditional electroforming methods. Based on the experimental results, complex blade cathodes with smooth surface and higher micro hardness Ranging from 380HV to 400HV were produced successfully.
     4. In order to resolve the existing problems of surface quality, electroforming Rate and nonuniform distribution of element composition on the outer shell of thrust chamber of rocket engine, experiments of Ni-Mn alloy electroforming using APEF were carried out. The manganese contents, microstructure and properties of the Ni-Mn deposits electroformed with various processing paRameters were studied. The experimental results showed that higher current density could be used and the manganese content could be controlled less than 0.5wt% under the condition of low concentRation manganese salt and high tempeRature. The sample produced by APEF was bright and smooth without any defects; the surface roughness was less than Ra 0.05μm and the gRain sizes were refined. Compared with the sample electroformed with tRaditional method, the microstructure changed obviously among which the crystal of (200) is preferential orientation instead of (220) preferential orientation. The micro hardness and tensile strength could be increased too. The bright deposition layers of electroforming Ni-Mn alloy used for the outer shell of thrust chamber of rocket engine were produced successfully with better thickness and uniform distribution of element composition.
     5. Experimental research of cRack-free chromium electroforming was carried out aimed to permeability gas phenomenon. The geneRation mechanism of micro cRacks was carefully studied. The disturbing of free particles can increase the overpotential of hydrogen evolution, change the microstructure and decrease the internal stress. Therefore micro cRacks in the coating can be eliminated. The corrosion resistance, wear resistance, micro hardness and bonding strength of the chromium coating electroformed with various processing paRameters were studied. The experimental results showed that cRack-free chromium coating without any corrosion after 336 hours neutRal salt fog spRay test can be obtained, the micro hardness was above 600HV, the surface roughness was less than Ra 0.1μm and the bonding strength met the requirement.
引文
[1]周绍民.金属电沉积——原理与研究方法.上海:上海科学技术出版社, 1987
    [2]ВансовскаяКМ,ВолянюкГА.工业电铸(林能春,邓传玉译).北京:兵器工业出版社, 1991
    [3]СадаковГА.电铸技术(陈钧武,江永安译).北京:兵器工业出版社, 1992
    [4]覃奇贤,郭鹤桐,刘淑兰,等.电镀原理与工艺.天津:科学技术出版社, 1993
    [5]黄子勋,吴纯素.电镀理论.北京:中国农业机械出版社, 1982
    [6]李荻.电化学原理.北京:北京航空航天大学出版社, 1999
    [7]刘晋春,赵家齐,等.特种加工.北京:机械工业出版社, 1997
    [8]向国朴.脉冲电镀的理论与应用.天津:天津科学技术出版社, 1989
    [9]安茂忠.电镀理论与技术.哈尔滨:哈尔滨工业大学出版社, 2004.
    [10] Silaimani SM, John S. Review on recent advances in electroforming during the last decade. Bulletin of electrochemistry, 2001, 17(12): 553-560
    [11] McGeough J A, Leu M, Rajurkar K P, et al. Electroforming Process and Application to Micro/macro Manufacturing, Annals of the CIRP, 2001, 50(2): 499-514
    [12]赵剑峰,朱荻,云乃彰.精密模具电铸工艺研究.模具工业, 1997, (6): 41-44
    [13]王伊卿,唐一平.电铸与电弧喷涂相结合的模具制造方法.材料工程, 2001, (6): 30-32
