用户名: 密码: 验证码:
水库大坝退役的多准则决策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
退役是水库大坝生命周期的一个重要阶段,是在我国水库大坝病险老化、功能丧失、经济效益衰退以及生态系统退化的背景下出现的必然需求。截至2000年,我国已退役水库大坝1 600多座。随着水库大坝老化、公众风险和生态环境意识的增强,对水库大坝退役的需求将越来越大。然而,我国的水库大坝退役工作却进展缓慢,这是由于水库大坝退役决策本身的复杂性,加上我国缺乏系统完整的水库大坝退役决策方法造成的。开展水库大坝退役决策研究是保障我国水库大坝退役科学决策、促进退役工作开展的迫切需求。
     本研究针对城市化地区的中小型病险水库,基于多准则决策、洪水风险评估以及生态系统服务价值评估的理论,构建符合我国实际情况的、系统完整的水库大坝退役决策的方法。选择网络分析方法(ANP)构建由收益、成本和风险3个子网络组成的水库大坝退役决策的ANP/BCR模型。除了具有ANP方法定性评价的传统优势外,该模型还强调整合水库大坝退役的定量研究成果,这一方面是为了增加决策的客观性,另一方面是为加强应用中的可塑性。该模型因而能够灵活地应用到不同侧重点的水库大坝退役案例中。水库大坝退役的洪水风险分析具有多学科特征。本研究所构建的空间多准则的洪水风险分析框架,为融合多学科研究、消减水库大坝退役对洪水管理的不利影响提供了一个概念框架。为了探讨水库大坝退役决策中的生态系统服务价值评估,利用双边界二分式条件价值评估法(CVM),评估我国现阶段水库大坝退役有关的主要生态系统服务(水库游憩)的价值。同时使用传统Logit模型以及收入限制的Logit模型,有助于探讨支付意愿(WTP)均值对右尾变化的灵敏性,从而提高WTP估计的统计效率。
     选择安徽滁州市黑洼水库这一典型案例,对本研究所构建的方法体系进行应用研究,定量评估维持现状、退役和除险加固3个备选方案的洪水风险、水库游憩价值。洪水风险分析的结果表明:黑洼水库的除险加固方案降低洪水风险的效果并不显著,仅仅在水库大坝的尺度上采取管理措施对降低洪水风险的帮助不大;黑洼水库的洪水控制能力有限,退役并不会明显地增加洪水风险。作为人口密集区域内的一个小型水库,CVM方法评估得到黑洼水库的总价值高达3 782万元(95%置信区间为3 296~4355万元)。这表明不考虑生态系统服务价值的水库大坝退役决策很可能忽略重要的价值组成部分,导致错误决策。将这两项定量评估的结果整合到ANP/BCR模型,以开展对备选方案的综合评价,得到方案优势度排序:除险加固方案的优势度最高,维持现状方案次之,退役方案最低。灵敏度分析的结果表明,方案优势度基本不受收益、成本和风险子网络权重变化的影响,方案的优势度排序稳定。退役方案的优势度远低于其他方案的原因是:效益较低造成最终优势度下降。研究结果得到黑洼水库业主和滁州市当地水利部门的认可,黑洼水库已实施除险加固方案。说明本文所构建的方法体系对于水库大坝退役多准则决策适用性较强。
Decommissioning is an important stage in dams' life cycle, as well as an inevitable choice for China, where many dams have structural deficient, function and economic obsolescence, and ecosystem degrades due to dam construction and operation. While there were more than 1,600 dams that were decommissioned before the end of 2000 in China. When an increasing proportion of dams are approaching or exceeding their designed lifespans, and public awareness on dam risk and environmental conservation is being raised, the desire for dam decommissioning will be increased. However, dam decommissioning progresses slowly in China, because decision-making on dam decommissioning is a complicated problem, as well as no systematic and complete approach for guiding such kind of decision-making exists. So, it is imperative to study on decision-making approach to dam decommissioning to promote dam decommissioning in China.