    [14]王文忠.电铸技术及其应用.电镀与涂饰, 1998, 17(1): 36-39
    [15]李健心.电铸模具的制作工艺.机械制造, 2001, 39 (3): 13-14
    [16]封万起,韩秀文,等.来复反射器注塑模具电铸工艺的研究.电镀与精饰, 2000, 22(5): 5-9
    [17]万斌,周云.电铸镍在激光模压全息中的应用.南京师范大学学报(自然科学版), 1996, 19 (3): 43-45
    [18]葛宏伟,裴敏,等.激光模压彩虹全息图的制作原理及工艺.华中理工大学学报,1997, 25 (9): 57-59
    [19]陈万金,孙颖.全息模压模板电铸工艺研究,材料保护,2001, 34(12): 46-47
    [20]刘国球,胡平信.液体火箭发动机技术的回顾与展望.推进技术, 1998, 19(4): 2-6
    [21] John S, VeeRamani P and Srinivasan K N. Electroforming Process for the Fabrication of Cryogenic Rocket Engine Thrust Chamber.18th International Cryogenic Engineering Conference (ICEC 18), Mumbai, India, February 21-25, 2000: 675-678
    [22] Thangavelu P R, VeeRamani P and Srinivasan K N, et al. Copper Electroforming of CryogenicUpper Stage Main Engine. Bulletin of Electrochemistry, 2000, 16(11): 493-496
    [23]程茶园,邓兴峰等.大型电铸推力室激光全息检验研究.第十届全国激光检测应用技术与学术交流会, 2000: 20-21
    [24]宁建华.电铸成型的Ir/Re火箭发动机燃烧室. 2001年中国机械工程学会年会论文集(特种加工技术),北京:机械工业出版社, 2001: 260-263
    [25]孙起.电铸药型罩研究进展与分析综述.兵工学报, 2000, 21 (增刊): 86-88
    [26]范爱玲.电铸超细晶材料的微观组织、性能及超高速变形机理的探讨[硕士学位论文].北京:北京科技大学, 2002
    [27] Tian W H, Gao H Y and Fan Ai L. Microstructure and Texture of Electroformed Copper Liners of Shaped Charges. Journal of University of Science and Technology Beijing, 2002, 9 (4): 265-268
    [28]胡士廉,田文怀,等.电铸药型罩的电子背散射衍射分析.兵器材料科学与工程, 2000, 23 (4): 51-54
    [29]伊福廷,晋明,等.电铸在LIGA技术中的应用.微细加工技术, 1995, (3): 49-52
    [30] Chou M C, Yang H and Yeh S H. Microcomposite Electroforming for LIGA Technology. Microsystem Technologies, 2001, 7 (1): 36-39
    [31]陈英俊,徐峰林,宣明.用于微机械工艺的精密电铸设备.光学精密工程, 1995, 3 (3): 60-63
    [32]毛敏耀,王效东,等.一种二次自对准的镍微静电马达.功能材料与器件学报, 1996, 2 (3): 147-151
    [33]彭良强,伊福廷,等.大面积微细结构的电火花加工.航空制造技术, 2002, (5): 47-48
    [34] Yeh S H, Liue C Y and Wang J W, et al. Microcomposite Electroforming for MEMS Technology. 1997 Symposium on Micromachining and Microfabrication, Austin, Texas, USA, 1997: 82-90
    [35] Malek C K, Thomas L. High-aspect-Ratio Electroformed Ni-Co Microstructures with Improved Mold Adhesion Using a LIGA-like Process and a Novolak Sublayer. Design, Test, IntegRation, and Packaging of MEMS/MOEMS Meeting, Paris, FRance, 2000: 484-491
    [36] L?chel B, Maciossek A. Electrodeposited Magnetic Alloys for Surface Micromachining. Journal of Electrochemical Society, 1996, 143 (10): 3343-3347
    [37] Jang H, Lee D and Ryong K. Fabrication of the Nickel Microstructure Using UV-LIGA. Journal of Korean Institute of Metal and Materials, 2002, 40 (5): 537-544
    [38]朱增伟.磨擦辅助精密电铸技术的研究及应用[博士学位论文]南京:南京航空航天大学, 2007 http://www.wjw.cn
    [39] John M. Kazaroff. New method of making advanced tube-bundle rocket thrust chambers. NASA. 1990
    [40]府大兴,孙毅红.波导组件的组合电铸及焊接工艺研究.电子机械工程, 2001, (3): 49-52
    [41]李亭举,邹受殷.毫米波导器件电铸技术.航天工艺, 1998, (4): 18-19
    [42]刘苏南.预埋件与芯模镶拼组合整体电铸工艺技术.电子机械工程, 1998, (6): 47-53
    [43]叶贤强.组合式微波器件电铸技术的研究.表面技术, 2000, 29 (4): 39-40
    [44] Zhu D, Qu N S, Chan K C. Development of Joint Electroforming Technology. Journal of Materials Processing Technology, 1997, 63: 844-847
    [45]朱荻,傅琼华.组合式电铸技术的试验研究.航空工艺技术, 1996, (1): 3-5
    [46]范晖,田宗军,黄因慧,等.换向电流在叠层模板电沉积中的研究和应用.华南理工大学学报, 2009, 37(9): 117~122.
    [47] Bocking C, Bennett G and Dover S. The Use of Electroforming for Engineering Tool Production. TRansactions of the Institute of Metal Finishing, 1998, 76 (1): 64-68
    [48] Yang B, Leu M C. IntegRation of Rapid Prototyping and Electroforming for Tooling Application. Annals of the CIRP, 1999, 48 (1): 119-122
    [49]郭东明,王晓明等.面向快速制造的特种加工技术.中国机械工程,2000, 11(1-2): 206-211
    [50]吴安德.数控喷射电铸技术研究[博士学位论文].南京:南京航空航天大学, 2001
    [51]吕益艳,王帮峰,吴安德,等.发展中的电铸技术.电加工与模具. 2000, 4: 44-46
    [52] Datta M, Landolt D, Fundamental Aspects and Applications of Electrochemical Microfabrication, Electrochimicacta, 2000, 45: 2535-2558
    [53]田中群,孙建军.微系统与电化学.电化学, 2000, 6(1): 1-9
    [54]梁静秋,姚劲松. LIGA技术基础研究,光学精密工程, 2000, 8(1): 38-41
    [55] Qu W, Wenzel C, Gerlach G. Fabrication of a 3D Differentical-capacitive AcceleRation Sensor by UV-LiGA. Sensors and Actuators A: Physical, 1999, 77(1): 14-20
    [56] El-Giar E M, Said R A, Bridges G E, et al. Localized electrochemical deposition of copper microstrutures. Journal of the Electrochemical Society, 2000, 147(2): 586-591
    [57] Takahata K, Gianchandani Y B. Batch Mode Micro-electro-discharge Machining. Journal of Microelectromechanical System. 2002, 11: 102-110
    [58] Cohen A, Zhang G, Tseng FG, et al.EFAB: Rapid, Low-cost Desktop Micromachining of High Aspect Ratio True 3-D MEMS. Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), Piscataway: IEEE, 1999: 244-251
    [59] Madden J D, Hunter I W. Three-dimensional Microfabrication by Localized ElectrochemicalDeposition. Journal of Microelectromechanical System. 1996, 5: 24-32
    [60] Andrew S.Holmes.Laser processes for MEMS manufacture.RIKEN Review No.43 (Focused on 2nd International Symposium on Laser Precision Microfabrication (LPM2001)): 63-69
    [61]沈蓓军,王润文,路敦武,等.激光LIGA工艺制作微机械元件.仪器仪表学报, 1999,20(4):109-111
    [62] Chii-Rong Yang,Yu-Sheng Hsieh,Guang-Yeu Hwang.Photoablation chaRacteristics of novel polyimides synthesized for high-aspect-Ratio excimer laser LIGA process . Journal of Micromechanics and Microengineering, 2005, 14 (4):480-489
    [63] Yunn-Shiuan Liao,Ying-Ting Chen.Precision fabrication of an arRayed micro metal probe by the laser-LIGA process.Journal of Micromechanics and Microengineering, 2005, 15(12):2433-2440
    [64] Cheng Y, Shew B Y, Chyu M K, et al. UltRa-deep LIGA Process and its Application. Nuclearinstruments and Methods in Physics Research A, 2001, (464-468): 1192-1197
    [65] Chung S J, Hein H, Mohr J, et al.LIGA Technology Today and its Industrial Application. Microrobotics and Microassembly II, BRadley J.Nelson, Proceedings of SPIE.2000, (4194): 44-54
    [66] Cheng C M, Chen R H.Key issues in fabricating microstructures with high aspect Ratios by using deep X-Ray lithogRaphy.Microelectronic Engineering, 2004, (71): 335-342