     This goal of this study is to develope a decision-making approach for decommissioning of medium and small size aging dam in urbanized area of China, based on the theories of multi-criteria decision making (MCDA), flood risk assessment, and ecosystem service evaluation. This approach is suited to dam-decommissioning realities in China, and has systematic and complete characteristics. Analytic Network Process (ANP) is chosen to develop an ANP/BCR model which consists of three sub-networks, that is benefits, costs, and risks. Besides traditional advantage of qualitative assessment in ANP, this model lays emphasis on incorporating results of quantitative research on dam decommissioning, to increase rationality of decision-making, and flexibility of application. So, this model can be applied to dam-decommissioning cases with different key factors. Analysis of flood risks in dam-decommissioning is interdisciplinary. This study develops a framework for analyzing spatial multicriteria flood risk. It provides a concept framework for incorporating multidisciplinary researches into eliminating adverse effects on flood management caused by dam decommissioning. In order to investigate ecosystem service evaluation in dam-decommissiong decision making, this study applies a double-bounded dichotomous choice contingent valuation method (CVM) to estimate value of reservoir recreation which is the major ecosystem service related to dam decommissioning at the present stage of China. Using a traditional Logit model and three Logit models taking account of income restriction on willingness-to-pay (WTP), sensitivity of WTP estimates to the right tail of its distribution can be examined, thus increase statistical efficiency of WTP estimation.
     The developed approach is applied in a typical case, which is the Heiwa Dam, located in Chuzhou City, Anhui Province. Flood risk, and reservoir recreational value is analyzed for three alternatives, that is, exiting-condition, dam decommissioning, and dam rehabilitation. The results of flood risk analysis show that the dam rehabilitation scenario had a higher rank for decreasing the flood risk than the other two alternatives, but that it alone might be of little help in abating flood risk. It is also indicated that the flood control capacity of the dam is limited; thus, if the dam were to be decommissioned, the mean risk would not be greater than the current existing risk. As a small-sized dam, the total recreational value of the Heiwa Dam is 3 782×104 Yuan (95% confidence interval:3 296×104 to 4 355×104 Yuan) evaluated by CVM. These results indicate that the decision-making not considering values of ecosystem service may ignore important parts of values, and cause wrong decision. These quantitative results are incorporated into ANP/BCR model to appraise and rank alternatives. Priority ranking results show that the dam rehabilitation alternative maintains the highest ranking, exisiting-condition alternative is in the middle, and the dam decommissioning alternative is in the last. Sensitivity results reveal that the rankings are almost independent of changes in the weights associated with sub-networks; thus the ranking is robust. The low priority of the dam decommissioning alternative is due to its low benefits. These results have been approved by dam owner and local water conservancy department, and the Heiwa dam has been rehabilitated in 2010. It is indicates that the approach developed in this study is applicalbe to typical dam-decommissioning cases of multicriteria decision-making, and obtained results are rational.
引文
[1]中华人民共和国水利部.水库降等与报废管理办法(试行)[R].2003.
    [2]Heinz Center. Dam removal:science and decision making[M]. Heinz Center for Science, Economics and the Environment:Washington DC,2002.
    [3]Xu X Z, Zhang H W, Zhang O. Development of check-dam systems in gullies on the Loess Plateau, China[J]. Environmental Science & Policy,2004,7 (2):79-86
    [4]孙继昌.中国的水库大坝安全管理[J].中国水利,2008,20:10-14.
    [5]蒋金平,杨正华.中国小型水库溃坝规律与对策[J].岩土工程学报,2008,30(11)1625-1631.
    [6]韩其为,杨小庆.我国水库泥沙淤积研究综述[J].中国水利水电科学研究院学报,2003,1(3):169-178.
    [7]Zech Y, Soares-Frazao S, Spinewine B, et al. Dam-break induced sediment movement: Experimental approaches and numerical modelling[J]. Journal of Hydraulic Research, 2008,46 (2):176-190.
    [8]王辛石.陕西省病险水库降等报废工作纪实[J].中国水利,2003,10:36-37.
    [9]Whitelaw E, Macmullan E. Framework for Estimating the Costs and Benefits of Dam Removal[J]. BioScience,2002,52 (8):724-730.
    [10]Bednarek A. Undamming rivers:A review of the ecological impacts of dam removal [J]. Environmental Management,2001,27 (6):803-814.
    [11]Lejon A G C, Renofalt B M, Nilsson C. Conflicts Associated with Dam Removal in Sweden[J]. Ecology and Society,2009,14 (2):4.
    [12]新疆维吾尔自治区人民政府,水利部.塔里木河流域近期综合治理规划报告[R].2000.
    [13]哈斯木,吐尔隼,韩桂红等.近50a以来塔里木河下游土地沙漠化影响因子分析[J].中国沙漠,2009,29(6):1029-1034.
    [14]陈亚宁,李卫红,徐海量.塔里木河下游地下水位对植被的影响[J].地理学报,2003,58(4):542-549.
    [15]Zhuang L, Dong Y, Yin F, et al. Historical evolution and the effects of ecological management in Tarim Basin, China[J]. Chinese Science Bullentin,2010,55 (36) 4097-4103.