    [67] F Yi, J Zhang, C Xie, et al.. Activities of LIGA and nano LIGA technologies at BSRF. Journal of physics: Conference series, 2006, 34: 865-869
    [68] Wolfgang Ehrfeld.Electrochemistry and Microsystems. Electrochimica Acta, 2003,48(20-22):2857-2868
    [69]明平美,朱荻,胡洋洋,等.基于UV-LIGA技术制造微结构器件试验研究.中国机械工程,2006, 17(21): 2216-2220
    [70] Yunn-Shiuan Liao, Ying-Ting Chen.Precision fabrication of an arRayed micro metal probe by the laser-LIGA process.Journal of Micromechanics and Microengineering,2005,15(12):2433-2440
    [71]隋丽,石庚辰. EFAB加工技术及其在微机电系统中的应用. 2007, 23(2): 25-30
    [72] Microfabrica Inc.. Going Beyond Silicon MEMS with EFAB Technology. White Paper of Microfabrica Inc., 2004
    [73] Evans John D, Bang Christopher. A demonstRation of EFABTM as a fundamental shift in the way microdevices are manufactured. Proceedings of IMECE, New Orleans, Louisiana, USA,2002, 351-354
    [74] John M. Kazaroff, Albert J. Pavli, and Glenn A. Malone. New Method of Making Advanced Tube-Bundle Rocket Thrust Chambers. NASA TM-103617,1990
    [75]覃奇贤,封万起,赵志强.新型电铸镍电解液的研制.电镀与精饰, 2002, 24(5): 13-16
    [76]马胜利,井晓天.含硫添加剂含量对电铸镍沉积层组织和性能的影响.理化检验-物理分册, 1997, 33(9): 27-29
    [77] Dennis J K, Such T E. Nickel and chromium plating, London: Butterworth & Co Ltd, 1986
    [78]赵剑峰.脉冲电流电铸的试验研究[硕士学位论文].南京:南京航空航天大学, 1996
    [79]李伟华.可反向电流脉冲与扫描沉积电铸镍新技术.机械设计与制造,2000, (2): 74-75
    [80]解西锋.高频脉冲电铸电源的试验研究[硕士学位论文].南京:南京航空航天大学, 2003
    [81]赵剑峰,朱荻.脉冲电流电铸技术的试验研究.航空工艺技术, 1996, (5): 5-7
    [82] Wong K P, Yue T M and Chan K C. Modeling of Electrocrystallization for Pulse Current Electroforming of Nickel. Applied Surface Science, 2001, 178 (1-4): 178-189
    [83] Qu N S, Chan K C, Zhu D. Surface Roughening in Pulse Current and Pulse Reverse Current Electroforming of Nickel. Surface & Coatings Technology, 1997, 91(3): 220-224
    [84] KRause A, Uhlemann M, Gebert A, et a1.The effect of magnetic fields on the electrodepositk-n of cobalt. Electrochimica Acta, 2004, 49: 4127-4134
    [85]明平美. UV-LIGA-微细电火花加工组合制造技术基础研究[博士学位论文].南京:南京航空航天大学, 2006
    [86]李铭华,袁诗璞,等.高速电镀.成都:四川人民出版社, 1980
    [87]章葆澄,郑金亮.激光对镀膜过程及其性能的影响.新技术新工艺, 1999, (4): 37-39
    [88]徐庆仁.激光强化电镀.航空制造工程, 1989, (4): 24
    [89]胡伟南.波音飞机起落架轮轴镀铬修复工艺.材料保护, 1999, 32(5):12
    [90]程明学,赵德芳.飞机起落架减震支柱漏油故障分析及修复工艺.液压气动与密封, 2002,1: 47-48
    [91]刘佑厚,苏育龙,王宇.镀铬层气密性研究.材料保护, 2002, 35(1):19-20
    [92]周旭,张璞.运输机起落架减震支柱内筒铬层渗漏分析及修复.航空工艺技术.48-53
    [93]同智宽,王晓平.苏二七飞机起落架修理技术探讨.空军装备, 2003,7:10-11
    [94]王晓平.金刚石挤压技术在飞机起落架表面强化工艺的应用.航空工程与维修, 2001, 2:36-37
    [95] Paul S, JayaRaman N. Mitigation of SCC and Corrosion Fatigue Failures in 300M Landing Gear Steel Using Mechanical Suppression, Proceedings of the 6th AircRaft Corrosion WorkshopAugust 2004:24-27
    [96] Perrin G Q. Evaluation of Unichrome CF-500 CRack-free Chromium Electroplating Process, AD270425
    [97]王心言,郑殿彬.用液体抛光法消除铬层渗气.航空工艺技术,38-40
    [98]陈名华,胡进,汪定江,等.飞机起落架的喷丸-电刷镀复合修复工艺研究.第二届中国航空学会青年科技论坛丈集, 489-493