    [16]Chen Y, Li W, Xu H, et al. The Influence of Groundwater on Vegetation in the Lower Reaches of Tarim River,China[J]. Acta Geographica Sinica,2003,58 (4):542-549.
    [17]李雷,盛金保.我国小型水库安全现状调查及对策研究报告[R].南京:水利部大坝安全管理中心,2002.
    [18]水利部大坝安全管理中心,水利部建设与管理总站,陕西省水利厅等.《水库降等使 用和报废管理办法》及《水库降等使用和报废标准》调研报告[R].2000.
    [19]Shi P J, Du J, Ji M X. urban risk assessment research of major natural disasters in China[J]. Advances in Earth Science,2006,21 (2):170-177.
    [20]刘宁.21世纪中国水坝安全管理、退役与建设的若干问题[J].中国水利,2004,23-29.
    [21]傅琼华,杨正华.浅谈水库的降等与报废管理[J].江西水利科技,2005,31(S1):42-47.
    [22]Task Committee on Guidelines for Retirement of Dams and Hydroelectric Facilities. Guidelines for Retirement of Dams and Hydroelectric Facilities[M]. American Society of Civil Engineers:New York,1997.
    [23]张海亮,孟红军.安阳市小水库降等与报废问题探讨[J].中国防汛抗旱,2009,:65-66.
    [24]盛金保,李雷,杨正华.《水库降等与报废管理办法(试行)》解读与建议[J].中国水利,2008,20.
    [25]徐南荣.科学决策理论与方法[M].东南大学出版社:1995.
    [26]Belton V, Stewart T J. Multiple criteria decision analysis:an integrated approach[M]. Kluwer Academic Publishers:Norwell, MA, US,2003.
    [27]彭辉,刘德富.病坝识别及其拆除决策步骤研究[J].中国农村水利水电,2009,(9):101-104.
    [28]Rivers A, Unlimited T. Exploring dam removal:A decision-making guide[R]. Washington, DC:American Rivers Trout Unlimited,2002.
    [29]Brown P H, Tullos D, Tilt B, et al. Modeling the costs and benefits of dam construction from a multidisciplinary perspective[J]. Journal of Environmental Management,2009,90: S303-S311.
    [30]Corsair H J, Ruch J B, Zheng P Q, et al. Multicriteria Decision Analysis of Stream Restoration:Potential and Examples[J]. Group Decision & Negotiation,2009,18:387-417.
    [31]Huang L, Duan B, Bi J. Analysis of Determining Factors of the Public's Risk Acceptance Level in China[J]. Human and Ecological Risk Assessment,2010,16 (2):365-379.
    [32]Mingers J, Rosenhead J. Problem structuring method in action[J]. European Journal of Operational Research,2004,152 (3):530-554.
    [33]Giordano R, Passarella G, Uricchio V F, et al. Integrating conflict analysis and consensus reaching in a decision support system for water resource management[J]. Journal of Environmental Management,2007,84 (2):213-228
    [34]Giordano R, Passarella G, Uricchio V F, et al. Fuzzy cognitive maps for issue identification in a water resources conflict resolution system[J]. Physics and Chemistry of the Earth, Parts A/B/C,2005,30 (6-7):463-469.
    [35]Mischel W. Personality and Assessment[M]. Lawrence Erlbaum Associates, Inc., Publishers:Mahwah, New Jersey,1996.
    [36]Morton A, Ackermann F, Belton V. Problem structuring without workshops? Experiences with distributed interaction within a PSM process[J]. Journal of the Operational Research Society,2007,58 (5):547-556.
    [37]Eden C, Ackermann F. Cognitive mapping expert views for policy analysis in the public sector[J]. European Journal of Operational Research,2004,152 (3):615-630.
    [38]Hjortso C N. Enhancing public participation in natural resource management using Soft OR-an application of strategic option development and analysis in tactical forest planning[J]. European Journal of Operational Research,2004,152 (3):667-683.
    [39]Niu X Q Characteristics of reservoir defects in China and development orientation of consolidation technologies. In International Conference on dam safety management, Cai, Y. B., Ed. Nanjing University Press:Nanjing, China.,2008.
    [40]Bednarek A T. Dams and decision-making:socioeconomic and ecological considerations.[D].Philadelphia:University of Pennsylvania,2002.
    [41]Doyle M W, Stanley E H, Harbor J M. Channel Adjustments Following Two Dam Removals in Wisconsin[J]. Water Resource Research,2003,39 (1)
    [42]Riggsbee J A, Julian J P, Doyle M W. Suspended Sediment, Dissolved Organic Carbon, and Dissolved Nitrogen Export During the Dam Removal Process[J]. Water Resource Research,2007,43 (9).
    [43]Cheng F, Granata T. Sediment Transport and Channel Adjustment Associated with Dam Removal:Field Observations[J]. Water Resource Research,2007,43.
    [44]Cui Y T, Parker G, Lisle T E. Sediment Pulsed in Mountain Rivers:1. Experiments[J]. Water Resources Management,2003,39 (9):1239-1250.
    [45]Cui Y T, Gary P, Lisle T E. More on the Evolution of Bed Material Waves in Alluvial Rivers[J]. Earth Surface Processes & Landforms,2005,30:107-114.
    [46]Pizzuto J E. Effects of Dam Removal on River Form and Process[J]. BioScience,2001, 52 (8):683-691.
    [47]Granata T, Cheng F, Nechvatal M. Discharge and Suspended Sediment Transport During Deconstruction of a Low-Head Dam[J]. Journal of Hydraulic Engineering-ASCE,2008, 134 (5):652-657.
    [48]Bartholow J M, Campbell S G, Flug M. Predicting the Thermal Effects of Dam Removal on the Klamath River[J]. Environmental Management,2005,34 (6):856-874.
    [49]Kloehn K K, Beechie T J, Morley S A. Influence of Dams on River-Floodplain Dynamics in the Elwha River, Washington[J]. Northwest Science,2008,82 (Special Issue):224-235.
    [50]Bushaw-Newton K L, Hart D D, Pizzuto J E. An Integrative Approach Towards Understanding Ecological Responses to Dam Removal:The Manatawny Creek Study [J]. Journal of the American Water Resources Association,2002,38(6):1581-1599.
    [51]DOI, BOE, TSC, et al. Erosion and Sedimentation Manual[M].2006,
    [52]Pess G, McHenry M, Beechie T, et al. Biological Impacts of the Elwha River Dams and Potential Salmonid Responses to Dam Removal[J]. Northwest Science,2008,82:72-90.
    [53]Richter B D, Thomas G A. Restoring environmental flows by modifying dam operations[J]. Ecology and Society,2007,12 (1):12.
    [54]Burroughs B A. Effects of dam removal on fluvial geomorphology and fish[D].Michigan State University,2007.
    [55]Chung L, Lin H, Yo S. Relationship between the Formosan landlocked salmon Oncorhynchus masou formosanus population and the physical substrate of its habitat after partial dam removal from Kaoshan Stream, Taiwan [J]. Zoological Studies,2008,47 (1): 25-36.
    [56]Shafroth P B, Friedman J M, Auble G T, et al. Potential responses of riparian vegetation to dam removal[J]. BioScience,2002,52 (8):703-712.
    [57]Nilsson C, Berggren K. Alterations of riparian ecosystems caused by river regulation[J]. BioScience,2000,50:783-792.
    [58]Stromberg J. Restoration of riparian vegetation in the southwestern United States: importance of flow regimes and fluvial dynamism[J]. Journal of Arid Environments,2001, 49:17-34.
    [59]Orr C H. Ecological and biogeochemical responses of rivers to restoration[D].Madison: University of Wisconsin,2005.
    [60]Orr C H, Stanley E H. Vegetation Development and Restoration Potential of Drained Reservoirs Following Dam Removal in Wisconsin[J]. River Research and Applications, 2006,22 (3):281-295.
    [61]Wood P J, Armitage P D. Biological effects of fine sediment in the lotic environment [J]. Enviromental Management,1997,21 (2):203-217.
    [62]Cheng F.Zika U, Banachowski K,et al. Modelling the effects of dam removal on migratory walleye (Sander vitreus) early life-history stages.pdf[J]. River Research & Applications, 2006,22 (8):837-851.
    [63]Marks J C, Haden G A, O'Neill M, et al. Effects of flow restoration and exotic species removal on recovery of native fish:lessons from a dam decommissioning[J]. Restoration Ecology,2010,18 (6):934-943.
    [64]Thomson J R, Hart D D, Charles D F. Effects of Removal of a Small Dam on Downstream Macroinvertebrate and Algal Assemblages in a Pennsylvania Stream[J]. Journal of the North American Benthological Society,2005,24:192-207.
    [65]Stanley E H, Doyle M W. Trading off:the ecological effects of dam removal[J]. Frontiers in Ecology & the Environment,2003,1 (1):15-22.