    [99] Turns E W. Process-plating-cRack-free Chromium, CF-500, Physical and Chemical Properties, AD272106
    [100] Heydarzadeh Sohi M, Kashi A A, Hadavi S M M. CompaRative Tribological Study of Hard and CRack-free Electrodeposited Chromium Coatings, Journal of Materials Processing Technology, 138 (2003): 219-222
    [101] Saiddington J C, Hoey G R. CRack-free Chromium from Conventional Plating Baths. the 61st Annual Technical Conference,1974(61)
    [102] Mark D.Miller. the Electrodeposition of Low ContRaction Chromium Using High/Low Current Pulsing, AD-A264475
    [103] Golodnitsky D, Gudin N V and Volyanuk G. A. Cathode Process in Nickel-cobalt Alloy Deposition from Sulfamate Electrolytes-Application to Electroforming. Plating and Surface Finishing, 1998, 85 (2): 65-73
    [104]王伊卿,赵文轸,等. Ni-Co合金电铸工艺及性能研究.兵器材料科学与工程, 2000, 23 (3): 39-43
    [105]候光煦.脉冲电流电铸Ni-P镀层之磨润特性研究[博士学位论文].台湾:国立中央大学,2007
    [106] Stephenson W B. Development and Utilization of a High Strength Alloy for Electroforming. Plating, 1966, 53 (2): 183-192
    [107] Wearmouth W R, Belt K C. Electroforming With Heat-Resistant, Sulfur-Hardened Nickel. Plating and Surface Finishing, 1979, 66 (10): 53-57
    [108] Malone G A. New Developments in Electroformed Nickel-Based StructuRal Alloys. Plating and Surface Finishing, 1987, 74 (1): 50-56
    [109] Atanassov N, Mitreva V. Electrodeposition and Properties of Nickel-Manganese Layers. Surface and Coatings Technology, 1996, 78: 144-149
    [110] Atanassov N, Schils H W. Influence of StructuRal PaRameters on the Properties of Electrolytic Ni-Mn-S Deposits. Journal of Applied Electrochemistry, 1999, 29: 51-57
    [111] Atanassov N, Schils H W. Structure Changes and Formation of Bunsenite (NiO) atRecrystallization of Electrolytically Deposited Ni-Mn-S Layers. Plating and Surface Finishing, 1998, 85 (6): 112-116
    [112] Stephen A, Ilango M and NagaRajan T et al. Microstructure of Electrodeposited Ni-Mn Coatings. TRansactions of the Institute of Metal Finishing, 1998, 76 (3): 111-113
    [113] Ananth M V. Corrosion Studies on Electrodeposited Nickel-Manganese Coatings. TRansactions of the Institute of Metal Finishing, 1997, 75 (6): 224-227
    [114] Stephen A, Ananth M V and RavichandRan V. Corrosion Behaviour of Electrodeposited Ni-Mn Alloys-Electrochemical Impedance Measurements. Anti-Corrosion Methods and Materials, 1999, 46 (2): 117-121
    [115] Stephen A, Ananth M V. Magnetic Properties of Electrodeposited Nickel-Manganese Alloys: Effect of Ni-Mn Bath Ratio. Journal of Applied Electrochemistry, 2000, 30: 1313-1316
    [116] Tang A J, Liu Z Q. Deformations of Thin-walled Plate Due to Static End Milling Force. Journal of Materials Processing Technology, 2008, 206:345-351
    [117] Rodolfo E. Haber, Jose E. Jiménez. An investigation of tool-wear monitoring in a high-speed machining process. Sensors and Actuators, 2004, 116:539-545