    [66]Doyle M W, Stanley E H, Orr C H, et al. Stream ecosystem response to small dam removal: Lessons from the Heartland[J]. Geomorphology,2005,71:227-244.
    [67]Stanley E H, Luebke M A, Doyle M W, et al. Short-term changes in channel form and macroinvertebrate communities following low-head dam removal[J]. Journal of the North American Benthological Society,2002,21:172-187.
    [68]Sethi S A. Selle AR , Doyle M W, et al. Response of unionid mussels to dam removal in Koshkonong Creek, Wisconsin (U.S.A.)[J]. Hydrobiologia,2004,525:157-165.
    [69]向衍,盛金保,杨孟等.水库大坝退役拆除及对生态环境影响研究[J].岩土工程学报,2008,30(11):1758-1765.
    [70]Whitelaw E D, Macmullan E D. A framework for estimating the costs and benefits of dam removal[J]. BioScience,2002,52 (8):724-730.
    [71]Sadler B, Verocai I, Vanclay F. Environmental and Social Impact Assessment for Large Scale Dams[R].2000.
    [72]ASCE. Guidelines for Retirement of Dams and Hydroelectric Facilities [M]. American Society of Civil Engineers:New York,1997.
    [73]MEI. Flood inundation mapping, flood hazard evaluation, and downstream impact analysis of the Carmel River reroute and removal option for the San Clemente Dam seismic retrofit project, California[R].Berkeley, CA:Clearinghouse for Dam Removal Information, University of California,2008.
    [74]魏世孝等.多属性决策理论方法及其在C3I系统中的应用[M].国防工业出版社:1998.
    [75]Figueira J, Greco S, Ehrogott M. Multiple criteria decision analysis:state of the art surveys[M]. Springer:2005.
    [76]虞晓芬,傅玳.多指标综合评价方法综述[J].统计与决策,2004,(11):119-121.
    [77]王莲芬.网络分析法(AN P)的理论与算法[J].系统工程理论与实践,2001,(3):44-50.
    [78]Neves L P, Dias L C, Antunes C H, et al. Structuring an MCDA model using SSM:A case study in energy efficiency [J]. European Journal of Operational Research,2009,199(3): 834-845
    [79]Keeney R L. Value-Focused Thinking[M]. Harvard University Press:Cambridge,1992.
    [80]Tegarden D P, Sheetz S D. Group cognitive mapping:a methodologyand system for capturing and evaluating managerial and organizational cognition[J]. Omega,2003,31 (2):113-125
    [81]Saaty T L. The analytic hierarchical process[M]. McGraw-Hill:New York,1980.
    [82]L.Saaty T. Decision making-the Analytic Hierarchy and network processes (AHP/ANP)[J]. Journal of Systems Science and Systems Engineering,2004,13(1):1-35.
    [83]Tuzkaya U R, Onut S. A fuzzy analytic network process based apprcich to transportation-mode selection between Turkey and Germany:A case study[J]. Information Sciences,2008,178:3133-3146.
    [84]Saaty T L, Ozdemir M. Negative priorities in the analytic hierarchy process[J]. Mathematical and Computer Modelling,2003,37 (9-10):1063-1075.
    [85]Roberts S J, Gottgens J F, Spongberg A L, et al. Assessing potential removal of low-head dams in urban settings:an example from the Ottawa River, NW Ohio[J]. Environmental Management,2007,39:113-124.
    [86]Wyrick J R, Rischman B A, Burke C A, et al. Using hydraulic modeling to address social impacts of small dam removals in southern New Jersey[J]. Journal of Environmental Management,2009,90:5270-5278.
    [87]Higgins M B J. Automated calibration of TR-20 with NEXRAD data to study removal of a flood control dam[D].New York:State University of New York,2005.
    [88]Fewtrell T J, Bates P D, Horritt M, et al. Evaluating the effect of scale in flood inundation modelling in urban environments[J]. Hydrological Processes,2008,22:5107-5188.
    [89]Kouyi G, Riviere N, Vidalat V, et al. Urban flooding:one-dimensional modelling of the distribution of the discharges throught cross-road intersections accouting for energy losses[J]. Water Science & Technology,2010,61 (8):2021-2026.
    [90]Yu D, Lane. S N. Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment, part 1:mesh resolution effects [J]. Hydrological Processes,2006,20:1541-1565.
    [91]Gallegos H A, Schubert J E, Sanders. B F. Two-dimensional, high-resolution modeling of urban dam-break flooding:a case study of Baldwin Hills, California[J]. Advances in Water Resources,2009,32:1323-1335.