    [118] Yang N Y C, Headley T J , Kelly J J. Metallurgy of high strength Ni-Mn microsystems fabricated by elctrodeposition. Scripta Materialia, 2004, 51: 761~766
    [119] Dini J W, Johnson H R and West L A. On the High TempeRature Ductility Properties of Electrodeposited Sulfamate Nickel. Plating and Surface Finishing, 1978, 65 (2): 36-39
    [120] Malone G A, Winkelman D M. High Performance Alloy Electroforming. NASA- N89-16041, 1989
    [121]刘宇.电铸镍锰合金的应用研究[硕士学位论文].哈尔滨:哈尔滨工业大学,1999
    [122]杨建明.镍锰合金电铸技术研究[博士学位论文].南京:南京航空航天大学, 2003
    [123] John M. Kazaroff, Albert J. Pavli, and Glenn A. Malone. New Method of Making Advanced Tube-Bundle Rocket Thrust Chambers. NASA TM-103617,1990
    [124] Jayakrishnan S, Dhayan K and Krishnan R M et al. Metal Distribution in Electroplating of Nickel and Chromium. TRansactions of the Institute of Metal Finishing, 1998, 76 (3): 90-93
    [125]李健心.提高电铸层均匀性的有效途径.金属成形工艺,1999, 17 (6): 31-32
    [126]余承业.特种加工新技术.北京:国防工业出版社, 1995
    [127] Chou M C, Yang H and Yeh S H. Microcomposite Electroforming for LIGA Technology. Microsystem Technologies, 2001, 7 (1): 36-39
    [128] John S, Ananth V and Vasudevan T. Improving the Deposit Distribution During Electroformingof Complicated Shapes. Bulletin of Electrochemistry, 1999, 15(5-6): 202-204
    [129]韩滨秀.旋转刷镀—镀铬新工艺.北京:机械工业出版社, 1985
    [130]余胜东.阴极平动式磨擦辅助精密电铸的研究与应用[硕士学位论文].南京:南京航空航天大学, 2009
    [131] Meyers M A, MishRa A, Benson DJ. Mechanical properties of nanocrystalline materials. Progress in Materials Science, 2006, 51(4): 427-556
    [132]桂立丰,唐汝钧.机械工程材料测试手册(物理金相卷).辽宁:辽宁科学技术出版社,1999.
    [133] Suneel S . Intelligent tool path correction for improving profile accuRacy in CNC turning.International Journal Proceding Research, 2000, 38:3181-3202
    [134] Ho K H, Newman S T, State of the art Electrical Discharge Machining (EDM). International Journal of Machine Tools & Manufacture, 2003, 43:1287-1300
    [135]文小平.航天技术导论.湖南:国防科技大学出版社, 1987
    [136]邓景云.电铸镍与不锈钢焊接接头力学性能的研究.宇航材料工艺, 1991,20 (1): 46-50
    [137]鹿安理,任家烈等.电铸镍焊接热影响区低强区形成的研究.宇航材料工艺,1994, 23 (5): 17-18
    [138]丁新玲.液体火箭发动机制造技术发展现状.航天制造技术, 2005, 6: 13-17
    [139] John S, VeeRamani P, Srinivasan K N. Electroforming Process for the Fabrication of Cryogenic Rocket Engine Thrust Chamber. ICEC 18, Mumbai, India, 2000: 675-678
    [140] Thangavelu P R, VeeRamani P, Srinivasan K N, et al. Copper Electroforming of Cryogenic Upper Stage Main Engine. Bulletin of Electrochemistry, 2000, 16(11): 493-496
    [141] Malone G A, Winkelman D M. High Performance Alloy Electroforming. NASA- N89-16041, 1989
    [142]屠振密,李宁,安茂忠,等.电镀合金实用技术.北京:国防工业出版社, 2007
    [143]刘锐琛.飞机起落架强度设计指南.成都:四川科学技术出版社, 1989
    [144]胡如南,陈松祺.实用镀铬技术.北京:国防工业出版社, 2005
    [145]卢柯,卢磊.金属纳米力学性能的研究进展.金属学报,2000, 36(8): 785-789

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700