    [92]Mignot E A, Paquier S H. Modeling floods in a dense urban area using 2D shallow water equations[J]. Journal of Hydrology,2006,327:186-199.
    [93]Bates P, De Roo A. A simple raster-based model for floodplain inundation[J]. Journal of Hydrology,2000,236:54-77.
    [94]Apel H, Aronica G, Kreibich H, et al. Flood risk analyses-how detailed do we need to be[J]. Natural Hazards,2009,49 (1):79-98.
    [95]李伟峰,陈求稳,毛劲乔.北京奥运村洪水淹没风险模型研究[J].科学通报,2009,54(3):321-328.
    [96]Brouwer R, Ek. R v. Integrated ecological, economic and social impact assessment of alternative flood control policies in the Netherlands[J]. Ecological Economics,2004,50: 1-21.
    [97]Levy J K, Hartmann J, Li K W, et al. Multi-criteria decision support systems for flood hazard mitigation and emergency response in urban watersheds[J]. Journal of the American Water Resources Association,2007,43 (2):346-358.
    [98]Buchele B, Kreibich H, Kron A, et al. Flood-risk mapping contributions towards an enhanced assessment of extreme events and associated risks[J]. Natural Hazards & Earth System Sciences,2006,6:485-503.
    [99]Malczewski J. GIS and multicriteria decision analysis[M]. John Wiley and Sons:New York,1999.
    [100]Kubal C, Haase D, Meyer V, et al. Integrated urban flood risk assessment-adapting a multicriteria approach to a city[J]. Natural Hazards & Earth System Sciences,2009,9: 188-1895.
    [101]Meyer V, Scheuer S, Haase D. A multicriteria approach for flood risk mapping examplified at the Mulder river, Germany [J]. Natural Hazards,2009,48:17-39.
    [102]Raaijmakers R J J. A spatial multi criteria analysis methodology for the development of sustainable flood risk management in the Ebro Delta[D].University of Twente,2006.
    [103]Keeney R L, Gregory R S. Selecting attributes to measure the achievement of objectives[J]. Operations Research,2005,53 (1):1-11.
    [104]石勇,石纯,孙阿丽.中国南方城市居民建筑物洪灾脆弱性研究[J].人民长江,2009,40(5):97-101.
    [105]李汉浸,工运行,张相梅等.淮阳高新区洪灾城市经济损失评估[J].气象,2009,35(1):97-101.
    [106]Paterson R G, Luger M I, Burby R J. Costs and benefits of urban erosion and sediment[J]. Environmental Management,1993,17:167-178.
    [107]Maniquiz M C, Lee S, Lee E, et al. Unit soil loss rate from various construction sites during a storm[J]. Water Science & Technology,2009,59:2187-2186.
    [108]Taylor K G, Owens P N. Sediments in urban river basins:a review of sediment-contaminant dynamics in an environmental system conditioned by human activities[J]. Journal of Soils & Sediments,2009,9:281-303.
    [109]Tapsell S M, Penning-Rowsell E, Tunstall S M, et al. Vulnerability to flooding:health and social dimensions[J]. Philosophical Transactions of the Royal Society of London Series A, 2002,360:1511-1525.
    [110]Huang D, Chen T, Wang M J J. A fuzzy set approach for event tree analysis[J]. Fuzzy Sets & Systems,2001,118:153-165.
    [111]李雷,工仁钟,盛金保等.大坝风险评价与风险管理[M].中国水利水电出版社:北京,2006.
    [112]Roos A, B. Jonkman. Flood risk assessment in the Netherlands with focus on the expected damages and loss of life. In Proceedings of the NATO Advanced Research Workshop, Schanze, J.; Zeman, E.; Marsalek, J., Eds. NATO.:Ostrov, Czech Republic,2004; pp 169-183.
    [113]DHI. MIKE21 HD hydrodynamic module scientific documentation. Release 2007.[CP]. DHI Software:Denmark,2006.
    [114]Fenton J D. Reservoir routing[J]. Hydrological Sciences Journal,1992,37:233-246.
    [115]Fread D L. BRECH:an erosion model for earthen dam failures[R]. Silver Spring, Md: National Weather Service, Nathional Oceanic and Atmospheric Administration (NOAA), 1991.
    [116]Hajkowicz S, Higgins A. A comparison of multiple criteria analysis techniques for water resource management [J]. European Journal of Operational Research,2008,184 (1) 255-265
    [117]Ugwu O O. Kumaraswamy M M, Wong A, et al. Sustainability appraisal in infrastructure projects (SUSAIP) Part 1. Development of indicators and computational methods[J]. Automation in Construction,2006,15:239-251.
    [118]Bottomley P A, Doyle J R. A comparison of three weight elicitation methods-good, better, and best[J]. Omega,2001,29:553-560.
    [119]Kruse S A. Creating an interdisciplinary framework for economic valuation_ A CVM application to dam removal (Ohio)[D].The Ohio State University,2005.
    [120]张志强,徐中民,程国栋.生态系统服务与自然资本价值评估[J].生态学报,2001,21(11):1918-1936.
    [121]Kruse S A. Creating an interdisciplinary framework for economic valuation:a CVM application to dam removal (Ohio)[D].Ohio:The Ohio State University,2005.
    [122]毛战坡,王雨春,彭文启,et al.筑坝对河流生态系统影响研究进展[J].水科学进展,2005,16(1):134-145.
    [123]Gowan C, Stephenson K, Shabman L. The role of ecosystem valuation in environmental decision making:Hydropower relicensing and dam removal on the Elwha River[J]. Ecological Economics,2006,56 (4):508-523.
    [124]Lommis J B. Measuring the economic benefits of removing dams and restoring the Elwha River:Results of a contingent valuation survey[J]. Water Resources Research,1996,32 (2):441-447.
    [125]Warren D C. An estimation of the economic benefits of low-head dam removal[D].Ohio: The Ohio State University,2004.
    [126]刘亚萍,李罡,陈训.运用WTP值与WTA值对游憩资源非使用价值的货币估价-以黄果树风景区为例进行实证分析[J].资源科学,2008,30(3):431-439.
    [127]段百灵,黄蕾,班婕.洪泽湖生物多样性非使用价值评估[J].中国环境科学,2010,30(8):1135-1141.
    [128]曾贤刚,蒋妍.空气污染健康损失中统计生命价值评估研究[J].中国环境科学,2010,30(2):284-288.
    [129]曾贤刚,王克,程磊磊.三江源区生态系统非使用价值评价[J].中国环境科学,2009,29(6):589-593.
    [130]Mitchell R C, Carson R T. Using Surveys to Value Public Goods:The Contingent Valuation Method[M]. The Johns Hopkins University Press:Washington,1989.
    [131]Hanemann W M. Welfare evaluations in contingent valuation experiments with discrete responses[J]. American Journal of Agricultural Economics,1984,66 (3):332-341.
    [132]Bateman I J, Langford I H, Jones A P, et al. Bound and path effects in double and triple bounded dichotomous choice contingent valuation[J]. Resource and Energy Economics, 2001,23 (3):191-213.
    [133]Carson R T, Groves T, Machina M J. Incentive and informational properties of preference questions[J]. Environmental and Resource Economics,2007,37 (1):181-210.
    [134]Hanemann M, Loomis J, Kanninen B. Statistical Efficiency of Double-Bounded Dichotomous Choice Contingent Valuation[J]. American Journal of Agricultural Economics,1991,73 (4):1255-1263.
    [135]赵军,杨凯,刘兰岚.环境与生态系统服务价值的WTA/WTP不对称[J].环境科学学报,2007,27(5):854-860.
    [136]Tuzkaya G, Onut S, Tuzkaya S, et al. An analytic network process approach for locating undesirable facilities:An example from Istanbul, Turkey [J]. Journal of Environmental Management,2008,88:970-983.
    [137]Alberini A. Optimal designs for discrete choice contingent valuation surveys:single-bound, double-bound and bivariate models[J]. Journal of Environmental Economics & Management,1995,28 (3):287-306.
    [138]S A, Rodrigues, AM, et al. Santos and Fernanda Rocha. Dam-Break Flood Emergency Management System[J]. Water Resources Management,2002,16:489-503.
    [139]Hanemann M, Kanninen B. The Statistical Analysis of Discrete-Response CV Data. In Valuing environmental preferences:theory and practice of the contingent valuation method in the US, EU, and developing countries[M]. Oxford University Press:Oxford,1999.
    [140]杨凯,赵军.城市河流生态系统服务的CVM估值及其偏差分析[J].生态学报,2005,25(6):1391-1396.
    [141]Brown T C, Ajzen I, Hrubes D. Further tests of entreaties to avoid hypothetical bias in referendum contingent valuation [J]. Journal of Environmental Economics and Management,2003,46 (2):353-361.
    [142]Hanemann W M. Welfare evaluations in contingent valuation experiments with discrete response data:reply [J]. American Journal of Agricultural Economics,1989,71 (4) 1057-1061.
    [143]Buckley C, van Rensburg T M, Hynes S. Recreational demand for farm commonage in Ireland a contingent valuation assessment[J]. Land Use Policy,2009,26 (3):846-854.
    [144]Lee C K, Mielde J W. Valuation of ecotourism resources using a contingent valuation method:the case of the Korean DMZ[J]. Ecological Economics,2007,63 (2-3):511-520.
    [145]Wielgus J, Gerber L R, Sala E, et al. Including risk in stated-preference economic valuations:experiments on choices for marine recreation[J]. Journal of Environmental Management,2009,90 (11):3401-3409.
    [146]Bishop R C, Heberlein T A. Measuring values of extra-market goods:are indirect measures biased?[J]. American Journal of Agricultural Economics,1979,61:926-930.
    [147]Ready R C, Hu D. Statistical Approaches to the fat tail problem for dichotomous choice contingent valuation[J]. Land Economics,1995,71 (4):491-499.
    [148]Boyle K J, Welsh M P, Bishop R C. Validation of empirical measures of welfare change: comment and extension[J]. Land Economics,1988,64 (1):94-98.
    [149]Krinsky I, Robb A L. On approximating the statistical properties of elasticities[J]. Review of Economics and Statistics,1986,68 (4):715-719.
    [150]Smith D I. Flood damage estimation-A review of urban stage-damage curves and loss functions[J]. Water SA,1994,20:231-238.
    [151]BSC. Chuzhou Statistical Yearbook-2008[M]. China Statistics Press:Beijing,2008.
    [152]蔡正中,叶成林.滁河流域“08.08”洪水防洪调度与启示[J].人民长江,2009,40(1):18-20.
    [153]Zhou H G. Preliminary study on 3D structure with dual-Doppler radar of heavy rainstorm in Chuzhou Area dusing 1-2 August 2008[J]. Plateau Meteorology,2009,28 (6): 1422-1433.
    [154]Cai Z Z. YeCL. Flood control operation and implications of 0808 flood event in Chuhe watershed[J]. Yangtze River,2009,40 (1):18-20.
    [155]Chen A S, Hsu M H, Chen T S, et al. An integrated inundation model for highly developed urban areas[J]. Water Science & Technology,2005,51:221-229.
    [156]Schmitt T G, Thomas M, Ettrich.N. Analysis and modeling of flooding in urban drainage systems[J]. Journal of Hydrology,2004,299:300-311.
    [157]Buchele B, Kreibich H, Kron A, et al. Flood-risk mapping contributions towards an enhanced assessment of extreme events and associated risks[J]. Nat. Hazards Earth Syst. Sci.,2006,6:485-503.
    [158]Dewan A M, Islam M M, Kumamoto T, et al. Evaluating Flood Hazard for Land-Use Planning in Greater Dhaka of Bangladesh Using Remote Sensing and GIS Techniques[J]. Water Resources Management,2007,21 (9):1601-1612.
    [159]Amigues J P, Boulatoff C, Desaigues B. The benefits and costs of riparian analysis habitat preservation:a willingness to accept/willingness to pay contingent valuation approach[J]. Ecological Economics,2002,43 (1):17-31.
    [160]Lee C K, Lee J H, Mjelde J W. Assessing the economic value of a public birdwatching interpretative service using a contingent valuation method [J]. Journal of Tourism Research, 2009,11 (6):583-593.[161]郭强.调查实战指南:抽样调查手册[M].中国时代经济出版社:北京,2004.[162]郭强.调查实战指南:访员督导手册[M].中国时代经济出版社:北京,2004.[163] The National Dam Safety Program Research Needs Workshop:Risk Assessment for Dams[R]. Association of State Dam Safety Officials/Federal Emergency Management Agency,2001. [164] Yoo S H, Kwak S Y. Willingness to pay for green electricity in Korea:a contingent valuation study [J]. Energy Policy,2009,37 (12):5408-5416.[165]滁州市统计局.滁州市2010年统计年鉴[M].宜春资料印务有限公司:江西,2010.[166]盛金保,傅忠友.大坝分类方法对比研究[J].水利水运工程学报,2010,(6):7-13.[167] HCHC. Dam removal:science and decision making[R]. Washington, D.C., USA.:2002. [168] Gilbert A H, Frymier L G, Dolan K A Research report on the value of dam removal and landlocked salmon restoration on the Clyde River to Vermont state residents. In 1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700